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Abstract—Unmanned aerial vehicle (UAV)-enabled edge feder-
ated learning (FL) has sparked a rise in research interest as
a result of the massive and heterogeneous data collected by
UAVs, as well as the privacy concerns related to UAV data
transmissions to edge servers. However, due to the redundancy
of UAV collected data, e.g., imaging data, and non-rigorous FL
participant selection, the convergence time of the FL learning
process and bias of the FL model may increase. Consequently,
we investigate in this paper the problem of selecting UAV partic-
ipants for edge FL, aiming to improve the FL model’s accuracy,
under UAV constraints of energy consumption, communication
quality, and local datasets’ heterogeneity. We propose a novel
UAV participant selection scheme, called data-efficient energy-
aware participant selection strategy (DEEPS), which consists of
selecting the best FL participant in each sub-region based on
the structural similarity index measure (SSIM) average score
of its local dataset and its power consumption profile. Through
experiments, we demonstrate that the proposed selection scheme
is superior to the benchmark random selection method, in terms
of model accuracy, training time, and UAV energy consumption.

Index Terms—Unmanned aerial vehicle, UAV, federated learn-
ing, FL, edge computing.

I. INTRODUCTION

In 5G and beyond communication networks, edge comput-
ing is considered as one of the enabling technologies for low-
latency and mission-critical applications [1, 2]. In contrast
to edge servers at fixed locations, flying unmanned aerial
vehicles (UAVs)-enabled mobile edge computing (MEC) plays
a vital role in providing wide-area flexible deployment [3]–
[5], reliable communication [6]–[8], data collection [9, 10],
and mobile MEC services [11, 12]. Due to their imagery
capabilities, UAVs’ collected imaging data can be exploited for
a plethora of applications, such as traffic monitoring [13, 14],
road extraction [15], and remote sensing [16]. These applica-
tions need fast and real-time data analysis, thus requiring to
build customized and secure machine learning (ML) models.

Traditional ML models, which are based on the aggregation
of the UAVs’ sensing data at a central entity, e.g., an edge
server, may raise serious privacy and data misuse concerns,
due to the broadcast nature of wireless communications and
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the vulnerability of the central server. Moreover, transmitting
raw data streams, such as UAV images/videos, to the edge
server, consumes a lot of the wireless bandwidth and may
saturate it at peak times. Also, such behavior may rapidly drain
the UAV’s battery [17].

To tackle this issue, federated learning has been recently
proposed as a promising distributed ML paradigm [18]. FL
allows a group of participants to collaboratively train their
ML models without disclosing their local data within their
communications with the central server, whereas the latter
aggregates the received non-critical data to train a global
model and send updates to the FL participants. Typically, not
all available devices participate in the FL process. Indeed,
only a subset is selected each time to participate in FL
[18]. This approach allows handling heterogeneous devices
with different ML capabilities and data properties. Although
random participant selection is a common strategy, it leads
often to weak FL performances.

In addition, in the context of UAV systems, redundancy
in collected data occurs often and in different ways, such as
exact and near-duplicate images acquired by different UAVs.
Redundancy has a negative impact as it causes an unnecessary
usage of storage space, computation resources, and power.
Moreover, it may lead to biased Ml models due to the lack
of new and diversified information in the samples. Hence,
this leads to a degradation in the model’s performance. For
instance, authors of [19] noticed a high redundancy in datasets
CIFAR-10, CIFAR-100 and ImageNet. Through experiments,
they proved that the classification accuracy drops between 9%
and 14% compared to the original redundancy-free model.
Hence, it is critical to carefully select FL participants with
high-quality and very low-redundant datasets.

Aiming to improve the performance of the UAV-enabled FL
model, we propose here a novel participant selection scheme,
a.k.a., data-efficient energy-aware participant selection strategy
(DEEPS), that prioritizes participants with high data diversity
and sufficient battery capacity to handle local training. To
the best of our knowledge, this work is among the firsts to
investigate strategic FL UAV participant selection, with respect
to data and UAV constraints. Our main contributions can be
summarized as follows:

1) We set up the UAV-enabled edge FL system model,
including the FL model, the UAV communication, mobil-
ity, and energy consumption models, and the UAV edge
computing model.

2) Following the sub-division of the UAVs’ operating area
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into sub-regions, we propose a novel FL UAV participant
selection scheme, based on the structural similarity index
measure (SSIM) average score of its local dataset and its
power consumption profile.

3) Through experiments on the Fire Luminosity Airborne-
based Machine learning Evaluation (FLAME) dataset
[20], we prove the superiority of our selection scheme,
in terms of FL model accuracy, training time, and UAV
energy consumption, compared to the random selection
benchmark.

This paper is organized as follows. Section II examines the
related work. The system model is introduced in Section III,
while the proposed FL participant selection scheme is provided
in Section IV. Then, performance evaluation is conducted in
Section V. Finally, Section VI concludes the paper.

II. RELATED WORKS

FL is an emerging paradigm that only recently it started
to be investigated in the context of UAV networks. In [21], a
serverless architecture for UAV networks, a.k.a., decentralized
FL for UAV networks (DFL-UN) was proposed. It consists of
sharing the UAV local model with the one-hop UAV neighbors.

Decentralized serverless approaches converge relatively fast
when the number of participants is small, i.e., their scalability
is very limited, as discussed in [21]. To tackle this issue
and ensure distributed FL scalability, participant selection
protocols are essential. For instance, authors of [16] proposed
a blockchain-based collaborative UAV-based FL architecture to
securely exchange local model updates. Then, UAVs’ privacy
is preserved by applying local differential privacy. Through
simulations, the proposed approach is proven to effectively
improve utilities for UAVs, ensure high-quality model sharing,
and guarantee FL privacy protection. However, this approach
did not take into account the UAVs’ power constraints in
the participants’ selection process. In [22], battery-constrained
federated edge learning (FEEL) in UAV-enabled Internet of
Things (IoT) is investigated, in which UAVs can modify their
running CPU frequencies to extend battery life and avoid
falling out of FL training prematurely. This system is further
optimized to reduce a linear combination of latency and energy
consumption, by jointly allocating the computational resources
and wireless bandwidth based on a deep deterministic pol-
icy gradient (DDPG) strategy. Simulation results show that
the proposed method outperforms the benchmark ones, in
terms of FL convergence, latency, energy consumption, and
system cost. Authors in [23] proposed a semi-supervised FL
(SSFL) framework for privacy-preserving UAV image recog-
nition, where a federated mixing (FedMix) strategy is used
to improve the naive combination of FL and semi-supervised
learning under the scenarios of labels-at-client and labels-at-
server. To alleviate the statistical heterogeneity problem, the
federated frequency (FedFreq) aggregation rule is proposed,
which adjusts the weight of the corresponding local model
according to the client’s participation frequency in training.
In [24], a heterogeneous wireless communication architecture
is proposed for collaborative private medical analytics where
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Fig. 1. System model.

UAVs utilize the information gathered by individual end-users
(EUs) via wearables and environmental sensors. In FL, an
asynchronous weight update mechanism is proposed to prevent
repeated learning and conserve the UAVs’ and EUs’ limited
networking and computing resources.

III. SYSTEM MODEL

Our system model is depicted in Fig. 1. It is composed of
several regions, where in each region r a BS is paired to an
edge computing (EC) server to serve ground users and also N
UAVs deployed in the BS’s geographic area. The UAVs can
also act as edge nodes, but with lower capabilities than the EC
server. For the sake of simplicity, we assume that UAVs are
uniformly distributed on the horizontal plane while hovering
at the same altitude. Finally, EC management is realized by a
regional edge controller hosted within the BS.

A user in a given region can request a service relative to
any region r. The service is characterized by its type that
describes the FL task, maximum number of global FL rounds
nmax
r , and required number of UAVs Nr to participate in the

FL task. Indeed, we assume that the data required to execute
the user’s request is collected by the UAVs in their region
of interest r, thanks to their on-board equipment, including
high-resolution cameras, GPS, LiDAR, etc., and that the latter
are participants in FL training. Then, the EC server associated
with the corresponding BS acts as the FL aggregator.

A. FL Model

FL is a distributed ML technique used to train a shared
model while maintaining the participants’ privacy. Instead of
sending raw data to an EC server, FL participants, in our case
UAVs, can train their datasets locally. The EC server gathers
the local models from participating UAVs to generate a global
model. For a learning task, each one of the participating Nr

UAVs collects a set of data to create the training dataset dur
with size |dur |, where u identifies UAV u and | · | is the
cardinality operator. UAV u trains its own neural network
(NN) model with a subset of dur , denoted dur,k, during Te

epochs (equivalent to FL round k, with k = 1, . . . , nmax
r ), then



sends back its model update ωu to its EC server to train the
global model ω. The global model is updated by aggregating
the incoming updates. Then, it transmits the generated model
parameters to the participating UAVs for another training
round. These steps are repeated until the model converges or
nmax
r is reached. Finally, the result is sent back to the user

that triggered the request. If the latter lies within a different
region than the UAVs, the result is sent between the regions
through the wired BSs’ backbone, e.g., fiber optic cables.

Typically, the loss function captures the model’s error on
training samples. Let Fu be the local loss function for the
participating UAV u and fs is the loss function on a single
data sample s ∈ dur,k. Consequently, in round k

Fu(ωu) =
1

|dur,k|
∑

s∈du
r,k

fs(ωu). (1)

For the global model, the loss function in round k can be
expressed by

F (ω) =

Nr∑
u=1

|dur,k|
|dr,k|

Fu(ωu), (2)

where dr,k = ∪Nr
u=1d

u
r,k. The objective of the local and global

models is the minimize the loss function by optimizing and
updating the NN parameters.

B. Communication Model

We assume that the UAVs are hovering in their respective
regions in a non-turbulent environment, e.g., no wind, when
a task is requested. With collected dur data, training for Te

epochs is run by UAVs. Afterward, NN update parameters are
sent to the corresponding BS/EC server through the wireless
channel. For the sake of simplicity, we assume that wireless
channels are reciprocal, and follow the air-to-ground free-
space path-loss model, i.e., the channel coefficient between
UAV u and BS b is written as

hub = hbu =
√

β0d
−αub

2
ub , ∀u, ∀b, (3)

where β0 is the reference channel gain, dub is the 3D distance
between UAV u and BS b, and αub is the path-loss component
expressed as

αub =
a1

1 + a4 exp (a3 (θub − a4))
+ a2, ∀u, ∀b, (4)

with a1, . . . , a4 constants defined in [25] and θub is the
elevation angle between the BS and UAV. Given that Pb,u, Pu,
and Wu are the power of BS b to transmit to UAV u, UAV
u’s transmit power, and reserved bandwidth to communicate
to/from UAV u, respectively, then the channels’ capacities for
FL data exchange can be given by

Ru,b = Wu log2

(
1 +

Pu|hub|2

Wuσ2

)
, ∀u, ∀b, (5)

and
Rb,u = Wu log2

(
1 +

Pb,u|hbu|2

Wuσ2

)
, ∀u,∀b, (6)

where σ2 is the unitary power of the additive white Gaussian
noise (AWGN).

C. FL Latency

FL training requires running a number of global training
rounds, for which local training and data transfer between
participating UAVs and an associated EC server occur. Each
UAV spends time to train its local model for Te epochs, thus,
training time, denoted tur , can be written as

tur = Te
κ|d̄ur |
γu

, ∀u, (7)

where |d̄ur | =
|du

r |
nmax
r

, assuming that the sizes of the training
subsets are equal for UAV u. κ is the number of CPU-
cycles needed to process the samples, and γu is the CPU-
frequency of the UAV. Assuming negligible transmit time over
the fiber links, negligible aggregation time at the EC server,
and orthogonal access to the wireless communication channel,
then the communication times from/to UAV u and associated
BS/EC server are given by

tu,b =
Mz

Ru,b
, (8)

and

tb,u =
Mz

Rb,u
, (9)

where the number and size of local NN parameters are denoted
by M and z, respectively. Consequently, the duration of one
global FL round at the EC server associated with BS b is

tbr = max
u∈Ur

(tur + tu,b + tb,u) , (10)

where Ur is the set of participating UAVs in FL training.

D. FL Energy Consumption

Typically, a UAV spends most of its energy flying/hovering,
while a smaller amount is dedicated to other services such as
communication and computing. For the sake of simplicity, we
ignore the energy consumption related to flying and focus only
on the energy consumed for FL1. The UAV’s consumed energy
for one global FL round is composed of the energy needed to
train the local model, denoted Eu

r , in addition to the energy
for transmissions Eu,b, where

Eu
r = χut

u
r γu

3, (11)

and
Eu,b = Putu,b, (12)

with χu is the energy consumption of the UAV’s CPU chips
[22]. Since the BS/EC has an unlimited source power, we
ignore its consumption for communication and computing.

1This assumption is acceptable since we assumed that UAVs are hovering
in a non-turbulent environment, thus the hovering power is a constant for the
same type of UAVs.



IV. PROBLEM FORMULATION

On one hand, correlated data may potentially reduce the
accuracy of a model. In certain instances, the model may
overfit the correlated data, which has a negative impact on
the accuracy of each UAV participant u. On the other hand,
the energy usage of each UAV is limited by its battery
capacity, which would reduce the number of participations
in FL. Our objective is to trade-off between two conflicting
objectives, namely improving the FL accuracy, while reducing
energy consumption. Let x = [x1,k, . . . , xN,k] be the vector
of binary variables that indicate the participation or not of
UAVs from the set of a region r in a training round k,
where N is the number of available UAVs. Also, let Bu,k

be the residual battery capacity of UAV u at FL round k,
and Bmax is the maximal battery capacity of any UAV. The
problem of selecting the best participants while accounting
for energy consumption and local accuracy, denoted Au, can
be formulated as follows:

max
x

N∑
u=1

xu,k (ξAu + (ξ − 1)(Bu,k/Bmax)) , (P1)

s.t. xu,k(E
u
r + Eu,b) ≤ Bu,k, ∀u = 1, . . . , N, (P1.a)

xu,k ∈ {0, 1}, ∀u− 1, . . . , N, (P1.b)
N∑

u=1

xu,k = Nr, (P1.c)

where ξ and (ξ−1) are wighting factors of the sub-objectives,
with ξ ∈ [0, 1]. (P1.a) refers to the energy consumption con-
straint, while (P1.b) explains the binary nature for participants
selection. Finally, (P1.c) ensures that Nr UAVs participate in
each FL round. Problem P1 is complex to solve due to the
intractable expression of the accuracy. Thus, we opt in what
follows for a heuristic approach, where a modification of the
objective is needed.

V. PROPOSED PARTICIPANT SELECTION STRATEGY:
DEEPS

According to [26], UAVs with high-quality datasets, i.e.,
with less correlated data and adequate training sample size,
can result in efficient local model updates and faster FL
convergence. Based on that, we propose a novel participant
selection strategy, called DEEPS, aiming to optimally select
UAVs for FL training.

To provide high-quality local datasets, we propose to select
UAVs in distinct sub-regions of r, while taking into account
their battery capacity to sustain FL training up to convergence
or to nmax

r FL rounds. For the sake of simplicity, we assume
that the space of region r is partitioned into 3D sub-regions,
denoted {sr1, . . . , srM} (M is the number of sub-regions),
that host different groups of UAVs. Moreover, we assume an
FL task that relies on datasets built from the UAVs’ onboard
camera-captured images. However, the accuracy Au in (P1)
depends on the quality of used datasets in training. UAVs may
collect data frequently, thus generating large amounts of data
with redundant and correlated information.

To attenuate the impact of this phenomenon on the accuracy
performance, we propose to use the structural similarity index
measure (SSIM) average score to measure the similarity or dis-
similarity between images in a given dataset. Conventionally,
the Euclidean distance is the basic tool used to evaluate the
correlation of two images Γ1 and Γ2. It can also be expanded
to determine the similarity of images with affine pixel intensi-
ties [27]. However, if images Γ1 and Γ2 are for instance two
views of the same scene, i.e., obtained from different viewing
angles, the assumption of an affine relationship between image
intensity values no longer holds, thus resulting in a more
complex relationship between the pixel intensities. Moreover,
the choice of the right image similarity metric requires a
compromise between image processing speed and efficiency.

In such a context, SSIM is advocated as the most accurate
similarity metric [28]. Indeed, SSIM measures the visual
quality and by extension, the perceptual proximity between
images based on subjective quality assessments through the
analysis of vast databases. The SSIM is more accurate than
other metrics, such as the mean squared error (MSE) and the
peak signal-to-noise ratio (PSNR), since it is based on the
comparison of structural information from images rather than
pixel-wise error used by MSE and PSNR [28].

SSIM is made up of three components, namely the visual
impact of changes in image brightness, contrast, and any
remaining defects, together known as structural alterations.
When combined together with the SSIM function, SSIM can
be calculated as

SSIM(Γ1,Γ2) =
(2µΓ1µΓ2 + c1)(2σΓ1Γ2 + c2)

(µ2
Γ1

+ µ2
Γ2

+ c1)(σ2
Γ1

+ σ2
Γ2

+ c2)
, (14)

where µΓ1 and µΓ2 represent the mean intensities of images
Γ1 and Γ2, respectively. The standard deviations (square roots
of variances) are σΓ1

and σΓ2
, and they reflect estimates of

the signals’ contrast. Finally, σΓ1Γ2
is the co-variance of the

two images, whereas c1 and c2 are two stabilizers acting on a
weak denominator [28]. The values range of SSIM is 0 to 1,
where 1 means that images Γ1 and Γ2 are identical, while 0
means that they are completely different.

Therefore, in order to improve the effectiveness of FL
learning, we propose to consider SSIM of the training subsets
as a metric to maximize Au. Hence, we formulate a novel
problem P2, where

max
x

N∑
u=1

xu,k

(
ξ
(
1− SSIM

(
dur,k

))
+ (ξ − 1)(Bu,k/Bmax)

)
,

(P2)
s.t. sri ∩ {UAV u | xu,k = 1} ≠ ∅, ∀i = 1, . . . ,M (P2.a)

(P1.a) − (P1.c), (P2.b) – (P2.d)

where (1−SSIM(dur,k)) refers to the diversity (or dissimilarity)
of data within subset dur,k, and (P2.a) guarantees that at least
one UAV participant is selected from each sub-region. Prob-
lem P2 is a mixed-integer nonlinear programming (MINLP)
problem, which is NP-hard. To solve it, we propose a heuristic
method, as detailed below.



Specifically, we propose the following UAV participant
selection method. First, the BS/EC server initiates selection by
broadcasting a request to UAVs in all sub-regions to calculate
their datasets’ similarity scores with SSIM.

Subsequently, in order to solve Problem P2, the EC server
ranks the UAVs of each sub-region in a descending order based
on the utility function that linearly combines SSIM measure,
in order to reflect local dataset diversity, and the remaining
battery level, i.e., UAV u score in FL round k is

Su,k = ξ(1− SSIM(dur,k) + (1− ξ)
Bu,k − Eu

r − Eu,b

Bmax
, ∀u. (16)

Next, UAVs with the highest Su,k in each sub-region are
selected to participate in the FL round k. Selected UAVs
preprocess their subset. Specifically, through the comparison
of the subset samples one by one, a sample is discarded
if it presents high SSIM above a threshold SSIMth, when
compared to another one. By doing so, quasi-redundant data
is eliminated and the storage capacity of the UAV is better
managed.

Given the received training parameters and preprocessed
data, FL training can be run until convergence or reaching
nmax
r . It is to be noted that at the beginning of each FL

round, participating UAVs are selected/re-selected in order to
avoid involving UAVs with battery shortages in the FL process.
Furthermore, the proposed solution may be used for FL tasks
with different restrictions. For instance, in applications where
energy saving is a priority, a smaller ξ is preferred, whereas
an increased ξ value could recommended in FL tasks where
accuracy is more critical than energy savings. The proposed
DEEPS selection method is summarized in Algorithm 1.

VI. EXPERIMENTS AND RESULTS

A. Dataset and Preprocessing

The FL experiments conducted here are related to an appli-
cation that requires captured images from UAVs, such as in a
disaster situation where a scene needs to be assessed to identify
damage, survivors, etc. Specifically, we relied on the public
FLAME dataset [20]. The latter is composed of images taken
by UAVs during a controlled pile burn in Northern Arizona,
USA. It contains images with fire (fire images) and others
without any fire (non-fire images). Also, it includes continuous
frames taken from videos captured by the UAVs, where the
images demonstrate significant similarities. An example is
illustrated in Fig. 2 for which SSIM= 0.85.

To reflect the sub-region partitioning, UAVs that are in the
same sub-region have similar viewpoints from the FLAME
dataset and each local dataset is split into 80% for training and
20% for testing. Moreover, federated learning performance is
influenced by many sorts of data distributions from clients.
To exhibit the non-i.i.d. behavior expected of FL datasets, we
vary the size of local datasets between 500 and 1000 for each
UAV with a uniform distribution of samples in each class.

In this experiment, SSIM ensures that contiguous frames in
a local dataset have enough dissimilarities. Hence, we have
defined three different methods for selection, namely random

Algorithm 1: DEEPS
Input: number of UAVs N , number of participants Nr , number
of global rounds nmax

r , ξ utility weight parameter ;
Output : ω global model after nmax

r rounds of training ;
Steps
EC server starts the initial global model ;
for round k = 1, . . . , nr

max do
for each SubRegion in Region r do

for each UAV in SubRegion do
Calculate SSIM(dur,k) using eq. (14) ;
Update Su,k using eq. (16) ;
Order UAVs in SubRegion from highest to lowest
Su,k

end
Select Nr UAVs from the SubRegions with the highest
Su,k scores ;
for each UAV u ∈ Nr do

if Subset dru,k is not preprocessed then
Remove redundant data samples from dru,k
using the SSIMth threshold;

end
Train local model ωu ;
Upload ωu and Bu to the EC server ;

end
end
Aggregate received local weights and update ω ;

end

Fig. 2. Comparison of two images from FLAME dataset.

selection (equivalent to randomly picking UAV participants),
DEEPS based on SSIMth = 0.5, and DEEPS based on
SSIMth = 0.1.

B. Experimental Setup

We assume a region r consisting of a BS/EC server serving
10 aerial sub-regions. For the sake of simplicity, we assume
that N UAVs are uniformly distributed in these sub-regions
with batteries Bu ∈ [103, 104] Joules (J), ∀u = 1, . . . , N .
Similarly to [22], we assume that γu = 10 MHz, κ = 7× 104

CPU cycles, χu = 10−22 Watt, Pu = 0.28 Watt, and Pb,u = 1
Watt, ∀u = 1, . . . , N . We consider that diversity in the local
datasets of participants is equally important to the residual
energy for the FL task τr, therefore, we set ξ = 0.5. Based on
DEEPS, we define a first scenario, called Scenario 1, where
Nr = 10 UAVs will be selected from N = 40 UAVs in each
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Fig. 3. Global accuracy vs. number of FL rounds.

round to participate in FL training for at most nmax
r = 200

rounds. We assume here that a single UAV is selected from
each sub-region. A second scenario (Scenario 2) is designed
where N = 100 and Nr = 20 UAVs are selected among them,
where 2 UAVs are selected from each sub-region.

The aggregator and UAV FL participants use the same
convolutional neural network (CNN) model. Each participant
trains its model to perform an FL classification task (presence
or absence of fire) in the images. Specifically, the binary
classification model used here is a small version of Xception
network [29] [30], i.e., a deep CNN architecture that involves
depthwise separable convolutions. The CNN model is com-
posed of an input layer, two hidden layers, and an output layer.
The input layer is of size 250 × 250 × 3, which reflects the
size of input images in pixels and the three red-green-blue
(RGB) color channels. The RGB values are scaled to float
values between 0 and 1. Hidden layers are composed of 2-
dimensional (2D) convolutional blocks with a size of 8 and a
stride of 2 × 2, where each block is followed by a Rectified
Linear Unit (ReLU) and batch normalization [31]. ReLU is
utilized as the activation function to increase the network’s
fitting ability, while batch normalization equalizes the inputs
to each layer for each mini-batch to accelerate the learning
process. The output layer is a fully-connected one with the
Sigmoid function to normalize the output to a probability
distribution. The learning rate is set to 10−2. Finally, the neural
network is trained by the Adam optimizer, and the cross-
entropy loss function is adopted to measure the classification
performance. Finally, the batch size is set to 32.

Fig. 3 compares the performance of the proposed selection
strategy DEEPS to those of the random selection benchmark,
in terms of global accuracy, for both scenarios 1 and 2.
Random selection exhibits the worst accuracy performance,
mainly due to the high risk of training with correlated samples
in both scenarios, especially when participants are selected
from the same sub-region or from UAVs with highly redundant
data. In contrast, DEEPS is superior due to its efficient prepro-

TABLE I
PERFORMANCE COMPARISON FOR DIFFERENT PARTICIPANT SELECTION

METHODS

Scenario Selection Criteria λt

(s) χr
ρt

(min)
Scenario 1 Random Selection 120.33 123 245.9

DEEPS (SSIM=0.5) 58.21 97 93.71
DEEPS (SSIM=0.1) 51.02 88 77.46

Scenario 2 Random Selection 137.89 153 343.4
DEEPS (SSIM=0.5) 70.55 115 131.2
DEEPS (SSIM=0.1) 63.85 96 78.61

cessing based on SSIM and sub-region-based UAV participant
selection. Also, a lower SSIMth improves further the training
accuracy that reaches 90% for SSIMth = 0.1, against 85% for
SSIMth = 0.5 and 77% for random selection in Scenario 1.

In Scenario 2, higher performances are achieved with the
preference for DEEPS with SSIMth = 0.1. Indeed, the
availability of a higher number of UAVs and selecting two
UAVs per sub-region favors a more accurate FL training with-
out delaying convergence. Finally, we notice that generally,
DEEPS achieves convergence faster than random selection in
both scenarios.

Table I illustrates the performance of DEEPS against the
benchmark selection method in terms of average round time
λt, number of rounds until convergence χr, and elapsed time
until convergence ρt. In the first scenario, DEEPS executes
each FL round in less than 60 seconds, for any SSIMth

value, which is half of the required time by random selection
to complete a single FL round. Indeed, this is due to the
preprocessing step in DEEPS that reduces the dataset size and
guarantees the use of only informative samples. In contrast,
random selection chooses UAVs with unprocessed datasets and
potentially with redundant information. A similar conclusion
can be drawn for Scenario 2, where the convergence time is
slightly higher than in Scenario 1. This is explained by the
increased number of UAV participants in the FL system.

In Fig. 4, we present the energy consumed by participating
UAVs of DEEPS and random selection benchmark, in joules
(J). For Scenario 1, the energy consumption is high at first,
then it drops after a number of FL rounds for any participant
selection method, e.g., for random selection, energy consump-
tion drops by 900 J after 100 rounds. This is caused by the
high battery drainage that forces a number of UAVs to drop
from FL training. Nevertheless, UAVs using DEEPS consume
the smallest amount of energy, e.g., about 400 J (resp. 300
J) for SSIMth = 0.5 (resp. SSIMth = 0.1), with a slight
drop after the 105th (resp. 132th) round by 76 J (resp. 30
J) for SSIMth = 0.5 (resp. SSIMth = 0.1). Indeed, data
preprocessing and selection of UAVs with higher Bu,k levels
in DEEPS ensure that FL training consumes less energy and
UAVs last longer in FL than random selection. In contrast,
random selection has to execute training with more data,
in addition to using UAVs that might have limited battery
capacities. Similar conclusions can be drawn for Scenario 2
where we notice a stable energy consumption for DEEPS
compared to the benchmark. However, energy consumption is
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higher than for Scenario 1 due to the involvement of a higher
number of UAVs in FL training.

VII. CONCLUSION

In this paper, we investigated the problem of UAV partici-
pant selection for FL, while taking into account the datasets’
similarity/dissimilarity and energy consumption. By adopting
SSIM similarity score, applying dataset preprocessing, sub-
dividing the UAVs’ 3D region, and defining a UAV score
function, we designed a novel participant selection method,
called DEEPS. Through experiments, we demonstrated the
superior performances of DEEPS compared to the random
selection benchmark, in terms of FL accuracy, training time,
and energy consumption. In future work, we will focus on
the optimal partitioning of the UAVs’ 3D region and on FL
operation with UAV mobility and heterogeneous equipment.
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