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Abstract—Traditional anti-jamming techniques like spread
spectrum, adaptive power/rate control, and cognitive radio,
have demonstrated effectiveness in mitigating jamming attacks.
However, their robustness against the growing complexity of
internet-of-thing (IoT) networks and diverse jamming attacks
is still limited. To address these challenges, machine learning
(ML)-based techniques have emerged as promising solutions.
By offering adaptive and intelligent anti-jamming capabilities,
ML-based approaches can effectively adapt to dynamic attack
scenarios and overcome the limitations of traditional methods. In
this paper, we propose a deep reinforcement learning (DRL)-based
approach that utilizes state input from realistic wireless network
interface cards. We train five different variants of deep Q-network
(DQN) agents to mitigate the effects of jamming with the aim of
identifying the most sample-efficient, lightweight, robust, and least
complex agent that is tailored for power-constrained devices. The
simulation results demonstrate the effectiveness of the proposed
DRL-based anti-jamming approach against proactive jammers,
regardless of their jamming strategy which eliminates the need
for a pattern recognition or jamming strategy detection step. Our
findings present a promising solution for securing IoT networks
against jamming attacks and highlights substantial opportunities
for continued investigation and advancement within this field.

Index Terms—Jamming, anti-jamming, cognitive radio, deep
reinforcement learning

I. INTRODUCTION

Cognitive radio networks (CRNs) have emerged as a
revolutionary paradigm in wireless communication, offering
intelligent means to optimizate the available spectrum resources
through dynamic channel identification [1]. Neverthless, the
open nature of wireless communication channels exposes CRNs
to potential security breaches, particularly jamming attacks
which can degrade network performance and significantly re-
duce the throughput [2]. Traditional jamming countermeasures,
such as frequency hopping or direct sequence spread spectrum
(DSSS), have inherent limitations, especially when confronted
with advanced jammers that are capable of detecting and
disrupting these techniques [3]. Although, game-theoretical
strategies have been explored to address this issue, such
techniques assume impractical preconditions like a priori
knowledge of the perturbation pattern and can falter when
faced with rapidly changing jamming strategies [4–6].

Deep reinforcement learning (DRL), a blend of reinforcement
learning and deep learning, has been spotlighted due to its

adaptability to dynamic environments and ability to learn from
raw data, without the need for pre-existing knowledge. In the
context of anti-jamming systems, DRL has been employed in
various ways in multiple works. For instance, the authors of [7]
proposed a deep anti-jamming reinforcement learning algorithm
(DARLA) that used raw spectrum data as the environmental
state, addressing the anti-jamming problem in a dynamic
environment. Similarly, the work in [8] proposed a sequential
deep reinforcement learning algorithm (SDRLA) to improve
anti-jamming performance. Other research has introduced
wideband autonomous cognitive radios [9], transformer encoder-
like Q-networks [10], and unmanned aerial vehicle (UAV)
jammers modeled as partially observable Markov decision
processes [11]. Some studies have also used the signal-to-
interference-plus-noise ratio (SINR) to enhance anti-jamming
techniques [12, 13]. However, the aforementioned studies relied
on supplementary equipment or data such as raw spectrum
data or SINR which can be energy-inefficient and difficult to
acquire, rendering them unsuitable for resource-constrained
internet-of-things (IoT) networks.

In our prior study [14], we introduced a novel approach that
uses a single vector of clear channel assessment (CCA) informa-
tion as the state input. This simplifies the environmental state
representation, hence, reducing the computational complexity
of the neural network. Our previous work also was a departure
from the approach presented in [8] as it involved a generic DRL
agent capable of effectively operating within dynamic jamming
pattern environments without requiring a preliminary pattern
recognition process. However, despite these capabilites, the
CCA-based method faces some challenges, particularly related
to the information extraction from WLAN network interface
cards (NICs) and its efficacy against random channel hopping
jamming. In this paper, we strive to overcome these challenges
by proposing an improved anti-jamming scheme. In specific,
we exploit a novel radio frequency (RF)-jamming detection
testbed [15], utilize the spectrum sensing capabilities of WLAN
NICs, and apply ML algorithms to detect and avoid jamming
attacks. Additionally, we conduct a comprehensive investigation
of different agent alternatives to optimize the anti-jamming
performance in dynamic pattern jamming scenarios.
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Fig. 1: System topology is composed of the transmitter, receiver,
and jammer. The transmitter tries to communicate with the
receiver in the presence of a jamming attack.

II. SYSTEM MODEL AND FORMULATION

In this section, we describe the system, jammer, and signal
models under jamming attack as illustrated in Fig. 1. We
consider the UNII-1 band of the 5GHz radio spectrum and
assume that the radio environment consists of one user (a
transmitter-receiver pair) against one jammer. A novel aspect
of our model is the presence of an agent at the transmission
end, which formulates real-time anti-jamming strategies. These
strategies are then shared with the receiver through a reliable
control link. We also assume that the transmitter possesses
broad-band spectrum sensing capabilities [14]. For ease of
analysis, we segment the continuous time into discrete time
slots, assuming that both the user and the jammer operate
within the same time slot. In each time slot t, the user selects
a frequency fT,t from the range [fL, fU ] for data transmission
to the receiver, using power PT,t. Concurrently, the jammer
attempts to interrupt this transmission by selecting a frequency
fJ,t and power PJ,t according to a predefined jamming pattern.

A. Jammer Model

To investigate proactive jamming attack mitigation, we adopt
a range of jamming strategies to effectively counter such threats.
Specifically, we employ four distinct approaches: constant,
sweeping, random, and dynamic jamming techniques. In this
model, we assume that the jammer jams a single frequency fJ,t
with a varying distance dJT between the jammer and transmitter
and varying jamming powers PJ,t. Given the proactive nature of
the jammer, it is assumed to be unaware of the current state of
the channel. In the case of the constant jamming strategy, at the
beginning of a transmission session, the jammer picks one of
the available channels of the RF spectrum to jam consistently.
Operating in a manner similar to the constant jammer, the
combined jammer possesses the ability to disrupt multiple
channels. However, it should be noted that not all channels can
be jammed simultaneously by this particular type of jammer.
On the other hand, in the sweeping jamming strategy, the
jammer starts jamming the RF spectrum starting from fL (i.e.
fJ,t = fL) and gradually increasing its jamming frequency
until it reaches fU (i.e. fJ,t = fU ) in a sweeping fashion. The

change of frequency from one to the adjacent occurs at the
beginning of each time slot. In contrast, in the random jamming
strategy, the jammer randomly selects a frequency fJ,t from
the set of the available frequencies {fL, · · · , fU} and jams
at the beginning of every time slot. Finally, in the dynamic
pattern jamming strategy, the jammer has the capability of
selecting one of the three aforementioned jamming strategies
(i.e. constant, sweeping, or random) at the beginning of each
transmission session.

B. Signal Model

The received discrete baseband signal r[n] at the receiver
after matched filtering and sampling at the symbol intervals
can be expressed as follows

r [n] =
√
P rx
T x [n] +

√
P rx
J j [n] + w [n] , (1)

where x[n] and j[n] represent the discrete-time baseband
signals transmitted by the transmitter and the jammer, respec-
tively. Furthermore, w[n] denotes the zero-mean additive white
Gaussian noise (AWGN) with variance σ2. Finally, P rx

T and
P rx
J represent the average received power from the transmit

and the jamming signals, respectively, which can be written as
follows

P rx
J = ϕJRPJ,t, (2)

and
P rx
T = ϕTRPT,t, (3)

where ϕJR = γ0d
−ϵ
JR and ϕTR = γ0d

−ϵ
TR are the channel

power gains of the jammer-receiver and transmitter-receiver
links, respectively. Also, γ0 represents the channel power gain
at a reference distance of 1m. dJR and dTR are the distances of
the jammer-receiver and transmitter-receiver links, respectively.
Finally, ϵ ≥ 2 denotes the path loss exponent.

C. Problem Formulation

The received SINR can be therefore expressed as follows

Θ =
PR

P rx
J + σ2

, (4)

where PR is the power received from the transmitted signal
at the receiver.

Consider Θth as the SINR threshold required for successful
transmission. The objective at time slot t is to maximize the
normalized throughput, defined as U(fT,t) = δ(θ ≥ θth),
where δ(x) is a function that equals 1 if x is true, and 0
otherwise.

III. PROPOSED DRL-BASED APPROACH

In this section, we introduce a DRL-based anti-jamming
scheme that obtains its state information by scanning the entire
spectrum.

A. MDP Formulation

We utilize the received power feature from the generated
dataset to represent the state vector Pt. Specifically, the state
vector is represented as Pt = [pt,1, pt,2, · · · , pt,Nc ], where pt,i



Fig. 2: Architecture of the proposed DDQN Q-network.

is the received power at time t for frequency i. The size of
the state space is |S| = Nc. In our formulation, the action
at ∈ {f1, f2, · · · , fNc} represents the selection of frequency i
at time slot t. Similarly, the action space size is |A| = Nc. The
transmitter-receiver pair aims to achieve successful transmission
with a low channel switching cost Γ. Therefore, the reward at
time slot t can be expressed as

rt =

{
U(fT,t)− Γδ(at ̸= at−1) if fT,t ̸= fJ,t

0 if fT,t = fJ,t.
(5)

The reward function presented in (5) takes into account the
throughput factor and ignores the energy consumption factor.
This is due to the fact that in the current anti-jamming strategy,
the transmit power is fixed. Furthermore, the normalization
of the reward values to 1 and 0 is valid since the considered
jammer is proactive. Based on this, upon obtaining the reward
rt, the environment transitions to the next state st+1 based on a
transition probability p(st+1|st, at). This probability represents
the likelihood of transitioning from state st to state st+1 given
the action at. The initial state is denoted by s0 and the terminal
state is the state at which the agent ceases decision-making,
which is denoted by sT . The goal of the agent is to find the
optimal policy, π(s) = argmaxa Q(s, a), that maps the state
to the best action. The optimal policy is found by learning the
optimal action-value function, Q∗(s, a), using an RL algorithm
such as DRL.

B. Agent Design

We train five different agents to determine the most suitable
strategy for power-constrained devices. These agents include
DQN, DQN with fixed targets, DDQN, Dueling DQN, and
DDQN with prioritized replay. Each agent has a unique
combination of neural network architecture, experience replay
mechanism, and target network update frequency. By training
and evaluating the performance of these agents, we aim to
identify the most appropriate approach for power-constrained
devices in effectively countering proactive jamming attacks.

1) DQN: The DQN algorithm is a model-free, online, off-
policy RL method in which a value-based RL agent is employed
to train a Q-network that estimates and returns future rewards
[16, 17]. The selection of this type of agent is motivated by
the fact that our observation space is continuous, and our
action space is discrete. Our DQN algorithm implementation
is presented in Algorithm 1.

Load spectral scan
data

Train agent network

System setupStart Compute state Agent chooses
channel

Obtain RewardMove to next state

stop
Yes

No

Compute stateStart

Yes

No

Done?Stop

Run spectral scan

Training Phase

Deployment Phase

Fig. 3: Overview of the training and deployment phases of the
proposed DRL-based anti-jamming approach.

The implemented DQN agent uses a function approximator
in the form of a neural network, whose weights θQ are updated
with every iteration. The Q-network is used to determine the
Q-value of the action. The Q-network comprises two hidden
layers, as illustrated in Fig. 2, and a ReLU activation function
f(x) = max(0, x) is chosen [18]. The experience reply buffer
D stores the agent’s experience, which is the transition pair at
time-step t and is defined as (st, at, rt, st+1).

The stochastic gradient descent (SGD) algorithm [19] is used
during training to update the weights θt at every time-step t.

2) DQN with Fixed Targets: This variant of DQN updates
the target network less frequently, reducing the risk of oscilla-
tions and instability during learning. The algorithm is similar
to the DQN, but the target network is updated less frequently.
This can be achieved by increasing the value of C (the number
of steps between target network updates). The neural network
architecture and other components remain unchanged from the
DQN architecture.

3) DDQN: The Double Deep Q-Network (DDQN) is an
improvement over DQN that reduces the overestimation of Q-
values by using two separate networks to estimate the current
and target Q-values. The neural network architecture and other
components remain unchanged from the DQN architecture.

4) Dueling DQN: This algorithm is similar to the DQN, but
with a different neural network architecture that decouples the
estimation of state values and action advantages, potentially
leading to better performance and stability. To implement this,
the architecture of the Q-network in Fig. 2 is modified to include
two separate streams for state values and action advantages,
and then these streams are combined to obtain the final Q-
values. The other components remain unchanged from the DQN
architecture.

5) DQN with Prioritized Replay: This approach combines
DQN with prioritized experience replay, which samples more
important experiences more frequently during learning, poten-
tially improving learning efficiency. To implement this, the
uniform sampling of experiences from the replay buffer D



Algorithm 1: DQN Algorithm for Anti-Jamming.

Initialize θQ, ϵt = 1, δ, i = j = 0, and K;
while j < |E| do

set st = st0 ;
while t < |T| do

Xt ∼ U (0, 1);
if Xt < ϵt then

at = random(1, · · · , Nc);
else

at = arg max
at

Q(st, at | θQ);

end
at 7→ T;
Obtain rt and st+1;
Store the experience [st, at, rt, st+1] in D;
Sample a random mini-batch of K experiences

from D;
if st == stf then

yt = rt;
else

yt = Est,at
[rst,st+1,at

+ γQπ(st+1, atmax |
θQ) | st, at];

end
Update Q-network parameters
θQ = θt − η∇Lt(θt);

where Lt(θt) = Est,at
[(yt −Qπ(st, at; θt))

2];
Update the exploration rate ϵt+1 = ϵt − δ;
Set st = st+1;
t = t+ 1;

end
j = j + 1;

end
Output optimal policy

∗
π;

is replaced with prioritized sampling based on the absolute
TD-error of each experience. Additionally, the loss function
Lt(θt) is updated to include importance-sampling weights to
correct for the bias introduced by the prioritized sampling. The
neural network architecture remains unchanged from the DQN
architecture.

C. Training and Deployment of the Agent

In this section, we detail the training and deployment of
our proposed DRL-based anti-jamming approach, which aims
to mitigate jamming attacks in power-constrained devices.
Fig. 3 presents an overview of the training and deployment
phases of the proposed DRL-based anti-jamming approach.
The training phase involves the setup of the system, loading
the corresponding data from the spectral scan dataset, obtaining
the received power (dBm) feature of each channel, and training
the agents based on the reward value obtained from the selected
channel. At the beginning, a system setup is made to specify the
type of jammer (i.e., sweeping, random, constant, or dynamic
pattern jammers), the jamming power, and the distance. Based
on this setup, the corresponding data is loaded from the spectral

scan dataset. Depending on the type of jammer, the received
power (dBm) feature of each channel is obtained. For instance,
if the jammer is constant, and the jamming frequency is 5180
MHz at 20 cm with a jamming power of 10 dBm, then the
dataset with the corresponding filename will be loaded. This
ensures that the 5180 MHz frequency will have the highest
received power compared to the other frequencies. Based on
this state information, the agent will select a channel and receive
a reward value based on the selected channel, as defined in
(5). Using this reward value, the agent’s network is trained and
then the environment transitions to the next state. It is worth
noting that this process repeats until convergence or a terminal
state is reached.

During the deployment phase, the trained agent is imple-
mented within the environment it was originally trained on.
However, in this phase, the agent does not undergo further
training as it exploits the knowledge gained from the training
phase. Given a system setup and the current channel fT,t, the
agent takes in the state vector, which describes the whole
spectrum, as input and selects the best channel fT,t+1 to
switch to. If the selected channel fT,t+1 is the same as the
current channel fT,t, then transmission continues on fT,t. If
fT,t+1 ̸= fT,t, a channel switch announcement (CSA) is carried
out, and the subsequent transmission switches to fT,t+1. This
process keeps repeating until all data is transmitted or the
terminal state is reached.

IV. RESULTS AND DISCUSSIONS

To evaluate the proposed DRL-based anti-jamming solution,
we aim to investigate its performance under dynamic pattern
jamming, where the jammer randomly selects one of the three
jamming patterns namely, sweep, random, and combined at
the beginning of each transmission session. This evaluation
is important as our primary objective is to develop a generic
anti-jamming agent capable of mitigating various jamming
patterns. We perform the simulations using a custom-based
simulator designed based on the collected dataset in [15]. Also,
unless otherwise stated, the simulation parameters used in
our study are presented in Table I. Furthermore, we tune the
hyper-parameters of the proposed DRL-based anti-jamming
scheme during training to achieve a good policy for the agent,
as shown in Table II. Finally, we investigate the effects of the Γ
parameter on the total throughput of the proposed framework,
and we compare the results obtained by using different values
of Γ.

TABLE I: Simulation Parameters

Parameter Value

RF spectrum band 5GHz UNII-1
Bandwidth of communication signal 20 MHz

Bandwidth of jamming signal 20 MHz
Number of channels Nc 8

Initial channel center frequency fT,0 5.180 GHz
Distance between channel frequencies 20 MHz

Distance between jammer and transmitter dJT 20 cm
Jamming power PJ,t 10d Bm



TABLE II: DRL Hyper-parameters.

Parameter Value
Number of training episodes |E| 100
Number of testing episodes |E| 100

Number of time-steps |T| 100
Discount factor γ 0.95

Initial exploration rate ζ 1
Exploration decay δ 0.005

Minimum exploration rate ζmin 0.01
Experience buffer size D 10000
Minimum batch size K 32
Averaging window size 10

Early termination criterion Average reward = 90
Channel switching cost Γ [0, 0.05, 0.1, 0.15]
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(b) Γ = 0.05.
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(c) Γ = 0.10.
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Fig. 4: Learning performance of the investigated DRL-based
anti-jamming agents under dynamic pattern jamming with
Γ = 0, 0.05, 0.1, 0.15.

Fig. 4 depicts the learning performance of the DRL-based
anti-jamming agents under dynamic pattern jamming, with
different values of Γ. We observe that DQN with fixed Q-
targets, DDQN, and DDQN with prioritized replay achieve
a mean reward of approximately 100, while Dueling DQN
achieves a mean reward of around 95. However, the DQN agent
only manages to obtain a mean reward of approximately 86,
and this failure persists for all values of Γ. Unlike in our prior
work, [14], in this work all the agents were able to learn the
dynamics of the system and evade the jammer. Importantly, we
note that all the trained DRL agents, except for DQN, can learn
a policy to escape the dynamic pattern jamming. Moreover,
we observe that for all types of jammers, the DRL agents can
make intelligent channel selection decisions to evade jamming.
Interestingly, the DDQN with prioritized replay achieved the
most stable learning convergence across all values of Γ.

In Fig. 5, we present the normalized mean throughput of the
legitimate user under various jamming patterns. We observe
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Fig. 5: Normalized throughput performance of the DRL-based
anti-jamming agent under dynamic pattern jamming.
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Fig. 6: Impact of channel switching cost (Γ) on the DRL-based
anti-jamming agent under dynamic pattern jamming.

that, for all values of Γ, all the evaluated agents, except DQN,
have the ability to completely evade dynamic pattern jamming.
Moreover, for all agents, we observe a reduction in throughput
as the value of Γ increases, with a greater reduction for higher
values of Γ. As seen in the case of the learning performance,
the DDQN with prioritized replay achieved a consistently high
throughput over all values of Γ.

The impact of Γ on the channel switching behavior of the
agents is demonstrated in Fig. 6. It is observed that the agents
switch channels 100% of the time, regardless of the values
of Γ. This indicates that in order to evade dynamic pattern
jamming, the agents develop a policy that maps the states to the
optimal action and ignores the jamming pattern. This leads to
continuous channel switching even under values of Γ > 0. In
other words, the agents choose to be penalized by the channel
switching cost and experience a reduction in overall throughput
instead of remaining on a single channel and losing 1/8 of
their total throughput.

Finally, we study the convergence times and inference speeds
of the five DRL agents as shown in Table III. During training,
the DQN agent demonstrated the fastest convergence speed
among all the agents, with an average convergence time of
388.28 seconds. The speed of convergence and inference in
DRL agents is determined by the complexity of the learning
algorithm and the efficiency of the exploration strategy. DQN,
with its simpler learning algorithm and efficient exploration,
converges faster. On the other hand, DDQN with prioritized
replay memory involves more complex computations and a
more sophisticated memory management system, which slows
down both the convergence and the inference speed.

Overall, all the algorithms investigated showed good per-



TABLE III: Comparison of the Convergence and inference
times for the five Agents. The results are present in the format
of mean (± std.) obtained from 10-folds.

Agent Convergence Time (sec) Inference Speed (KHz)

DQN 388.28 (± 3.62) 507.23 (± 4.30)
DQN with Fixed Targets 405.37 (± 1.74) 472.43 (± 2.15)

DDQN 457.42 (± 3.26) 437.78 (± 3.43)
Dueling DQN 405.79 (± 6.54) 464.58 (± 2.87)

DDQN with Prioritized Replay 532.85 (± 3.91) 382.31 (± 5.25)

formance in jamming detection and avoidance. The inference
speed of the algorithms varied, with DQN being the fastest
during training. Among all DRL-based approaches, DDQN
with prioritized replay memory offers the best trade-off between
throughput and speed.

V. CONCLUSIONS

This paper investigates the intelligent anti-jamming problem
within a dynamic jamming environment. In our endeavor
to construct a more practical scheme, we incorporated a
jamming detection testbed and jamming data acquired from
actual WLAN network interface cards. Utilizing this dataset,
we developed a custom simulation and introduced a DRL
agent with a fully connected neural network architecture to
navigate the intricate decision-making problem inherent to anti-
jamming. With our proposed scheme, the agent is capable of
learning the most effective anti-jamming strategy through a
continuous process of trial and error, testing various actions,
and observing their environmental impact. We used simulation
results from a variety of environmental settings to corroborate
the effectiveness of the proposed DRL-based anti-jamming
scheme. It’s important to note, however, that a high-power
wideband jammer leaves no room for evasion. Consequently,
future research will involve creating an anti-jamming technique
focused on confronting the jammer at the same frequency, as
opposed to evasion or concealment.

REFERENCES

[1] S. Haykin, “Cognitive radio: brain-empowered wireless
communications,” IEEE J. Sel. Areas Commun., vol. 23,
no. 2, pp. 201–220, 2005.

[2] A. G. Fragkiadakis, E. Z. Tragos, and I. G. Askoxylakis,
“A survey on security threats and detection techniques in
cognitive radio networks,” IEEE Commun. Surv. Tutor.,
vol. 15, no. 1, pp. 428–445, 2012.

[3] D. Torrieri, Principles of spread-spectrum communication
systems. Springer, 2005, vol. 1.

[4] Y. Xu, G. Ren, J. Chen, Y. Luo, L. Jia, X. Liu, Y. Yang,
and Y. Xu, “A one-leader multi-follower bayesian-
stackelberg game for anti-jamming transmission in UAV
communication networks,” IEEE Access, vol. 6, pp.
21 697–21 709, 2018.

[5] H. Noori and S. Sadeghi Vilni, “Jamming and anti-
jamming in interference channels: A stochastic game
approach,” IET Commun., vol. 14, no. 4, pp. 682–692,
2020.

[6] I. K. Ahmed and A. O. Fapojuwo, “Stackelberg equilibria
of an anti-jamming game in cooperative cognitive radio
networks,” IEEE Trans. Cogn. Commun., vol. 4, no. 1,
pp. 121–134, 2017.

[7] X. Liu, Y. Xu, L. Jia, Q. Wu, and A. Anpalagan, “Anti-
jamming communications using spectrum waterfall: A
deep reinforcement learning approach,” IEEE Commun.
Lett., vol. 22, no. 5, pp. 998–1001, 2018.

[8] S. Liu, Y. Xu, X. Chen, X. Wang, M. Wang, W. Li,
Y. Li, and Y. Xu, “Pattern-aware intelligent anti-jamming
communication: A sequential deep reinforcement learning
approach,” IEEE Access, vol. 7, pp. 169 204–169 216,
2019.

[9] S. Machuzak and S. K. Jayaweera, “Reinforcement
learning based anti-jamming with wideband autonomous
cognitive radios,” in Proc. IEEE Int. Conf. Commun.
China (ICCC). IEEE, 2016, pp. 1–5.

[10] J. Xu, H. Lou, W. Zhang, and G. Sang, “An intelligent
anti-jamming scheme for cognitive radio based on deep
reinforcement learning,” IEEE Access, vol. 8, pp. 202 563–
202 572, 2020.

[11] N. Gao, Z. Qin, X. Jing, Q. Ni, and S. Jin, “Anti-intelligent
UAV jamming strategy via deep Q-networks,” IEEE Trans.
Commun., vol. 68, no. 1, pp. 569–581, 2019.

[12] L. Xiao, D. Jiang, D. Xu, H. Zhu, Y. Zhang, and H. V.
Poor, “Two-dimensional antijamming mobile communica-
tion based on reinforcement learning,” IEEE Trans. Veh.
Technol., vol. 67, no. 10, pp. 9499–9512, 2018.

[13] Y. Bi, Y. Wu, and C. Hua, “Deep reinforcement learning
based multi-user anti-jamming strategy,” in Proc. IEEE
Int. Conf. Commun. (ICC). IEEE, 2019, pp. 1–6.

[14] A. S. Ali, W. T. Lunardi, L. Bariah, M. Baddeley,
M. A. Lopez, J.-P. Giacalone, and S. Muhaidat, “Deep
reinforcement learning based anti-jamming using clear
channel assessment information in a cognitive radio
environment,” in Proc. 5th Int. Conf. Adv. Commun. Tech.
Netw. (CommNet), 2022, pp. 1–6.

[15] A. S. Ali, G. Singh, W. T. Lunardi, L. Bariah, M. Baddeley,
M. Andreoni et al., “RF jamming dataset: A wireless spec-
tral scan approach for malicious interference detection,”
TechRxiv. Preprint, 2022.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,
J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski et al., “Human-level control
through deep reinforcement learning,” nature, vol. 518,
no. 7540, pp. 529–533, 2015.

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller, “Play-
ing atari with deep reinforcement learning,” arXiv, vol.
abs/1312.5602, 2013.

[18] V. Nair and E. G. Hinton, “Rectified linear units improve
restricted boltzmann machines,” in Proc. Int. Conf. Mach.
Learn. (ICML), Jul. 2010, pp. 2094–2100.

[19] L. Bottou and O. Bousquet, “The tradeoffs of large scale
learning,” in Proc. Int. Conf. Adv. Neural. Inf. Process
Syst., 2008, pp. 161–168.


	Introduction
	System Model and Formulation
	Jammer Model
	Signal Model
	Problem Formulation

	Proposed DRL-Based Approach
	MDP Formulation
	Agent Design
	DQN
	DQN with Fixed Targets
	DDQN
	Dueling DQN
	DQN with Prioritized Replay

	Training and Deployment of the Agent

	Results and Discussions
	Conclusions

