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Abstract—Remaining Useful Life (RUL) prediction is a critical
task that aims to estimate the amount of time until a system fails,
where the latter is formed by three main components, that is,
the application, communication network, and RUL logic. In this
paper, we provide an end-to-end analysis of an entire RUL-based
chain. Specifically, we consider a factory floor where Automated
Guided Vehicles (AGVs) transport dangerous liquids whose fall
may cause injuries to workers. Regarding the communication
infrastructure, the AGVs are equipped with 5G User Equipments
(UEs) that collect real-time data of their movements and send
them to an application server. The RUL logic consists of a Deep
Learning (DL)-based pipeline that assesses if there will be liquid
falls by analyzing the collected data, and, eventually, sending
commands to the AGVs to avoid such a danger. According to this
scenario, we performed End-to-End 5G NR-compliant network
simulations to study the Round-Trip Time (RTT) as a function
of the overall system bandwidth, subcarrier spacing, and modu-
lation order. Then, via real-world experiments, we collect data to
train, test and compare 7 DL models and 1 baseline threshold-
based algorithm in terms of cost and average advance. Finally,
we assess whether or not the RTT provided by four different 5G
NR network architectures is compatible with the average advance
provided by the best-performing one-Dimensional Convolutional
Neural Network (1D-CNN). Numerical results show under which
conditions the DL-based approach for RUL estimation matches
with the RTT performance provided by different 5G NR network
architectures.

Index Terms—Deep Learning (DL), Remaining Useful Life
(RUL), Industrial Internet of Things (IIoT), 5G, NR, Round-Trip
Time (RTT), End-to-End (E2E).

I. INTRODUCTION

Remaining Useful Life (RUL) estimation is a predictive
task that determine the time until a system fails. Through the
utilization of Artificial Intelligence (AI) algorithms, RUL pre-
diction provides a means to optimize maintenance strategies,
minimize downtime, and foresee system failures, encompass-
ing the integration of sensor data and proactive approaches
across diverse industrial sectors [1]. Generally speaking, a
RUL-based chain is made of three main components, i.e., (i)
the application, (ii) communication network, and (iii) RUL
logic. To the best of the authors’ knowledge, there is no
contribution that jointly analyzes all three elements. This paper
then aims to fill this gap.
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In particular, we consider an Industrial Internet of Things
(IIoT) safety-critical use case [2] where the factory floor
contains Automated Guided Vehicles (AGVs) that transport
dangerous liquids whose fall may cause injuries to workers.
These failure events can be foreseen by RUL algorithms.
The communication infrastructure is based on 5G New Radio
(5G NR), where the AGVs are equipped with 5G User Equip-
ments (UEs) that collect real-time data of their movements
and send them to an application server. The RUL logic is
implemented at the server and consists of a Deep Learning
(DL)-based pipeline that analyses the collected data and as-
sesses if there will be liquid falls. Whenever a liquid fall is
foreseen, the server sends a command to the AGV to avoid
this danger.

For the aforementioned RUL scenario, this work provides
three main results. First, we performed End-to-End (E2E)
5G NR-compliant network simulations to study the Round-
Trip Time (RTT) as a function of the different system pa-
rameters, such as the overall system bandwidth, subcarrier
spacing, and modulation order. Then, by means of exper-
iments in a real-world industrial plant, we collected AGV
movement data to train, test and compare 7 DL models and
a baseline threshold-based algorithm in terms of cost (i.e., a
metric related to the number of erroneous predictions) and
average advance (a metric quantifying the advance time of
the prediction w.r.t the liquid fall). Finally, we evaluate the
compatibility between the average advance provided by the
best-performing 1D Convolutional Neural Network (1D-CNN)
and the RTT provided by four different 5G NR network
architectures. These architectures align with those foreseen by
3rd Generation Partnership Project (3GPP) and 5G Alliance
for Connected Industries and Automation (5G-ACIA) [3], [4].

The paper is thus organized as follows. Sec. II describes all
the features of our E2E 5G NR-compliant network simulator,
whereas Sec. III illustrates how we created the dataset and
designed the DL-based pipeline for RUL estimation. Then,
Sec. IV provides a mathematical formulation of RTT, while
the corresponding numerical results are presented in Sec. V.
Finally, Sec. VI summarizes the main findings of our paper.
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(a) Architecture 1.

(b) Architecture 2.

(c) Architecture 3.

(d) Architecture 4.

Figure 1: Pictorial representation of the considered 5G NR
network architectures.

II. END-TO-END 5G NR-COMPLIANT NETWORK
SIMULATOR

A. Network Architecture
For the scenario described in Sec. I, we foresee four

different 5G NR network architectures which are depicted in
Fig. 1 and described hereafter.

1) Architecture 1: both the 5G Radio Access Network
(RAN) and 5G Core Network (5CN) are deployed
outside the factory (see Fig. 1a);

2) Architecture 2: the application server and User Plane
Function (UPF) functionalities are hosted at the network
operator’s premises closer to the industrial plant (see
Fig. 1b), and 5G RAN is deployed outside the factory;

3) Architecture 3: the 5G RAN is deployed in the indus-
trial plant, whereas the application server and UPF func-
tionalities are hosted at the public network operator’s
premises (see Fig. 1c);

4) Architecture 4: the 5G RAN, the application server,
and the UPF functionalities are deployed inside the
factory, whereas the other 5CN elements are external
(see Fig. 1d).

In all cases, the 5G RAN is composed of a single gNodeB
(gNB). These architectures, proposed by TIM, draw inspiration

from the 5G-ACIA documentations [4].

B. Traffic model
Each UE collects information about the AGV movements

(e.g., positions, axial and angular accelerations, etc.) and sends
them to the application server with a fixed periodicity τUL.

Upon receiving each uplink transmission, the server lever-
ages DL to assess whether or not there will be a future fall of
the dangerous liquids carried by the considered AGV. With a
probability pDL, the DL algorithm will predict a future liquid
fall. In this case, the server sends a command to the UE to
prevent the fall, otherwise, it will not generate any downlink
transmission.

C. Channel Model
The channel model is based on the Gilbert-Elliot model

[5]. It is a 2-state Markov model, where the states are
usually referred to as good (G) and bad (B). g and b are the
probabilities of correct reception when being in state G and B,
respectively, such that g ≫ b. The transition probability from
state G to B is u, while the transition probability from state
B to G is v. Therefore, the reception error rate pe in steady
state is:

pe =(1− g)πG + (1− b)πB, (1)

where πG = v
u+v and πB = u

u+v are the probability of being
in state G and B, respectively.

D. Implementation of the 5G NR framework
In the frequency domain, the available bandwidth B is split

in nRB Resource Blocks (RBs), where each RB is composed
of 12 Orthogonal Frequency Division Multiplexing (OFDM)
subcarriers, such that:

nRB =

⌊
B

12∆f

⌋
, (2)

where ∆f is the Subcarrier Spacing (SCS).
In the time domain, OFDM symbols are grouped into slots,

in particular, 14 OFDM symbols form one slot. However,
in 5G NR, it is also possible to have communications over
fractions of slots, the so-called “mini-slots”. In this regard,
we used mini-slots composed of 7 OFDM symbols each.

We consider the same uplink messages defined in [6], with
the inclusion of the downlink ones, as summarized in the
following:

• Physical Uplink Control Channel (PUCCH), used by UEs
to ask the gNB for being scheduled. It occupies 1 RB and
7 OFDM symbols.

• Physical Downlink Control Channel (PDCCH), used by
the gNB to inform the UEs about the uplink/downlink
scheduling outcome. It occupies 1 RB and 7 OFDM
symbols.

• Physical Uplink Shared Channel (PUSCH), used by UEs
to transmit Physical (PHY) Protocol Data Units (PDUs).
It occupies 1 or more RB and 4 OFDM symbols depend-
ing on the network load, scheduling policy, etc.

• Physical Downlink Shared Channel (PDSCH), used by
the gNB to transmit PHY PDUs to UEs. It occupies 1 or
more RB and 4 OFDM symbols.

• Hybrid Automatic Repeat reQuest (HARQ)
Acknowledgment (ACK), used to inform the sender



about the outcome of the uplink/downlink transmission.
It occupies 1 RB and 2 OFDM symbols.

It is worth mentioning that a PUSCH/PDSCH transmission is
followed by the corresponding HARQ ACK and the overall
process has a duration of one mini-slot. Indeed, we assume
half-duplex communications, and that one OFDM symbol is
needed to switch from transmission to reception and vice-
versa.
E. Implementation of the 5G NR dynamic scheduling

The gNB makes scheduling decisions, i.e., assigns RBs and
OFDM symbols to UEs, both in uplink and downlink, every
TSRP. Specifically, TSRP is formed by 8 mini-slots, where
half are dedicated to the control plane (i.e., PUCCH, PDCCH
and HARQ ACKs) and the other half to the data plane (i.e.,
PUSCH, and PDSCH).

The control plane resource assignment is fixed a-priori, i.e.,
each UE knows when to transmit/receive PUCCHs/PDCCHs,
respectively, according to a predetermined pattern that repeats
over time and depends on the number of resources available,
as well as network load. On the opposite, the data plane
resources are scheduled based on the current traffic needs,
according to the 5G NR scheduling mechanisms denoted as
dynamic scheduling. In particular, UEs willing to transmit data
in the uplink have to first send a PUCCH before receiving
the indications via PDCCH on how to transmit the PUSCHs.
Additionally, in the downlink, the gNB exploits the PDCCHs
to tell the UEs when (and how) they will receive data. To make
the scheduling decisions, the gNB exploits the two scheduling
policies defined in [6], by applying them independently to the
uplink and downlink traffic flows.

III. DL-BASED RUL ESTIMATION PIPELINE
In this section, we describe (i) how we created a dataset

from experiments in a real-world industry plant, and (ii) the
DL-based pipeline for RUL estimation. It is worth mentioning
that some details are omitted due to confidentiality reasons.
A. Data collection

We performed an experimental campaign where we col-
lected real-time data (accelerations, positions, etc.) of the AGV
moving within the industrial pilot line of BIREX1. Several
sessions were registered, where, during each session, the AGV
carried a bottle of water and was forced, at some point in time,
to perform a sudden change in its path, thereby leading to the
fall of the bottle. A custom script registered the fall event’s
timestamp to correctly label the closest sensor’s data as a Fault
event and, consequently, all the others were labeled as Non-
Fault. The data collected within each session constitute time
series data, as they record the AGV movement over time with
regular intervals and timestamps, resulting in a sequence of
ordered observations. In this context, we formulate the RUL
prediction problem as a binary classification task, where the
objective is to predict whether a Fault event occurs within
a certain margin m. This margin defines the classification
task since it determines the number m of time series samples
prior to a Fault event that can be labeled as Fault and should
trigger the server to send a command to the AGV for avoiding
potential failures.

1BIREX is an Italian Competence Center for Industry 4.0 (see https://bi-
rex.it/)

B. Data pre-processing
The real-time data collected by the AGV has been manipu-

lated via different pre-processing steps that are listed hereafter:
• Class weighting [7] to cope with the skewed distribution

where the majority of the data points correspond to the
normal operating conditions and a minority of the data
points correspond to the failed state, as usual in RUL
scenarios;

• Feature creation to obtain a more suitable representation
of the physical phenomenon. Specifically, we created
the mean, maximum, minimum, and standard deviation
over multiple fixed-length windows [8], as well as the
derivative of those time series as the difference between
subsequent data points;

• Differencing to remove seasonality from the time series
data [9]. This was done by subtracting from each data
point the mean acceleration value for its position and
orientation;

• Standardization to ensure that all features are on a similar
scale and improve the performance and convergence of
DL models during training.

C. DL-based pipeline
To perform RUL estimations, the server implements a DL-

based pipeline that is formed by a DL model and a threshold-
based algorithm. Indeed, the former is trained on the data col-
lected during the hands-on measurement campaign to predict
the RUL, and the latter transforms the DL output to either zero
or one as the RUL task is tackled as a binary classification
problem (see Sec. III-A).

The DL-based pipeline was trained, optimized, and tested
by exploiting the manipulated dataset described in Sec. III-B.
Specifically, the dataset was further partitioned into 4-folds,
i.e., 1) a training set to train the DL model, 2) a validation
set to monitor the DL model performance at training time,
3) another validation set to define the optimal value of the
threshold, and 4) a test set to evaluate the DL-based pipeline
performance.

In particular, the validation set of step 3) is used iteratively
in a procedure that aims to find the optimal threshold which
minimizes the cost function C, whose expression for a DL
model X over a set of K time series S = {S1, S2, . . . , SK}
is as follows:

C =

K∑
k=1

Pk∑
p=1

CFP +

K∑
k=1

Qk∑
q=1

CFN(sq, Sk,m), (3)

where Pk is the number of false positive samples for the k-
th time series, Qk is the number of false negative samples for
the k-th time series, CFP is the cost for a false positive sample,
CFN is the cost for a false negative sample. The expressions
for CFP and CFN are the following:

CFP = 0.2

CFN(sq, Sk,m) = m− |Sk|+ q,
(4)

where m is the margin, Sk is a time series, and q is the
index of sq in Sk. We set the cost of false positives CFP

constant, regardless of their occurrence in the time series or
the margin, while the cost of false negatives CFN increases
the closer the sample is to the anomalous event. This design



Figure 2: T5G NR as a function of N , B and ∆f . We set
M = 256 and TCN = 0 ms.

Figure 3: T5G NR as a function of N , B, ∆f , and M . We
set TCN = 0 ms.

choice is inherently bounded to safety-critical applications,
where false negative samples are considered the major risk
to deal with.

However, the most important metric to assess the quality of
the DL-based pipeline is the average advance function ā(DX),
where DX = {s1, s2, . . . , sK} is the set of the first samples in
the time series detected correctly as faulty by a given model X
for a given margin m. It indicates the amount of time before
the actual fault occurs and it is defined as follows:

ā(DX) =

∑K
i=1 a(si)

K
, (5)

where a(si) is the advance function which indicates the
amount of time before the actual fault occurs after sample
si.

IV. ROUND-TRIP TIME ANALYSIS

We define the RTT for a single UE as the time from which
the movements’ data are generated at the application layer to
the time it receives the corresponding command. In particular,
its expression is given by:

R =TP S + 2 · (TP gNB + TP UE + TCN) + TRAN UL+

+ TRAN DL + TA =

= TP S + T5G NR + TA, (6)
where:
• TP S is the processing time of the DL-based pipeline

described in Sec. III;
• TP gNB is the time needed by the gNB to process a PHY

PDU, i.e., to eliminate all headers along the 5G protocol
stack;

• TP UE is the time needed by the UE to process a PHY
PDU;

• TCN is the delay introduced by the 5CN;
• TRAN UL is the time needed by the UE to successfully

perform an uplink transmission;
• TRAN DL is the time needed by the gNB to successfully

perform a downlink transmission;
• TA is the time needed to execute the actuation command;
• T5G NR is the overall delay contribution caused by

5G NR.

Parameter Description Value
B Overall system bandwidth {5, 20, 100} MHz
∆f Subcarrier spacing {30, 60, 120} kHz
M Modulation order of {64, 256}

PUSCHs/PDSCHs transmissions
pe Reception error rate in steady state 1%
PUL Uplink payload 32 B
PDL Downlink payload 1 B
pDL Downlink generation probability 10%

TP gNB gNB processing time 7 OFDM symbols
TP UE UE processing time 7 OFDM symbols
TCN Delay introduced by the 5CN {1, 2, 7} ms
TSRP Scheduling periodicity 8 mini-slots
TS Simulation time 10 s
τUL Uplink periodicity 100 ms
H 5G protocol stack header 72 B
NS Number of simulations 20

Table I: Simulation parameters

We then introduce the term T5G NR, as well as the average
RTT R̄, both averaged among the total number of 5G UEs,
i.e., N , and the total number of simulations NS.

V. NUMERICAL RESULTS

A. Performance of the 5G NR network

Simulations parameters, if not otherwise specified, are re-
ported in Table I. However, it is important to underline that:

• We assume that pe = 1% and M = {64, 256} for PUSCH
and PDSCH communications, but PUCCH, PDCCH and
HARQ ACK receptions are error-free as they are trans-
mitted with the most conservative modulation order, i.e.,
pe = 0% due to M = 4;

• We set pDL = 10% to have, on average, multiple PDSCH
transmissions per UE within the simulation time TS.

• Among the four mini-slots per TSRP dedicated to data
plane resources (see Sec. II-E), three of them are dedi-
cated to PUSCHs, and only one to PDSCHs, due to the
uplink-oriented nature of the considered traffic model (see
Sec. II-B);

• All results will show a confidence interval with a proba-
bility of 90%.

We start the analysis by investigating the impact of different
network parameters on the term T5G NR of Eq. (6), where we



m = 5 m = 10 m = 15
Model X C ā(DX) C ā(DX) C ā(DX)

BASELINE 80.80 0.24s 306.40 0.46s 448.20 1.07s
LR 96.00 0.32s 221.20 0.44s 679.60 0.45s

DDNN 43.40 0.27s 142.00 0.66s 311.20 0.95s
1D-CNN 28.80 0.27s 114.40 0.80s 197.60 1.33s

AE 2396.40 0.39s 2666.80 0.90s 2561.80 1.40s
LSTM 95.40 0.20s 346.40 0.34s 569.80 0.81s

BiLSTM 61.60 0.28s 272.40 0.48s 689.40 1.08s
GRU 85.40 0.23s 290.80 0.68s 539.80 0.92s

Table II: Cost and average advance function of seven DL models and a baseline threshold-based approach for three different
margins.

set TCN = 0 ms to be independent of the four architectures
defined in Sec. II-A.

In particular, Fig. 2 shows T5G NR as a function of N ,
B, ∆f , and by setting M = 256. It can be observed that a
wider bandwidth provides better performance due to a higher
number of RBs (see Eq. (2)), for both the control and data
plane. Quite interestingly, there is also a benefit when ∆f
increases for a fixed value of B. This is because the shorter
TSRP duration translates into more transmission opportunities
per unit of time. As expected, R̄ increases with N but exhibits
a stepwise behavior. The reason is that, for sufficiently high
values of N , it is not possible to serve all UEs within one TSRP

because of a shortage of control plane resources; therefore,
some UEs have to transmit/receive their PUCCHs/PDCCHs
in the next scheduling periodicity with a consequent non-
negligible increase in the average RTT.

To assess the impact of different modulation orders for a dif-
ferent set of bandwidths, Fig. 3 depicts T5G NR as a function
of N , B, ∆f , and by considering M = 64 and M = 256.
It can be clearly noted that, regardless of the values of N ,
both modulation orders provide the same performance when
B = 20 MHz. This is no longer true in the case of N ≥ 30
and B = 5 MHz, where it is preferable to have a higher
modulation order, i.e., M = 256. This is because, otherwise,
there is a shortage of data plane resources, and some UEs are
forced to transmit/receive their PUSCHs/PDSCHs in the next
scheduling periodicity.

B. Performance of the DL-based RUL estimation pipeline
In this section, we present the performance of the DL-based

RUL estimation pipeline that has been constructed, trained,
and tested as described in Sec. III.

Specifically, Table II illustrates the cost C and average
advance function ā(DX) (see Eqs. (3) and (5)) provided by
seven different DL models, including Logistic Regression
(LR), Deep Dense Neural Networks (DDNN), Autoencoders
(AE), 1D Convolutional Neural Network (1D-CNN), Long
Short Term Memory (LSTM), Bi-directional Long Short Term
Memory (BiLSTM), Gated Recurrent Unit (GRU) [10]–[12],
and a baseline threshold-based approach which works over
the raw data. Three margins have been considered, that is,
m = {5, 10, 15}. It can be clearly seen that a trade-off
exists for all the considered models, as low margins (i.e.,
m = 5) correspond to low average advance and cost, while
high margins (i.e., m = 15) correspond to higher average
advance and cost.

However, 1D-CNN is the best-performing model when
considering both metrics because it better captures the local
temporal patterns present in the data. More complex memory-

based models, such as LSTM, BiLSTM and GRU, are not
effective in this particular RUL estimation task. This is because
only a few input samples are relevant for predicting the liquid
fall, whereas recurrent models are designed to capture long-
term dependencies and patterns in time series data. Another
notable observation is that the reconstruction error, which
autoencoders seek to minimize, may not be an effective indi-
cator for predicting the RUL because these models exhibited
markedly inferior performance compared to the others.

C. Performance of the entire RUL chain
In this section, we finally assess whether or not the average

RTT provided by the four 5G NR IIoT architectures described
in Sec. II-A is sufficiently lower than the average advance
provided by 1D-CNN, i.e., the best performing DL model
according to the results presented in Sec. V-B. To this aim, we
exploited the 5G NR network simulator described in Sec. II by
considering the same settings described in Sec. V-A. However,
differently from Sec. V-A, this RTT analysis also considers the
first and third terms of Eq. (6), as well as the four network
architectures described in Sec. II-A. In particular:

• TP S ranges from 1.2 ms to 119.2 ms, depending on the
number of UEs. This range derives from experimental
tests that consider 1D-CNN processing when considering
an i9-11900K processor with 128 GB of RAM and up to
50 parallel flows2;

• TA = 200 ms and is taken from a commercial product.3
• Due to their structure, and by leveraging real-world data

coming from the TIM infrastructure, we consider that
Architecture 1 and 2 work with B = 5 MHz, ∆f = 30
kHz, M = 256, and are characterized by TCN = 7 ms,
and TCN = 2 ms, respectively. Conversely, Architecture
3 and 4 operate with B = 100 MHz, ∆f = 120 kHz,
M = 64, and are characterized by TCN = 2 ms, and
TCN = 1 ms, respectively.

As a result, Fig. 4 shows the average RTT, R̄, as a
function of N , and the four network architectures described
in Sec. II-A. Average advance values ā(D1D CNN) for m = 5
and m = 10 are represented with dashed horizontal lines.
The different colors of each bar represent a diverse delay
contribution, that is, T5G NR, TP S, and TA (see Eq. (6)), while
different architectures are represented by different bar patterns.

Notably, when N ≤ 10, all architectures provide an R̄ lower
than the average advance margin with m = 5. As expected,
Architecture 3 and 4 are the best-performing ones, as they

2Additional tests were made using i5-6200U processor and 16 GB of RAM,
but they led to unsuitable performance (i.e., processing time above 1 second
for 30 AGVs).

3See: https://www.hitbotrobot.com/product/z-efg-12-robotic-gripper/



Figure 4: Average RTT R̄, as a function of N , and the four network architectures described in Sec. II-A, when considering
1D-CNN as DL model, and two average advance values ā(D1D CNN) for m = 5 and m = 10.

are characterized by higher bandwidths, SCS, and smaller
core network delays; indeed, they still yield sufficiently lower
average RTTs for N = 15 and N = 20. Nevertheless, when
N ≥ 25, it is necessary to change the RUL task by increas-
ing m up to 10, independently of the considered network
architectures. However, as described in Sec. V-B, a higher
margin leads to an increase in the cost C, i.e., the number of
erroneous fall predictions, which could compromise the safety
conditions within the factory. Finally, it is worth highlighting
that the average RTT is mainly affected by application-specific
parameters, i.e., TP S and TA, and optimizations of 5G NR are
not really needed for the considered IIoT scenario and settings.

VI. CONCLUSIONS

In this paper, we performed an E2E analysis of a RUL
estimation problem, where all its three main elements, namely
application, communication system, and RUL logic, have been
studied. In particular, we considered a safety-critical IIoT
application where 5G NR is used to collect movements data
from AGVs carrying dangerous liquids, while DL algorithms
are trained to foresee the potential liquid falls.

The problem is analyzed by considering 4 different 5G NR
architectures, 7 DL-based and 1 threshold-based algorithm, as
a function of different system parameters. The main findings
of this analysis are reported hereafter:

• Wider bandwidths and/or subcarrier spacings lead to
lower RTTs, whereas employing higher modulation or-
ders is beneficial only when the data plane resources
saturate;

• 1D-CNN is the best-performing DL model for RUL
estimation as it shows the best trade-off between cost
and average advance for all the considered margins;

• The use of dedicated RAN and 5CN resources, as in
Architecture 3 and 4, together with their network settings
result in a reduction of the average RTT w.r.t other
solutions, like Architecture 2 and 1;

• The training of 1D-CNN for RUL estimation needs a
margin m ≥ 10 to provide an average advance time
compatible with the average RTT performance provided
by all the considered network architectures;

• The training of 1D-CNN for RUL estimation can leverage
a margin m = 5, which features lower costs, for certain
architectures and number of AGVs N . However, if the
RTT increases, due to an increase of N or to a less

performing architecture, using the set up with m = 10 is
required;

• The average RTT is mainly affected by application-
specific parameters, i.e., TP S and TA, rather than
5G NR-related optimizations.

In future works, we aim to address more realistic, and therefore
complex, scenarios by considering multiple gNBs and different
channel models. Our future research will also target reliability
assessment for safety critical RUL-based chains.
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