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Abstract—Ultra-reliable low latency communications
(URLLC) service is envisioned to enable use cases with
strict reliability and latency requirements in 5G. One approach
for enabling URLLC services is to leverage Reinforcement
Learning (RL) to efficiently allocate wireless resources. However,
with conventional RL methods, the decision variables (though
being deployed at various network layers) are typically
optimized in the same control loop, leading to significant
practical limitations on the control loop’s delay as well as
excessive signaling and energy consumption. In this paper, we
propose a multi-agent Hierarchical RL (HRL) framework that
enables the implementation of multi-level policies with different
control loop timescales. Agents with faster control loops are
deployed closer to the base station, while the ones with slower
control loops are at the edge or closer to the core network
providing high-level guidelines for low-level actions. On a use
case from the prior art, with our HRL framework, we optimized
the maximum number of retransmissions and transmission
power of industrial devices. Our extensive simulation results on
the factory automation scenario show that the HRL framework
achieves better performance as the baseline single-agent RL
method, with significantly less overhead of signal transmissions
and delay compared to the one-agent RL methods.

Index Terms—6G, availability, factory automation, hierarchical
reinforcement learning (HRL), reliability, URLLC.

I. INTRODUCTION

Nowadays, the development of fifth generation of mobile
communication systems (5G) technology has achieved a ma-
ture technical standard aiming to provide wireless communica-
tion services to multiple vertical industrial areas [1]. Accord-
ing to 3rd Generation Partnership Project (3GPP) [2], ultra-
reliable low-latency communications (URLLC) stands as one
of the three main services for 5G standards, and beyond the
standardization, it has shown significant improvements in the
efficiency and performance of communication systems [3]–[5].
The main requirements for URLLC (especially in the context
of cyber-physical systems (CPSs)) are high reliability (e.g.,
10 years without failure), high availability (e.g., 99.9999%),
and low latency (below some tens of milliseconds). Machine
learning (ML) has proven effective in meeting these stringent
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requirements over resource-limited and faulty wireless chan-
nels [6]–[9].

A. Literature Review

Various ML-based optimization schemes have been pro-
posed for URLLC. For example, reference [6] proposes a dis-
tributed risk-sensitive ML solution for hybrid orthogonal/non-
orthogonal radio resource slicing, regulating the spectrum to
satisfy the URLLC requirements. Reference [7] implements
an reinforcement learning (RL) framework with the deep
deterministic policy gradient algorithm [8] into an orthog-
onal frequency-division multiple access system, minimizing
the transmission power. Reference [9] optimizes both power
and hybrid automatic repeat request (HARQ) retransmission
scheme, leading to further improvements in terms of reliability
and availability in factory automation use cases. However,
adopting these strategies in real-life applications could be
impractical:
• Conventional (flat) RL methods only have one action vector

that forces all decision variables to be designed at the same
control loop (e.g., resource blocks and power allocation in
[7] and power and HARQ retransmission scheme in [9]).
However, 5G services usually require various decision vari-
ables to be tuned on different control loops. For example, we
prefer to have one fixed slicing decision for many coherence
intervals while we can constantly adjust the transmit power
at every coherence interval.

• To make a decision in a flat RL, we need to collect
the information required to determine the state including
the ones corresponding to variables with a much slower
control loop (slicing in our example). The interval of such
data collection is determined by the faster control loop.
Such unnecessary data collection results in more energy
consumption, network congestion, and extra latency, which
could be detrimental to the sustainable operation of URLLC
service.

To address these limitations, we develop a hierarchical rein-
forcement learning (HRL) framework to optimize the opera-
tion of URLLC.

B. Hierarchical Reinforcement Learning

Different from one-level RL methods, HRL decomposes
one RL problem into a hierarchy of sub-problems, which
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allows optimizing different tasks independently with different
algorithms, timescales, models, and multiple agents [10]. This
usually brings a reduction in exploration complexity, computa-
tion, signaling, and time required for the training and inference
processes. Reference [11] proposes a hierarchical deep actor-
critic method for the resource allocation problems of the 6G
massive Internet of Things scenarios. Reference [12] intro-
duces a hierarchical deep Q-networks model with one main
controller and multiple sub-controllers to partition a dynamic
spectrum access problem into separate sub-problems, reducing
the complexity of band selection. In [13], the authors deploy
a Meta-HRL framework for resource allocation in vehicular
networks to enable faster learning on newly discovered sub-
tasks.

C. Our Contributions

In this paper, we propose novel methods to orchestrate
parameters of URLLC services. Reference [14] developed a
single-agent RL method on a factory automation scenario to
jointly optimize the downlink (DL) transmission power and
HARQ retransmission control for the communication service
performance (availability and reliability) in URLLC services.
Here, we address the same problem with a novel HRL frame-
work that supports better performance but with a more flexible
structure that enables the system to allocate multiple agents
and execute different operations with multi-level policies in
different timescales. Our solution substantially reduces the
signaling requirements for training and inference. In particular,
two of the agents are located at the gNodeBs (gNBs), which
significantly reduces the data exchange between gNBs and
the centralized remote HRL agent. This efficiency results in
time and energy savings in decision-making, thus simplifying
the adaptation of our framework to the complex network
requirements of real-world wireless systems and 6G.
Notations: Normal font 𝑥 and 𝑋 , bold font x, and uppercase
calligraphic font X denote scalars, vectors, and sets respec-
tively. Besides, [𝑋] denotes the set {1, 2, . . . , 𝑋}, and |X| is
the cardinality of set X.

II. SYSTEM MODEL AND PERFORMANCE METRICS

A. System Model

We consider a factory automation scenario where a set of
BB[𝐵] gNBs are present, each serving a set of U𝑏B[𝑈𝑏]
industrial devices, where U𝑏 ⊂ U, and UB[𝑈] is the set of
all devices. These devices are responsible for executing various
functions that facilitate automated production. In this scenario,
the communication system must be capable of delivering
monitoring data to gNBs and computed or emergency control
commands to the actuators in a timely and reliable manner.
For the channel model, we assume indoor factory with dense
clutter and high base station height (InF-DH) from 3GPP
in [15]. Nevertheless, our problem formulation and approach,
described in Section III and Section IV, are not limited to
this channel model. To enable URLLC efficiently, we consider
the orchestration of a set of reliability enhancement features,
such as the transmission power to industrial devices and the

maximum number of diversity transmissions (i.e., transmitting
multiple instances of a packet or its segments in space, time,
and/or frequency). In this paper, we focus on the orchestration
of transmission power and HARQ retransmissions in DL direc-
tion. However, our framework can easily be extended for other
reliability enhancement features and uplink transmissions.

From the network management perspective, in the hierarchi-
cal multi-tier architecture of cellular networks, we assume two
levels of control for global and local optimizations. Although
there is only one top-level controller, we assume a set of
low-level controllers co-located with the gNBs, managing the
transmissions towards U𝑏 together.

B. From Network to Communication Service Performance

The key element in characterizing service performance is
defining service failures accurately. In [16], 3GPP defines
survival time denoted as 𝑇s, as the duration for which an
application can continue to function without receiving an
expected packet. Therefore, a communication service failure
occurs if no packets have been received by the reception entity
for the duration of survival time.

We can define the network layer state variable 𝑌𝑏,𝑢 (𝑡) for
industrial device 𝑢 associated to gNB 𝑏 at time 𝑡, where
𝑌𝑏,𝑢 (𝑡) is considered 0 if the last packet fails to reach the
communication interface within a specified delay bound due
to decoding issues at lower layers, excessive retransmissions,
or queuing delays, and 1 otherwise. We can define the network
state variable 𝑌𝑏,𝑢 (𝑡) for the 𝑢th industrial device at time 𝑡,
where 𝑌𝑏,𝑢 (𝑡) is considered 0 if the last packet fails to reach the
communication interface within a specified delay bound due to
decoding issues at lower layers, excessive retransmissions, or
queuing delays, and 1 if the packet is received successfully and
timely. Since sporadic packet losses1 within 𝑇s do not impact
the end-to-end service performance, the application layer state
variable can be defined as [14]:

𝑍𝑏,𝑢 (𝑡) := max
𝑡−𝑇s≤𝜏≤𝑡

𝑌𝑏,𝑢 (𝜏). (1)

The application state variable 𝑍𝑏,𝑢 enables us to define and for-
mulate our two reliability key performance indicators (KPIs),
communication service availability and communication service
reliability.

Communication Service Availability: It refers to the ability
of an end-to-end communication service to perform its in-
tended function without failure at a given point in time and
is commonly expressed as a probability or as a percentage
of time that the system is operational within a specified time
period [2]. Considering the failure definition and 𝑍𝑏,𝑢 (𝑡) in
(1), the communication service availability, 𝛼𝑏,𝑢, is [14]

𝛼𝑏,𝑢 B lim
𝑡→∞

Pr(𝑍𝑏,𝑢 (𝑡) = 1) = lim
𝑇→∞

1
𝑇

∫ 𝑇

0
𝑍𝑏,𝑢 (𝑡)𝑑𝑡. (2)

1Here, packet loss refers to all packets that fail to reach their intended
recipient within their delay bound.



However, the communication service availability for 𝑢th de-
vice can be approximated in a short time , Δ𝑡𝑘 , via [14]

𝛼𝑏,𝑢 (Δ𝑡𝑘) B
1
Δ𝑡𝑘

∫ 𝑡𝑘

𝑡𝑘−Δ𝑡𝑘
𝑍𝑏,𝑢 (𝑡)𝑑𝑡. (3)

Communication Service Reliability: It refers to the ability
of an end-to-end communication service to operate without
failures over a specific period, given certain environmental
and operational conditions [16]. It can be expressed as the
meantime that the service is operational, that is 𝑍𝑏,𝑢 (𝑡) = 1.
Therefore, reliability 𝜌𝑏,𝑢 is formulated as [14]

𝜌𝑏,𝑢 B lim
𝑇→∞

1
𝐹𝑏,𝑢 (𝑇)

∫ 𝑇

0
𝑍𝑏,𝑢 (𝑡)𝑑𝑡, (4)

where 𝐹𝑏,𝑢 (𝑇) denotes the number of crossings from 𝑍𝑏,𝑢 (𝑡) =
1 to 𝑍𝑏,𝑢 (𝑡) = 0 within [0, 𝑇]. Since communication service
reliability’s unit is time, we can alternatively approximate it via
the crossing rate, 𝜓𝑏,𝑢, representing the crossings of 𝑍𝑏,𝑢 (𝑡)
from 1 to 0 during Δ𝑡𝑘 ; defined as 𝜓𝑏,𝑢B lim

𝑇→∞
𝐹𝑏,𝑢 (𝑇)/𝑇 .

Note that 𝜓𝑏,𝑢 is inversely proportional to 𝜌𝑏,𝑢 in (4). Then,
the crossing rate can be approximated by [17]

𝜓𝑏,𝑢 (Δ𝑡𝑘) B
𝐹𝑏,𝑢 (Δ𝑡𝑘)

Δ𝑡𝑘
. (5)

In the following section, we introduce our HRL solution based
on the formulation of the KPIs.

III. OPTIMIZATION WITH HRL FRAMEWORK

In this paper, the objective is to maximize the communi-
cation service availability, in (2), and communication service
reliability, in (4), of a CPS by optimizing the configuration of
transmission power levels and the number of retransmissions.
Nevertheless, our framework can easily be extended for more
decision variables. We propose to solve this problem using
a HRL framework, where a high-level agent collaborates
with low-level agents to manage the bi-level control of the
communication system. The high-level agent is responsible
for inter-agent coordination and, therefore, we assign the task
of mitigating inter-cell interference globally to it by placing
the transmission power under its control. Hence, we model
the problem as a twin timescale Markov decision process
and then apply the soft actor-critic (SAC) algorithm, as pre-
sented in [18], to solve it. Additionally, we use the branching
technique described in [14] to enhance the performance of
the algorithm. For simplicity, we assume that the timescales
of the low-level agents are identical and denote it with Δ𝑡𝑘 ,
for an iteration starting from 𝑡𝑘 , and represent the high-level
agent’s timescale with Δ𝑡h𝜅 B 𝑡𝜅 − 𝑡𝜅−1, where Δ𝑡h𝜅 = 𝑐Δ𝑡𝑘 ,
∀𝑐, 𝑘, 𝜅 ∈ N.

A. State Space

The state represents the set of various measurements from
the environment that affects the performance of our main KPIs,
namely communication service availability and reliability. The
state of 𝑢th device associated with the 𝑏th low-level agent,
s𝑏,𝑢 (Δ𝑡𝑘), is measured within [𝑡𝑘 − Δ𝑡𝑘 , 𝑡𝑘], and consists of

various factors that can be classified as direct and indirect,
based on their effects on the two KPIs. As mentioned, indi-
vidual availability 𝛼𝑏,𝑢 and reliability 𝜌𝑏,𝑢 are the functions
of the probability of packet loss and average operational time.
Therefore, we add packet loss rate and mean downtime of the
network layer as the direct factors to the state space. Apart
from these two variables, we also consider the various factors
that are not included in the KPI functions but importantly
affect the communication quality indirectly, as signal to noise
and interference ratio (SINR), packet transmission delays, the
status of the radio link control (RLC) layer buffers, path gain,
the number of HARQ transmissions, and the number of used
resource blocks. To enable a more concrete description of
the communication environment, we include mean, median
values, 95th, and 5th percentile of SINR, path gain, and
RLC buffer status. However, for the rest of the factors, we
incorporate the mean of the samples in the state. Thus, the
state of 𝑏th low-level agent for its 𝑘th iteration is defined as
s𝑏 (Δ𝑡𝑘)B

{
s𝑏,𝑢 (Δ𝑡𝑘) |∀𝑢 ∈ U𝑏

}
.

As for the high-level agent, we define the global state
consisting of all elements in s𝑏,𝑢, but measured in a much
larger time scale, Δ𝑡h𝜅 , and including all devices. Then, the
high-level agent’s state for 𝜅th iteration can be defined as
s(Δ𝑡h𝜅 )B

{
s𝑏,𝑢 (Δ𝑡h𝜅 ) |∀𝑢 ∈ U𝑏,∀𝑏 ∈ B

}
.

B. Action and HRL Policy
The action space consists of a series of decision parame-

ters for the agents to interact with environments. Similar to
reference [14], we consider the quantized transmission power
levels and the number of retransmissions in action set for each
device. However, we decompose the joint action into a multi-
level policy that enables the different HRL agents to learn one
or a combination of different network functions with different
timescales based on network requirements. Specifically for our
scenario, we set up a two-level policy that includes a global op-
timization of transmission powers (via a high-level agent), and
local optimization of the maximum number of retransmissions
(via several low-level agents). Hence, the high-level action in
𝜅th iteration is defined as ah

𝜅 B (𝑝1
𝜅 , . . . , 𝑝

𝑢
𝜅 , . . . , 𝑝

𝑈
𝜅 ), where

𝑝𝑢𝜅 ∈ {𝑝min, 𝑝1, 𝑝2, . . . , 𝑝max}, and the action for 𝑏th low-level
agent in 𝑘th iteration, a𝑏,𝑘 , is a vector where each element
represents the configured maximum numbers of retransmis-
sions for devices in U𝑏. Compared to flat (or single-level)
RL, HRL decomposes the action space into layers, resulting
in higher scalability for handling complex orchestrations in
cellular systems.

C. Reward Functions
The RL agents follow an explicit objective to maximize the

sum of discounted rewards. Considering the estimations on
communication service availability and crossing rate in (3) and
(5), respectively, we introduce two different reward functions.
The first one, inspired by [14], targets the maximization of the
average of reliability KPIs, and is defined as

𝑟𝑏 (Δ𝑡𝑘) B
1

𝜔𝑈𝑏

𝑈𝑏∑︁
𝑢=1

(
𝜔𝛼𝑏,𝑢 (Δ𝑡𝑘) − (1−𝜔)𝜓𝑏,𝑢 (Δ𝑡𝑘)

)
, (6)
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Fig. 1: Learning procedure of the two-level policy HRL framework

where 0<𝜔<1 decides the importance of 𝛼𝑏,𝑢 (Δ𝑡𝑘) and
𝜓𝑏,𝑢 (Δ𝑡), and its placement in the denominator helps to bound
the reward function by 1. Consequently, the high-level reward
is defined as 𝑟 (Δ𝑡h𝜅 )B 1

𝐵

∑𝐵
𝑏=1 𝑟𝑏 (Δ𝑡h𝜅 ), where 𝑟𝑏 (·) is derived

as in (6), but within (𝑡𝜅−1, 𝑡𝜅 ]. For the second function, we
adopt a risk-sensitive reward that replaces the average value
of users with the extremum within U𝑏, where agents can be
more aggressive in exploration. Enabling agent 𝑚 to maximize
the availability and minimize the crossing rate, the 𝑘th iteration
reward is defined as

𝑟𝑏 (Δ𝑡𝑘) B exp
( 𝜂
𝜔

(
𝑟 ′𝑏 (Δ𝑡𝑘) − 𝜔

) )
, (7)

where

𝑟 ′𝑏 (Δ𝑡𝑘) B 𝜔 min
𝑢∈U𝑏

(
𝛼𝑏,𝑢 (Δ𝑡𝑘)

)
−(1−𝜔) max

𝑢∈U𝑏

(
𝜓𝑏,𝑢 (Δ𝑡𝑘)

)
, (8)

and 𝜂 represents a fixed coefficient predefined to adjust the
reward reduction with the application’s sensitivity to reliability
KPIs. The high-level reward, 𝑟 (Δ𝑡h𝜅 ), can then be calculated
as (7), but within (𝑡𝜅−1, 𝑡𝜅 ] where the min and max functions
in (8) are calculated for ∀𝑢 ∈ U.

D. Learning Procedure

The learning procedure of our two-level policy HRL frame-
work is as shown in Fig.1, where two network operations,
global power control and maximum HARQ retransmission
number are decided by a high-level agent and low-level agents,
parallelly following two timescales (Δ𝑡𝑘 , Δ𝑡h𝜅 ). At every time
step Δ𝑡𝑘 , the low-level agents collect the states of the users
they control, also the calculated rewards. Then the generated
actions for HARQ retransmission number are sent to the com-
munication system. The high-level agent issues power values
to all the devices every 𝑐Δ𝑡𝑘 . Similar to the design in [9],
all the agents are model-free and can individually implement
any RL algorithms according to the task requirements. For
the sake of fair comparison to the single-agent RL in [14],
we deploy the same SAC algorithm [18] to all the HRL
agents, and adopt the same branching technique that enables
the continuous actions to describe our discrete actions in our
factory automation scenario.

Fig. 2: Framework of the simulators with scenario setup

IV. SIMULATION METHODOLOGY AND RESULT ANALYSIS

In this section, we present the simulation methodology and
evaluate the performance of our HRL framework.

A. Simulation Configuration and Methodology

Fig. 2 shows our simulation architecture, which consists of
a link-level Matlab simulator, a network-level Java simulator,
and the RL agents implemented using an open source library,
RLlib. With path gain matrices, 3D channel data [15], and
nodes allocation provided by the link-level simulator, the
network-level simulator is able to simulate the network with
multiple gNBs and users in physical, medium access control,
and other higher layers of the 5G-NR network. As for the
RL/HRL deployment, our network-level simulator supports
interacting with external agents using the pipelines based on
ZeroMQ protocol.

We considered a 40 × 25 × 11 m3 factory with two 10 m
height gNBs providing communication service to 10 industrial
devices. Moreover, we assumed that the devices are in a
high interference condition, and they move with the speed
of 30 km/h, while staying in close proximity to the original
position. We considered periodic control traffic with periodic-
ity 2 ms, and a delay bound 2.5 ms. On the transmitter side,
packets are queued in the RLC buffers and then sent via
transport blocks based on the selected modulation and coding
scheme. On the receiver side, the successfully decoded packets
that were received after the delay bound were discarded by
packet data convergence protocol. In the end, the reliability
and availability are calculated in the application layer based
on survival time, 𝑇s. The network and learning parameters of
our simulations are presented in TABLE I. For more details on
our simulation setup, you can refer to [19, §VI.A, §VI.B].

The goal of our HRL solution is to find the optimal solution
for power control and HARQ retransmissions to maximize
communication service availability and reliability. We consid-
ered the following baselines in our evaluations:

• MaxRetPwr: Similiar to [14], all resource blocks are
configured with 0.02 W, and the maximum number of
transmissions is set to 2.

• RLAvg/RLRiskSen: There exist only one RL agent (in
a remote server) interacting with the two gNBs (the blue
agent in Fig. 2). The step period is set to 0.1 s. The
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Fig. 3: Comparison of single-agent RL solution and HRL framework in terms of (a) communication service availability, and (b) crossing rate of user equipments,
sampled from all the devices from the 10 s simulations.

TABLE I: Simulation Parameters.
Network Parameters

Parameter Value
Deployment 2 gNBs, 1 cell each
gNBs antenna height 8 m
Devices’ height 1.5 m
Carrier frequency 2.6 GHz
Bandwidth 20 MHz
TTI length/Subcarrier spacing 0.5 ms/30 KHz
DL transmit power (𝑝𝑚𝑖𝑛/𝑝𝑚𝑎𝑥) 0.2 W/0.5 W
Number of gNB/Devices’ antennas 2/2
DL URLLC delay bound 2.5 ms
DL URLLC Survival time (𝑇s) 5 ms
Simulation time 10 s/Episode

Learning Parameters
Parameter Value
Neural network hidden layers 128 × 128
Activation function ReLU
Loss function MSE
Optimizer mini-batch SGD
Discount factor 0.1
Batch size 200
Learning rate 0.0003
RL step period (Δ𝑡) 0.1 s
HRL step period low/high-level (Δ𝑡𝑘 / Δ𝑡h𝜅 ) 0.1/0.5 s, ∀𝑘, 𝜅 ∈ N

agent selects from the two possible levels of 0.008 W,
and 0.02 W, set for all resource blocks allocated to
a specific device, and the maximum number of trans-
missions (which can be either 1 or 2). While RLAvg
used the average reward from [14] and presented in (6),
RLRiskSen was implemented with the risk-sensitive
reward in (7).

Furthermore, for the HRL solution, we implemented one
top-level agent and two low-level agents (the red agents in
Fig. 2). The former agent’s objective was to optimize the DL
transmission powers globally, while the numbers of HARQ
retransmissions were optimized per gNB by the latter agents.
For the sake of fair comparison, the action space was set
similar to RLAvg and RLRiskSen. Besides, we considered
two setups as HRLAvg, where we incorporated the average
reward in (6), and HRLRiskSen, where we incorporated the
risk-sensitive reward, in (7).

B. Result and Analysis

Fig. 3a and Fig. 3b present the cumulative distribution func-
tion (CDF) of the communication service availability and
the complementary CDF (CCDF) of the device crossing rate,
determined by (3) and (5), respectively. In these figures, each
data point represents the device availability (in Fig. 3a) or
crossing rate (in Fig. 3b) in one simulation round. Assuming
an availability requirement of 0.999, Fig. 3a shows that both
HRLRiskSen and RLRiskSen achieve a similar violation
probability of 0.083, while MaxRetPwr can only reach
violation probability of 0.35. Similarly, assuming a crossing
rate requirement of 0.001, Fig. 3b indicates that HRLRiskSen
and RLRiskSen can obtain violation probability of 0.058,
closely followed by HRLAvg, and they all significantly outper-
form MaxRetPwr. Furthermore, our HRL framework shows
a lower violation probability for availability > 0.999 and
crossing rate < 0.001, outperforming the RL.

It is surprising that our HRL framework achieves better
performance than the single-agent RL method, which learns
the states from all the devices within one agent. In comparison,
the HRL agents have three different actions, where two of them
only learn partial states of the devices from one gNB. Since we
run both RL and HRL training for a fixed number of iterations,
such improvement can be contributed by the reduction in the
action space (as a result of action decomposition), leading to
faster convergence.

The error bar plot in Fig. 4 demonstrates the mean (shown
by square) and 5th percentile (shown by line) device avail-
ability. The average and 5th percentile availability of single-
agent RL and HRL in both rewards achieve similar perfor-
mance that is much higher than MaxRetPwr. Although the
baseline simulation adopts the maximum power and 2 HARQ
retransmissions, its poor performance indicates that the lack of
freedom in operations could reduce interference management
capability. Same as in Fig. 3, the risk-sensitive reward shows
improvement in performance than the average reward for the
HRL and RL.
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Fig. 5: Number of signal exchanges in the training process.

Fig. 5 presents the number of signal exchanges (communi-
cation rounds) the learning frameworks require to converge
(i.e., all reward values tend to stabilize and converge, and
they no longer increase with further exploration). One signal
exchange in Fig. 5 represents a signal transmission between the
remote agent and one of the gNBs. According to the allocation
of agents in Fig. 2, there are two learning agents assembled
locally with the gNBs, the transmission overhead of which
can be ignored compared to the remote server. In the case of
the single-agent RL solution, the agent transmits one message
of action to each gNB and receives a reply message with
states and rewards from them. Therefore, there are four signal
transmissions at every step. Similarly, for HRL framework,
there are four signal transmissions at every high-level step. We
performed two RL simulations and two HRL simulations and
logged the total number of exchanged signals till convergence.
As Fig. 5 confirms, compared to HRL, RL simulations required
over triple the number of communication rounds to converge.
Such reduction in signal exchanges can significantly improve
the energy efficiency of large-scale communication systems
with many remote devices and simultaneous operations. Be-
yond signal exchanges, decomposing the RL action allows the
HRL’s average learning time per iteration to be 33% less than
that of the single-agent RL (i.e., 6.288 ms vs 8.386 ms). This
translates into massive gains in terms of latency and energy
saving to run the training, especially in dynamic environments
where we may need to retrain the models regularly.

V. CONCLUSIONS

In this paper, we propose a HRL framework and implement
that into a simulated factory automation model to optimize
the operations of power control and HARQ retransmissions in
5G communication, aiming to achieve the optimal availability
and reliability according to the standard of URLLC. We design
and compare five simulations that separately deploy the single-
agent RL strategy, our HRL framework with average and risk-
sensitive reward functions, and one with fixed operations as the
baseline. Our HRL framework achieves better performance on
availability and reliability to the ideal single-agent RL solution
and significantly outperforms the baseline simulation. Besides,
our HRL framework enables better flexibility that allows the
operations to be executed in different timescales. Furthermore,
due to the flexible allocation of agents, the HRL solution can
save signal consumption by at least triple less than that of the
RL in the scenario of our factory model.
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