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Abstract—The advent of novel 5G services and applications
with binding latency requirements and guaranteed Quality of
Service (QoS) hastened the need to incorporate autonomous and
proactive decision-making in network management procedures.
The objective of our study is to provide a thorough analysis of
predictive latency within 5G networks by utilizing real-world
network data that is accessible to mobile network operators
(MNOs). In particular, (i) we present an analytical formulation
of the user-plane latency as a Hypoexponential distribution,
which is validated by means of a comparative analysis with
empirical measurements, and (ii) we conduct experimental results
of probabilistic regression, anomaly detection, and predictive
forecasting leveraging on emerging domains in Machine Learning
(ML), such as Bayesian Learning (BL) and Machine Learning
on Graphs (GML). We test our predictive framework using
data gathered from scenarios of vehicular mobility, dense-urban
traffic, and social gathering events. Our results provide valuable
insights into the efficacy of predictive algorithms in practical
applications.

Index Terms—Predictive Quality of Service, Latency, Machine
Learning, Bayesian Learning, Machine Learning on Graphs, 5G.

I. INTRODUCTION

The 5th generation (5G) wireless technology allows the
virtual connection of everyone and everything together, in-
cluding machines and devices. Ultra-Reliable Low-Latency
Communications (URLLC) is one of the leading pillars of
the 5G standard, which aims to provide extremely low latency
values and reliability up to 99.99% [1]. Industries, transporta-
tion, precision agriculture, and Vehicle-To-Everything (V2X)
communications are some of the driving applications for the
development of URLLC. The rise of such new services and
applications with binding latency requirements and guaran-
teed QoS, together with recent advancements in Artificial
Intelligence (AI), are paving the way to the deployment
of autonomous connected systems. Within this context, the
idea of Predictive Quality of Service (PQoS) has been in-
troduced as a means of equipping autonomous systems with
proactive notification regarding imminent changes in QoS.
The experienced QoS is affected by various elements, such
as interference, mobility, network conditions, and terminal
characteristics (e.g., number of antennas). Although different
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services have different QoS constraints in terms of latency and
reliability, being able to prevent a session interruption due
to QoS degradation becomes a key requirement [2]. In this
respect, being able to predict QoS changes, becomes a crucial
aspect to preventively adjust the application behavior [3], [4].
Nowadays, minimizing latency means providing aid for real-
time applications (e.g., online games, autonomous driving,
etc.), ensuring greater interactivity and smoother experiences,
increasing the energy efficiency of 5G networks, and improv-
ing reliability in mission-critical applications. Furthermore,
latency is critical to foster a range of new applications, such
as virtual and augmented reality, smart cities, and connected
cars. Mobile Network Operators (MNOs) have access to a
vast amount of Radio Access Network (RAN) measurements,
including network Key Performance Indicators (KPIs) and
counters, measuring uplink/downlink data volumes, transmis-
sion parameters, monitoring of radio resources, as well as
accessibility/handover requests/failures, among many others.
Such data availability offers significant opportunities: different
levels of granularity at both a spatial and temporal level boost
the network analysis capability, enabling the true potential of
PQoS.

The present study aims to provide a thorough investigation
of predictive latency within 5G networks. This is achieved
through the utilization of KPI RAN measurements obtained
at each Next Generation NodeB (gNB), combined with the
development of a predictive framework based on cutting-edge
ML methodologies. Our objective is to offer a comprehensive
analysis of the key factors affecting predictive latency in 5G
networks and to assess the potential benefits of employing
advanced ML techniques in this context. In this regard, we
collected measurements on three clusters characterized by
diverse traffic patterns, among which vehicular and dense-
urban traffic.

A. State of the art

Various studies have focused on the subject of PQoS, with
particular emphasis on its relevance to V2X communications.
Authors in [5] model the QoS prediction as a binary classifica-
tion problem to determine whether a packet can be delivered
within a defined latency window with the use of standard
ML techniques such as Random Forests (RFs) and Multi-
layer Perceptrons (MLPs). In the framework of Agile QoS
Adaptation (AQoSA), a QoS adjustment assistance mechanism
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Fig. 1: Bologna map, clusters of cells.

has been developed to predict and notify QoS changes at
application level [2]. Another aspect of PQoS concerns the
identification of the relationship between features. In this
regard, a work of noticeable importance is [6], which proposes
a network model based on Graph Neural Networks (GNNs)
capable of understanding the connection between topology and
input traffic to estimate the per-packet delay distribution using
deep learning techniques. With respect to URLLC, the authors
of [7] attempt to monitor and forecast the rapid fluctuations in
channel conditions caused by fast fading, in order to facilitate
advanced scheduling. Finally, the research community has
shown significant interest in reducing latency in 5G networks.
Various analytical models have been developed to evaluate
end-to-end (E2E) latency by implementing different schedul-
ing configurations and observing several 5G features [8], [9].

B. Contributions

Our work aims to offer a comprehensive analysis of pre-
dictive latency in 5G networks using real-world network
data available to MNOs and developing a solid framework
leveraging recent advancements in ML. Our contributions can
be summarized as follows:

• Starting from 3GPP definitions, we present an analytical
formulation of the U-plane (User-plane) latency, proving
the latter can be modeled as a Hypoexponential distribu-
tion. We ascertain the validity of our analytical outcomes
by means of a comparative analysis with empirical net-
work measurements.

• We discuss the use of emerging domains within the field
of ML, such as BL and GML to tackle three distinct PQoS
use cases: probabilistic regression, anomaly detection,
and predictive forecasting.

• We conduct numerical experiments using KPIs collected
from three distinct traffic scenarios, namely vehicular
mobility, dense-urban environment, and social gathering
events. Our objective is to evaluate the performance of
predictive models under diverse and representative traffic
conditions.

II. PROBLEM FORMULATION

Our reference scenario comprises network KPIs gathered
from three clusters of cells scattered throughout the entire area
of the city of Bologna, Italy (Fig. 1). The first cluster gathers
gNBs from the city center area, the second one encompasses
the highway and the ring road, whereas the last one covers an

industrial area hosting concerts and social gathering events.
The network KPIs exploited for the latency prediction are
obtained as a statistical average of the measurements gathered
with a periodic interval of 15 minutes, for a total of one entire
month of data. Details about the feature selection and the
individual indicators are discussed in section III.
3rd Generation Partnership Project (3GPP) employs the QoS
Class Identifier (QCI) scalar value to assess the quality of
packet communication. The QCI refers to a particular packet
forwarding behavior (e.g.: resource type, priority, and packet
loss rate) to be delivered to a Service Data Flow (SDF) [10].
For the scope of this work, we focus our attention on KPIs
data collected from two QCI classes:

• QCI1, i.e. conversational voice service that requires Guar-
anteed Bit Rate (GBR) resource type and packet error loss
rate of 10−2.

• QCI7, i.e. voice, video streaming, and interactive gaming
services that represent the majority of traffic nowadays;
they require non-GBR resource type and packet error loss
rate of 10−3.

The remainder of this section delves into the details of
latency formulation and derives a probabilistic interpretation of
the U-plane latency within 5G communications systems. This
model is derived from the definitional framework established
by the 3GPP, described in section II-A.

A. 3GPP Overview

According to 3GPP, latency can be formalized as the sum
of C-plane (Control-plane) and U-plane (User-plane) latency
[11]. The former measures the time elapsed from a User
Equipment (UE)’s Random Access Channel (RACH) preamble
transmission and the successful reception at the gNB of a Ra-
dio Resource Control (RRC) Connection Complete message;
in other words, it measures the transition time of a UE from
RRC-idle state to RRC-connected state. On the other hand,
the U-plane latency is a measure of the transit time between a
packet being available at the UE (or RAN gNB) IP layer, and
the availability of this packet at the IP layer of the RAN gNB
(or UE) [11]. Besides the processing delays, the Transmission
Time Interval (TTI) duration, and Hybrid Automatic Repeat
request (HARQ) loop needed to receive the packet correctly,
the U-plane latency also accounts for the number of packet
retransmissions occurring with probability equal to the Block
Error rate (BLER).
Within the scope of our work, we direct our attention towards
the Downlink (DL) U-plane latency for a two-fold reason:
(i) the user plane latency offers greater degrees of freedom
in terms of optimization compared to the C-plane latency,
which depends primarily on the random access procedure;
(ii) network measurements are collected uniquely for users in
RRC-connected mode, for whom U-plane latency is the sole
quantifiable delay because it involves only the RAN, whereas
the C-plane latency includes delay contributions that impact
the Core Network (CN) as well. Furthermore, the U-plane DL
represents the majority of generated traffic. As a final remark,
we consider the case of dynamic (grant-based) scheduling, for



which the gNB needs to forward scheduling information to
the UE before transmitting data on the PDSCH.

B. Latency formulation

Leveraging on the 3GPP definitions introduced above, we
define the U-plane latency, denoted as L, as per (1):

L = τradio + τHARQ +N ∗ (τ ′
radio + τHARQ), (1)

with N = {0, 1, . . . , Nmax}. In (1), τradio is a random variable
accounting for the radio latency over the Uu interface related to
the first gNB-UE transmission. Similarly, τradio′ accounts for
the same delay when a packet is re-scheduled for transmission
upon reception of a negative acknowledgment. For the sake of
generality, we account for the two terms as separate and inde-
pendent random variables, assuming that prioritization mech-
anisms take place for the dynamic scheduling of previously
discarded packets, i.e., E[τ ′radio] ≤ E[τradio]. Finally, τHARQ

accounts for the delay introduced by the HARQ mechanisms,
and N denotes the total number of re-transmissions.
Notice that Eq. (1) is a measure of latency at the IP layer,
consistent with the 3GPP definition discussed in Sec. II-A.
The present analysis excludes the transport layer due to the
tendency to introduce varying additional delays based on the
particular protocol employed (e.g., Transmission Control Pro-
tocol (TCP) introduces delays due to connection establishment
between two end-point, or error-checking and re-transmissions
of corrupted packets). Similarly to previous works [8], we can

Fig. 2: τradio for DL transmission.

hereby decompose τradio (τ ′radio) into the sum of two indepen-
dent quantities related to the scheduling and the transmission
time of the packet, namely τsch (τ ′sch) and τpack. Downlink
scheduling information on the PDSCH is delivered to the UE
by the Downlink Control Information (DCI) on the PDCCH.
Differently from [8], we denote with τsch the whole interval of
time between the packet generation at the gNB and the instant
when the packet is transmitted on the PDSCH, as reported in
Fig. 2. Accordingly, τsch coincides with the waiting time of
a M/M/1 system, as per traditional queuing theory. On the
other hand, τpack, which is fully determined by 5G numerology,
average UE’s Modulation and Coding Scheme (MCS), number
of available Resource Blocks (RBs), etc., is equivalent to the
service time. In Appendix A, leveraging on queuing theory, we
show that the sum of τsch and τpack in an M/M/1 system can
be modeled as a negative exponential distribution. On the other
hand, for the sake of simplicity and without loss of generality,
let us assume τHARQ as a fixed delay. Consequently, it is
possible to re-formulate (1) as a sum of independent random
variables, as per (2):
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(a) Numerical evaluation of (3).
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(b) Empirical latency distribution

Fig. 3: Comparison of empirical and theoretical pdfs: (a) Theoretical
formulation, numerically evaluated for BLER = 0.1, (b) Empirical latency

distribution observed from network KPIs.

L = τsch + τpack + τHARQ︸ ︷︷ ︸
= C︸ ︷︷ ︸

τtx

+N · (τ ′
sch + τpack + τHARQ︸ ︷︷ ︸

= C︸ ︷︷ ︸
τrtx

), (2)

where N is geometrically distributed with success parameter p
equivalent to the complementary BLER, i.e., N ∼ geom(1−
BLER), and τsch+τpack ∼ exp(λ1), τ ′sch+τpack ∼ exp(λ2). As
a result, τtx and τrtx are still negative exponential distribution
with rate parameters λ1, λ2 and mean value 1

λi
+C. Writing

N in explicit form, we can reformulate (2) as:

L =

Nmax∑
j=0

Pj(τtx + j · τrtx) = τtx

Nmax∑
j=0

Pj︸ ︷︷ ︸
=1

+ τrtx

Nmax∑
j=1

j · Pj =

= τtx + τrtxP1 + 2τrtxP2 + 3τrtxP3 + · · ·+ o(Pn),
(3)

where Pj = P (N = j) = BLERj · (1 − BLER). Thus, L
can be approximated at the n-th order as the sum between
n independent negative exponential random variables with
monotonically increasing rate values ∝ 1/Pj , i.e., τtx ∼
exp(λ1) and τrtx ∼ exp(λ2/Pj). As analytically shown in
Appendix B, this results in a Hypoexponential distribution
L ∼ hexp(λ1, . . . , λN ). Our theoretical formulation is con-
firmed by empirical data, as depicted in Fig. 3.

III. MEASURING LATENCY FROM NETWORK KPIS

In this section, we will discuss the KPIs employed as the
ground truth (L) in our analysis, as well as the designed
feature space. In order to identify a suitable set of KPIs
for measuring and predicting L, it is essential to have a
comprehensive understanding of the factors that influence its
behavior. As per (2), L is influenced by both traffic and
radio channel conditions. Indeed, situations of high network
congestion may adversely affect τsch, which is dependent on
the number of total UEs in the queue. Similarly, unfavorable
radio conditions and high levels of interference can lead to
an increased BLER, requiring a potentially higher number of
packet retransmissions to achieve a successful transmission.

A. Ground truth evaluation

The identified KPIs for estimating L provides a measure of
the delay in transmitting a Packet Data Convergence Protocol
(PDCP) Service Data Unit (SDU) in the downlink given a
specific QCI value, as defined in the 3GPP TS 36.314, whose
definition is reported in (4):



Pdelay(T,QCI) =

⌊∑
i tack(i)− tarriv(i)

I(T )

⌋
, (4)

where tarriv(i) is the point in time when the PDCP SDU reaches
the PDCP layer at the transmitter side (i.e., at the gNB in
case of DL transmission); tack(i) represents the instant corre-
sponding to the last piece of the i-th PDCP SDU received by
the gNB according to received HARQ feedback. Finally, I(T )
indicates the total number of PDCP SDUs, and T represents
the period during which the measurement is performed.

The elected KPI is provided as the average sum of two
network counters: the first accounts for the retention delay
within the gNB; the second considers the average delay
introduced by HARQ loop. Although this measure is taken at
the PDCP level, thus excluding the IP layer latency, without
loss of generality, it can still be considered a good estimation
of L. Indeed, the missing inter-layer processing delay can be
neglected if compared to the other delay contributions.

B. Feature selection

Here, we delve into the feature selection process, where
we identify the KPIs to be utilized for predicting L. Feature
selection has been performed following both numerical in-
vestigations, such as correlation analysis, and logical criteria.
Specifically, we considered the dependency of L on traffic
conditions and network quality. The first group includes the
average number of active users in the DL, the traffic volume
(expressed in terms of PDCP SDUs) in DL, and the average
Physical Resource Block (PRB) usage during the TTI in the
DL. On the other hand, the second group leverages the average
Channel Quality Information (CQI), the average values of
Received Signal Strength Indicator (RSSI) and Signal to In-
terference plus Noise Ratio (SINR) on the on Physical Uplink
Shared Channel (PUSCH), and the average values of MCS
on both the PUSCH and Physical Downlink Shared Channel
(PDSCH). As an additional feature, the temporal information
of data acquisition is also incorporated. Table I displays the
results of a Pearson correlation analysis between the selected
features and the latency measure intended for prediction. It is
noteworthy that the features related to traffic exhibit a stronger
correlation in comparison to those pertaining to the quality of
the radio channel. As a matter of fact, the KPIs related to the
utilization of resources in the DL shows a correlation value
of approximately 0.8 with the average PDCP SDU latency in
DL.

TABLE I: Correlation Analysis

Feature space Pearson’s correlation value with the
average PDCP SDU latency in DL

Time 0.39
Traffic volume in DL 0.62
Resources’ utilization in DL per TTI 0.79
Number of active UEs in DL 0.67
Average CQI -0.35
Average RSSI in UL -0.33
Average SINR in UL -0.33
Average MCS in DL 0.11
Average MCS in UL -0.47

IV. ALGORITHMS AND EXPERIMENTAL RESULTS

This section presents exemplary experimental results for
three use cases of interest in the context of PQoS. The
subsequent subsections introduce each use case, elucidate the
underlying theoretical aspects of the proposed algorithms,
and subsequently present the numerical outcomes. To ensure
the preservation of sensitive information of the MNO, the
numerical findings are displayed in a standardized format.

A. Use case 1: Bayesian probabilistic regression
Accurate evaluation of network performance in mobile net-

works requires the application of regression techniques to QoS
indicators. For instance, these can be employed by MNOs to
assess network performance using simulated data prior to on-
field deployment. Unlike non-probabilistic regression methods
that provide only a single-point estimate of the predicted
value, probabilistic regression allows for the estimation of
the probability distribution of the predicted values, providing
a complete picture of the underlying uncertainty associated
with the predictions. Bayesian Neural Networks (BNNs) [12],
in particular, are a powerful tool for modeling aleatoric and
epistemic uncertainty in a principled way. While the former
refers to the intrinsic randomness of the observed data, the
latter is captured by the posterior distribution P (θ|D) of
the BNN’s parametrized model weights, which is updated by
means of Bayesian inference as new data D becomes available.
In practice, BNNs are usually trained via Stochastic Variational
Inference (SVI) by minimizing a Monte-Carlo estimate of the
variational free energy cost function (5) [12]:

argmin
λ

{
KL[qλ(θ)∥P (θ)]− Eθ∼qλ

[
log(P (y|x, θ))

]}
. (5)

In (5), the left-hand side term refers to the KL divergence
between qλ, a variational distribution parametrized by a set
of parameters λ (typically modeled as a multi-variate normal
with learnable diagonal covariance matrix), and P (θ), the true
prior distribution of the model weights. On the right-hand
side, Eθ∼qλ [log(P (y|x, θ))] refers to the statistical average
of the model likelihood, obtained via Monte Carlo sampling
of the BNN. Minimizing (5) embodies the tradeoff between
maximizing the likelihood over the training data and minimiz-
ing the KL divergence with respect to a known prior, which
acts as a regularization term. In our experiments, we aim to
reflect the latency probability distribution derived in section
II-B. To this end, we explicitly model the last layer of a
BNN as a Hypoexponential distribution that is parametrized
based on the output of the preceding layer. Specifically, the
output dimension of the previous layer reflects an n-th order
approximation of the Hypoexponential distribution. In Fig. 4,
we provide exemplary results on a regression task performed
on the dense-urban scenario. As noticeable, the true latency
values (blue samples) trustfully lie within the 95% confidence
intervals of the probabilistic model, which achieves an overall
R2 score of 0.77 on a held-out test set. It is important to
notice that Fig. 4 portrays latency measurements obtained from
distinct cells captured at various points in time. Consequently,
the depicted data is not arranged in a temporal sequence.
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Fig. 4: Bayesian Probabilistic Neural Network

B. Use case 2: Anomaly detection

Anomaly detection refers to the identification of events
significantly differing from the expected behavior of a system.
These can manifest by unusual patterns that can be captured or
not by network KPIs. Typical examples may include network
congestion, hardware failures, or jamming attacks. Based on
the assumption that anomalies are often unlikely, the latter
can be formulated as a density estimation problem. Given any
point {x,y} ∈ {Rn,Rl}, if we can estimate a probability
density function f̂θ(x,y), parametrized by θ, indicating the
latency distribution for any given point of the feature space
∈ Rn, then we can detect an anomaly as per (6):

{xi,yi} ∈ A ⇐⇒ f̂(xi,yi|θ) ≤ Γ, (6)

where A denotes the set of anomalies and Γ indicates a
likelihood threshold, which is fine-tuned a-posteriori based on
a cost model devised as a function of the confusion matrix.
When targeting anomaly detection of latency patterns, two
distinct methodologies can be pursued, as elaborated upon sub-
sequently: (i) The establishment of a threshold on the condi-
tional probability distribution of y given x, i.e., f̂(xi,yi|θ) =
P (y|x, θ), which can be suitably modeled using either a
Probabilistic Neural Network (PNN) or a BNN, or (ii) The
establishment of a threshold based on the reconstruction error
of an Autoencoder (AE) on the whole set {x,y}. In the latter
case, the joint probability distribution of x,y, i.e., f̂(xi,yi|θ) =
P (x,y|θ) is modeled by the latent space of the AE. Both
methods are rational as a network’s KPIs in the feature space
x can detect abnormal situations like network congestion.
Conversely, such KPIs may not be able to recognize anomalies
such as malfunctioning antenna hardware. Empirical findings
resulting from the application of the second approach are
depicted in Fig. 5. To construct our test set, we adopt the
following method: utilizing the social gathering events dataset,
we designate as anomalous the samples obtained from the
cellular network coverage encompassing the stadium during
the concert event from 7 pm to 11:30 pm on the 16th and
17th of March 2023, yielding a total of 38 anomalies. We
subsequently train our AE on a set of non-anomalous samples,
obtaining a confusion matrix yielding 717 true negatives, 2
false negatives, 0 false positives, and 36 true positives on the
test set.
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Fig. 5: True vs detected anomalies: 36 True positives, 2 False negatives, 0
False positives, 717 True negatives

C. Use case 3: Predictive forecasting

As a final use case, we focus here on predictive forecasting
leveraging temporal and spatial information. Predictive fore-
casting refers to the prediction of future latency given a set of
instantaneous and past observations gathered at different loca-
tions in the network. This is at the core of PQoS, as it allows
for a proactive optimization approach. In this section, we aim
to show how predictive latency forecasting can effectively be
achieved by leveraging spatial and temporal information with
the use of Recurrent Neural Networks (RNNs) and GNNs.
While Long-Short Term Memory (LSTM) networks [13] have
the ability to capture long-term dependencies in time-series by
utilizing a memory cell and three gating mechanisms, GNNs
afford a strong relational inductive bias beyond that which
convolutional and recurrent layers can provide [14]. In the
remainder of the section, we present the numerical outcomes
achieved by utilizing a probabilistic LSTM and GraphSAGE
[15] on Key Performance Indicators (KPIs) collected in the
two distinct scenarios of vehicular mobility and social gather-
ing events.

1) Time-series forecasting: We leverage a LSTM model
equipped with a probabilistic layer at its final stage and
trained via minimization of negative log-likelihood. For the
sake of simplicity, and without loss of generality, we focus on
the prediction task of instant t + 1, i.e. 15 min ahead. The
vehicular traffic dataset was partitioned into two sets, with
20 consecutive days designated for training purposes and the
subsequent 10 days employed for testing (Fig. 6), obtaining
an overall R2 score of 0.75.
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Fig. 6: Probabilistic LSTM

2) Spatial forecasting: Lastly, we compare the performance
of a GraphSAGE model, composed of 3 graph convolutional
layers, against a baseline Deep Neural Network (DNN) trained
on the entire dataset with samples from individual cells. The
obtained results, depicted in Fig. 7, demonstrate that the
former yields superior performance with an R2 score of 0.77



compared to the baseline DNN with an R2 score of 0.62. As
expected, the obtained results suggest that incorporating spatial
information from neighboring data points can significantly
enhance the model’s predictive capability.
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Fig. 7: GNN vs DNN, predictive latency forecasting

V. CONCLUSION

In this work, we provided a comprehensive theoretical and
experimental analysis of predictive latency using real-world
measurements available to MNOs. The principal outcomes of
our study demonstrate that the latency observed in the U-plane
conforms to a Hypoexponential probability distribution. This
valuable insight was utilized in our experimental assessment of
state-of-the-art ML techniques in the context of probabilistic
regression, anomaly detection and predictive forecasting.

APPENDIX A
SOJOURN TIME DISTRIBUTION

The sojourn time S of a packet in a system can be calculated
as the sum of its waiting time W in the queue and the service
time B required by the server to process the request [16].
Here, τsch and τpack represent W and B, respectively. Under
the hypothesis of a M/M/1 queue, the packets’ arrivals are
Poisson distributed with parameter β, B ∼ exp(µ), and the
utilization factor, ρ := β/µ ≤ 1.

According to the Pollaczek –Khinchine formula for a
M/G/1 queue [17], the Laplace-Stieltjes transform, S̃(s) of
S is expressed as:

S̃(s) =
(1− ρ) · B̃(s) · s
β · B̃(s) + s− β

. (7)

In a M/M/1 model, B̃(s) = µ/(µ + s) [16]. Therefore, Eq.
(7), becomes:

S̃(s) =
µ · (1− ρ)

µ · (1− ρ) + s)
(8)

Applying the definition of Laplace-Stieltjes transform of a
non-negative r.v X , i.e.,

∫∞
x=0

e−sx · f(x)dx with s ≥ 0, we
obtain: ∫ ∞

x=0

e−st · λe−λ·tdt =
µ · (1− ρ)

µ · (1− ρ) + s
= S̃(s). (9)

Hence, S is exponentially distributed with rate parameter λ =
µ · (1− ρ), that is fS(t) = λe−λ·t.

APPENDIX B
DERIVATION OF L’S PDF

For sufficiently small values of BLER, and without loss of
generality, let us consider the case for which (3) can be approx-
imated at the 2-nd order, i.e. L ≈ τtx+τrtx · P1︸ ︷︷ ︸

τ ′
rtx

. The probability

distribution of the sum of two independent continuous random
variables can be computed as the convolution between the two
individual distributions. Therefore, considering τ ∼ τtx and
τL ∼ L = τtx + τ ′rtx, we have:

pL2(τL) =

∫ ∞

−∞
pτtx(τ)pτrtx(τL − τ) dx =∫ τL

0

λ1e
−λ1τ λ2

P1
e
− λ2

P1
(τL−τ)

dx =

λ1
λ2

P1
e
− λ2

P1
τL

∫ τL

0

e
(
λ2
P1

−λ1)τ dx =

λ1λ2

λ2 − λ1
P1

e
− λ2

P1
τL

[
e(

λ2

P1
− λ1)τ

]τL
0

=

λ1λ2

λ2 − λ1
P1

(
e−λ1τL − e

− λ2
P1

τL
)
,

which is equivalent to the probability distribution of L ∼
hexp(λ1, λ2/P1).
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