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Abstract—Federated Learning (FL) has emerged as a de-
centralized technique, where contrary to traditional centralized
approaches, devices perform a model training in a collaborative
manner, while preserving data privacy. Despite the existing efforts
made in FL, its environmental impact is still under investigation,
since several critical challenges regarding its applicability to
wireless networks have been identified. Towards mitigating the
carbon footprint of FL, the current work proposes a Genetic
Algorithm (GA) approach, targeting the minimization of both
the overall energy consumption of an FL process and any
unnecessary resource utilization, by orchestrating the compu-
tational and communication resources of the involved devices,
while guaranteeing a certain FL model performance target. A
penalty function is introduced in the offline phase of the GA
that penalizes the strategies that violate the constraints of the
environment, ensuring a safe GA process. Evaluation results show
the effectiveness of the proposed scheme compared to two state-
of-the-art baseline solutions, achieving a decrease of up to 83%
in the total energy consumption.

Index Terms—Wireless Networks, Beyond 5G, 6G, Energy
Efficiency, Genetic Algorithm, Federated Learning

I. INTRODUCTION

The Information and Communication Technology (ICT)
industry represents an important energy consumer, utilizing
4% of the world’s electricity [1]. The ICT industry is expected
to reach 10-20% of the world’s electricity by 2030 [2], [3].
Many ambitious climate activities are already taking place by
European Commission across the ICT industry, in line with
the GSMA’s commitment towards net-zero carbon emissions
by 2050 [4], [5].

In future wireless networks, the use of Artificial Intelligence
(AI) as a key enabler has been recognized at European and
global level [6]. Centralized AI approaches require a vast
amount of data transfer to centrally located and energy hungry
data centers, raising concerns with regard to both data privacy
and energy consumption [7]. Alternative solutions such as
Federated Learning (FL) have surfaced, where devices with
typically low power profiles perform a model training in a
collaborative manner, exploiting locally stored datasets and
avoiding any raw data transmissions. The 3rd Generation

Partnership Project’s (3GPP) in Rel. 18, tries to adopt FL
in Network Data Analytics Function (NWDAF) [8], with the
introduction of the Model Training Logical Function (MTLF)
in Rel. 17 that is responsible of training Machine Learning
(ML) models and exposing new training services [9].

Several critical energy related challenges have been raised
related to the application of FL to wireless networks [10].
Firstly, the model training process requires from the com-
puting devices constant model update transmissions. Such
model updates could consist of thousands or even millions of
parameters comprising complex neural networks. This implies
a significant communication overhead, making the uplink
transmissions particularly challenging. Secondly, ML model
architectures require complex calculations, tightly related to
the size of the ML model, resulting in even more challenges
in terms of the energy aspect, since significant computational
work will take place on device level during training. Another
critical challenge of major importance includes computation
and data heterogeneity across devices, in conjunction with
strict ML model performance requirements. More specifically,
critical services and applications often require stringent ML
model performance [11], which is directly translated to higher
training times and as a result to an increase in the overall
energy consumption. Such deterioration could be accelerated
in case of devices differing in both available resources and
statistical data distribution.

Taking into consideration the aforementioned challenges,
it becomes apparent that new solutions are required in or-
der to mitigate the environmental impact of FL in wireless
communication networks, while guarantying a certain ML
model performance. A number of state-of-the-art works focus
on energy efficient FL, tackling the problem in terms of
resource orchestration, computation offloading, as well as load
balancing strategies (e.g. [12]–[18]).

Contrary to the existing efforts, the current work proposes a
Genetic Algorithm (GA) approach, targeting the minimization
of both the overall energy consumption of an FL process
and any unnecessary resource utilization, by orchestrating the
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computational and communication resources of the involved
devices, while guaranteeing a certain FL model performance
target. The proposed solution considers the FL model’s com-
plexity (proposed only in [17], [18]), as well as device and data
heterogeneity, as part of the overall energy consumption. To-
wards a safe decision making, a penalty function is introduced
in the offline phase of the GA that penalizes the strategies that
violate the constraints of the environment, ensuring a safe
GA process. Finally, considering the potentially prohibited
energy cost that is required for repetitive FL executions, while
exploring for optimal solutions, this is the only work that
proposes a simulated and computationally cost effective FL
environment that emulates a real FL process, solely in the
offline phase.

The rest of the paper is organized as follows. Section II
provides the system model. Section III provides the problem
formulation. Section IV describes the proposed solution that is
evaluated in Section VI using the simulation setup of Section
V. Finally, section VII concludes the paper.

II. SYSTEM MODEL

This section provides the system model of an AI-enabled
wireless communication network using FL. FL enables col-
laborative decentralized training of a Deep Neural Network
(DNN), across multiple and heterogeneous network devices -
acting as workers-, without exchanging local data samples. The
set of workers, denoted by K, is orchestrated by a coordinator
node.

An FL process is comprised of a number of rounds. Each
round is named as global iteration and is denoted by n ∈ N.
Let wn be a vector containing the model parameters at global
iteration n. In each iteration n, the coordinator node distributes
the wn of a global DNN model of size m, in bits, to the worker
nodes that are involved in the FL process. Let α denote the
complexity associated with the global model and measured in
Floating Point Operations (FLOPs). Each worker k ∈ K, after
successfully receiving the vector with the global parameters
wn, performs a local training using its locally stored data
samples Dk.

Device Computational Capability: Let fk,n denote the
available computational capacity (i.e. Central Processing Unit
(CPU) speed) of worker k to execute a local training at the nth

global iteration (it is assumed that the coordinator node has
enough computational capacity to execute any computational
task). Based on fk,n, the worker k can complete a certain
number of FLOPs per cycle, denoted by ck,n. The CPU of each
worker k has also an effective switched capacitance, denoted
by ςk, which depends on the hardware architecture. The local
training of a worker is considered complete when a pre-
selected performance target η is reached at each worker. The
performance target η could refer to error metrics (e.g. mean
squared error), accuracy, etc. Let Ik,n be the total number of
local iterations required in order for the locally trained model
of worker k to reach the pre-selected performance target η at
global iteration n. By τk,n is denoted the time required by k
to complete a local training process.

Device Communication Capability: After Ik,n local itera-
tions, each k produces a locally trained model with parameters
wk,n that needs to be transmitted to the coordinator. The
communication channel between worker k and the coordinator
at global iteration n is modeled as a flat-fading channel with
Gaussian noise power density N0 and channel gain gk, where
the fading is assumed constant during the transmission of the
model. Also, let bk,n and pk,n be the assigned bandwidth and
transmission power to k (it is assumed that enough bandwidth
has been assigned to k to transmit its model updates). rk,n
and trk,n are the achievable data rate and the required time to
upload wk,n to the coordinator, respectively (see Section III
for more details).

FL Rounds: The FL process is realized in a synchronized
manner. A global iteration is finished when the coordinator
receives updates from all workers or when a preselected time
threshold H is reached. Workers therefore should complete
their computational and communication tasks within this time
threshold (Eq. (4)): Updates from those who have not met the
time threshold are considered invalid and are not used. The
coordinator node produces an updated global model wn+1,
using all the received model updates, and transmits it back
to the workers to start the next global iteration (n + 1).
This procedure is repeated until the global model reaches a
pre-selected performance target ϵ0. Table I summarizes the
notations.

K Set of worker nodes
n Index of the global iteration (FL round)
N0 White Gaussian noise power spectral density
gk Gain of the wireless channel the worker k has access to

fk,n
Available computational capacity of worker k at the nth

global iteration
bk,n Bandwidth assigned to worker k at the nth global iteration
pk,n Transmission power of worker k at the nth global iteration

rk,n
Achievable transmission data rate of worker k at the nth

global iteration
Dk Local data samples of worker k

ck,n
Total number of FLOPs per cycle that the worker k can
complete at the nth global iteration

ςk Effective switched capacitance of worker k
wn Global FL model produced at the nth global iteration

α
Complexity of the global FL model in terms of total
number of FLOPs

m Size of global FL model in bits

Ik,n
Number of local iterations required to reach η at the worker
k at the nth global iteration

τk,n
The time required by a worker k to complete a local
training process at the nth global iteration

trk,n
The time required by worker k to transmit its model
updates at the nth global iteration

wk,n
Model parameters produced by worker k at the nth global
iteration

η
Pre-selected performance target imposed to the training
process of all workers

ϵ0
Pre-selected performance target imposed to the global FL
model

TABLE I: Notation Table



III. PROBLEM FORMULATION

The objective is to achieve energy efficiency in the system,
i.e minimizing both the overall energy consumption of the
workers and any unnecessary resource utilization, while guar-
antying a certain global model performance ϵ0. In each global
iteration n, all workers consume a specific amount of energy
from the power grid, denoted by Egr

n , in order to complete
their tasks. Two types of tasks are considered in an FL process,
the computation tasks, referring to the local training processes,
and the communication ones, related to the transmission of
the model parameters. In case a worker does not complete
its tasks in the given time threshold H, its allocated resources
are considered wasted (unnecessary resource utilization), since
there is no contribution to the global model update by this
worker.

The amount of computation and transmission energy re-
quired by a worker k during global iteration n are denoted by
EC

k,n and ET
k,n, respectively, given by:

EC
k,n =

ςk · Ik,n · α · Dk · f2
k,n

ck,n
, (1)

and ET
k,n =

m · pk,n
bk,n · log2

(
1 +

gk·pk,n

N0·bk,n

) . (2)

Since the number of global iterations required for the model
to converge to ϵ0 is not known a priori, a greedy approach is
followed where, at each iteration n, we attempt to minimize
the total energy consumption required by all workers to
complete their computational and communication tasks, while
a certain local accuracy η is achieved at each worker. This
greedy approach is repeated until the global model reaches
the pre-selected performance target ϵ0. Although an FL process
lacks theoretical convergence guarantees [19], for the task that
we study and the data distribution considered, the convergence
to ϵ0 is always achieved (Section VI). The parameters of the
optimization are the computational capacity fk,n ∈ R+ and
transmission power pk,n ∈ R+ of each worker k at each
iteration n of the FL process. The objective function is defined
as:

min
fn,pn

Egr
n =

K∑
k=1

(EC
k,n · Ωk,n + ET

k,n) (3)

s.t. τk,n + trk,n < H,∀k ∈ K (4)

0 ≤ fk,n ≤ fmax
k ,∀k ∈ K (5)

0 ≤ pk,n ≤ pmax
k ,∀k ∈ K (6)

K∑
k=1

fk,n > 0, (7)

where: τk,n =
Ik,n · α ·Mk

ck,n · fk,n
, (8)

trk,n =
m

rk,n
, (9)

rk,n = bk,n · log2
(
1 +

gk · pk,n
bk,n ·N0

)
. (10)

More precisely, fn = [f1,n, f2,n, ..., fK,n]
T , pn =

[p1,n, p2,n, ..., pK,n]
T , and Ωk,n (Eq. 11) is an indicator func-

tion ensuring that there will be no local training at worker k at
the iteration n, in case of zero allocated transmission power:

Ωk,n =

{
1, pk,n > 0
0, otherwise

(11)

Constraint (4) ensures the synchronization of the FL pro-
cess, by upper bounding the total time required by each
worker to complete a computation and transmission task at
the time threshold H. Constraints (5) and (6) ensure that the
computational capacity along with the transmission power of a
worker are within its maximum capabilities, denoted by fmax

k

and pmax
k , respectively. Finally, constraint (7) ensures that at

least one worker should be involved in the FL process.

IV. PROPOSED GENETIC ALGORITHM SOLUTION

In this section, a safe GA meta-heuristic approach is pro-
posed. GA provides a feasible solution to strategically perform
a global search by means of many local searches, gener-
ating high-quality solutions relying on biologically inspired
operations, such as parent selection, crossover and mutation
[20]. A GA in each generation, constructs a population of
chromosomes, which is a set of candidate solutions to the
optimization problem. The target of the GA is to provide
higher quality solutions over the generations using as criterion
the fitness score of each chromosome, which represents the
target metric of the optimization problem. The main definitions
of the GA solution are provided below:
Generation: A global iteration n of an FL process.
Gene: A resource assignment to worker k at global iteration
n, i.e. [fk,n, pk,n], that is bounded according to constraints (5)
and (6).
Chromosome: A vector consisting of genes equal to the
number of workers, representing a candidate solution to the
optimization problem.
Elites: The number of best-scored chromosomes in a gener-
ation that are included unaltered in the next generation.
Population: A fixed-size set of chromosomes.
Fitness Function: A function that serves as a score for each
chromosome and is formulated based on the objective function
(3), in conjunction with constraints (4) and (7). Specifically:

FFn = −[

K∑
k=1

(EC
k,n · Ωk,n + ET

k,n) + vn] (12)

The first part of Eq. (12) is the objective function of our
problem formulation. The second part vn is a penalty term
defined to guarantee a safe GA process [21]. As a result, the
chromosomes that violate the constraints, wasting resources,
will be penalized. We define this penalty as follows:

vn =

K∑
k=1

(EW
k,n + µ1 · P (1)

k,n) + µ2 · P (2)
n + P (3)

n (13)

where EW
k,n is the wasted energy consumption of worker k,

µ1 and µ2 are constant penalty weights of each constraint
violation, and P

(1)
k,n, P (2)

n are two indicator functions, related
to constraints (4) and (7). Considering also the total energy



consumption of a complete FL process, apart from the energy
consumed in individual FL rounds, an indicator function P

(3)
n

is introduced as part of the penalty function. This function
penalizes the strategies that result in higher total energy
consumption for a complete FL process l, denoted by E

(l)
FL,

compared to the previous one (E(l−1)
FL ):

P
(1)
k,n =

{
0, τk,n + trk,n − H < 0
1, otherwise,

(14)

P (2)
n =

{
0,

∑K
k=1 fk,n > 0

1, otherwise,
(15)

P (3)
n =


−E

(l−1)
FL −E

(l)
FL

E
(l)
FL

, E
(l)
FL < E

(l−1)
FL

E
(l)
FL−E

(l−1)
FL

E
(l−1)
FL

, otherwise
(16)

The GA starts with a randomly selected population in
the first generation and targets to maximize (12) across
generations, which results in minimizing the total energy
consumption and the wasted resources, with respect to the
constraints of the system.
GA Operations: In each generation a Roulette Wheel method
is used for parent selection, along with a uniform crossover
and mutation [22] operations, with pre-selected probabilities,
named as crossover and mutation rate. Apart from the standard
operations, the GA is enhanced with a hybrid operation [23]
that combines the Triggered Hyper-mutation (TH) and Fixed
Memory (FM). When a change in the system is detected, the
TH increases the mutation rate for a certain number of genera-
tions, while the FM that uses a fixed-length memory, replaces
the worst-scored chromosome from the population with the
best individual from the memory. This hybrid operation is
triggered when the distance of the fitness score from the best-
scoring chromosomes of two consecutive generations is higher
than a pre-selected percentage threshold D.
Early Stopping: A termination criterion is applied to GA
that interrupts the searching procedure, when the best solution
during the evolution process does not improve for a certain
number of generations.
Offline and Online Phase: During the offline phase of the
GA, in each generation, an FL global iteration is executed
as many times as the population size, since different can-
didate solutions are tested. Note that, embedding periodical
executions of FL rounds, is of high complexity and time
consuming, but most importantly, contrary to the objective of
the current work; it requires a significant amount of energy
consumption. In order to overcome this issue and as it will be
described in Section V, a simulated and significantly simpler
FL environment was designed for the GA’s offline phase,
emulating a real FL process for a given performance target.
Finally, the online phase will use real FL processes, in order
to evaluate the effectiveness and the robustness of the GA.

V. SIMULATION SETUP

A. Network Environment Setup
The wireless communication network, considered in all per-

formed experiments, is comprised of one coordinator and up to

40 (|K| ≤ 40) heterogeneous (in terms of resource capabilities)
workers. Of all workers, the 20% are of reduced capabilities
and are considered as low-end devices, while the rest are
considered as high-end. Each low-end device i, operates with
fmax
i = 1 GHz, Ci = 4 [18] and pmax

i = 28 dBm. Each
high-end device j, operates with fmax

j = 3 GHz, Cj = 2 and
pmax
j = 33 dBm. The ςk is fixed for all workers and equal to

10−28 Watt/Hz3 [16]. We consider non mobile workers and
as such all channel gains can be considered as constant. The
channel gain is modeled as gk = 127 + 30log10(dk), where
dk is the distance of worker k from the coordinator, randomly
selected in the range of [10, 500] m and N0 = −158 dBm/Hz
[24]. All workers are assigned with a fixed bandwidth bk = 20
MHz.
B. Federated Learning Setup

The FL process considers a Convolutional Neural Network
(CNN) for handwritten digit recognition, using the MNIST
dataset [25]. The dataset contains 60K samples in total and
each worker is assigned with randomly selected Dk data
samples, with Dk ∈ [800, 1200]. The CNN model comprises of
658, 922 trainable parameters, with size m = 2.51 MB and the
complexity of the model is α = 1, 800, 348 FLOPS [26]. All
local training processes should meet the performance target
η = 0.5. The FL process is considered complete, when the
global CNN model reaches the performance target ϵ0 = 0.04.
The time threshold selected for a synchronized FL process is
set to H = 13 sec.
C. Genetic Algorithm Setup

Table II includes the configuration of the GA. The maximum
number of generations for the different number of workers is
set to 5000, while the early stopping is set to 100 generations.
The mutation rate, when the hyper-mutation is triggered, is
increased by 50% and the size of the fixed memory is set
to [15, 35, 55, 85] for the case of 5, 10, 20 and 40 workers,
respectively. The hybrid operation is triggered when D is equal
to [0.4, 0.3, 0.25, 0.2] for the four respective cases.

No. of Workers 5 10 20 40
Population Size 40 120 210 220
Elites 10 20 30 60
Crossover Rate 0.3 0.3 0.3 0.3
Mutation Rate 0.1 0.05 0.1 0.05

TABLE II: GA Configuration
As already mentioned in Section IV, for the offline phase of

the GA, a simulated FL environment is used, based on a real
FL process. From equation (3), it becomes apparent that two
FL and energy-related parameters are not known a priori and
should be estimated, namely the number of local iterations
per worker (Ik,n) and the total number of global iterations.
Following a statistical analysis of over 100 independent FL
executions, the Ik,n is selected based on the worker’s data
samples variance and is in the range [2, 11]. Higher data
samples variance, means increased data heterogeneity and as
a result a higher number of local iterations is required to
reach η. According to the statistical analysis, the number of
global iterations is in the range [10, 22], and it is inversely
proportional to the number of local iterations.



(a) Total Energy Consumption (b) Total Computation Energy (c) Total Transmission Energy

(d) Per Worker Energy Consumption (e) Total Number of Violations (f) Fitness Score

Fig. 1: Offline phase of GA for different number of workers (5, 10, 20, 40)

VI. PERFORMANCE EVALUATION

This section provides numerical results to evaluate the per-
formance of the proposed safe GA based solution. Two main
performance metrics are considered in the evaluation phase:
1) the total energy consumption of the FL (both computation
and communication), 2) the convergence speed of the FL (in
terms of training time and global iterations).

A. Offline Phase
Figure 1 illustrates the performance of the GA, for different

number of workers, as the number of generations increases.
Figure 1a depicts the total energy consumption in each gen-
eration, that is the sum of the total computation (Fig. 1b) and
transmission energies (Fig. 1c). As it can be inferred from
Figures (1a - 1c), the amount of consumed energy, for the
different number of workers, significantly decreases with the
number of generations. More specifically, the GA achieves an
overall approximate reduction in the energy consumption up
to 75%, 76%, 66% and 56% in the case of 5, 10, 20 and 40
workers, respectively. As the number of workers increases, so
does the time (in generations) the GA requires to converge.
This relies on the fact that the number of genes increases
proportionally to the number of workers, and as a result, the
GA requires more exploration time.

In addition, it is intuitive that the higher the number of
workers, the higher the total energy consumption of the
system. As a result, the fitness score that the GA retrieves
is lower for higher number of workers (Fig. 1f). However, as
it is depicted in Figure 1d, the GA achieves an average per
worker total energy consumption approximately equal to 0.44
Joules. This behavior showcases the scalability of our solution,
since the increase in the total amount of energy consumption
is mainly based on the number of workers.

As already stated, we introduce a penalty function towards
reducing wasted resources of the system. Figure 1e validates
our claims, since the total number of constraint violations
during an FL process are eliminated. For the most challenging
case of 40 workers our solution is still able to provide an

efficient strategy reaching in total 1.9 violations, which is
translated to 0.04 per worker.
B. Online Phase

The online phase includes the evaluation of the GA strat-
egy produced by the offline phase. All statistical results are
averaged, along with their standard deviation (±STD), over
100 independent real FL runs. Firstly, a comparison between
our proposed solution and two baseline schemes, namely a
Random and a Greedy Selection scheduler [17] is performed,
for the 5, 10, 20 and 40 workers.

• Random Selection Scheduler (RSS): In each global
iteration, the RSS orchestrates randomly the resources of
each worker, based on their available capacities.

• Greedy Selection Scheduler (GSS): In each global
iteration, the GSS chooses the resource capacities of all
workers that led to the best outcome so far, in terms of
the total energy consumption.

Table III includes the performance comparison of our solu-
tion against the baseline schedulers, with regard to: 1) the total
energy consumption of a complete FL process, 2) the training
duration of each global iteration and 3) the total number of
global iterations. As it can be deduced from Table III, our
proposed solution outperforms all baseline schedulers, in terms
of the energy aspect, while also resulting in the least amount of
training time per global iteration. More precisely, our solution
for the case of 5 workers, achieves a significant reduction in
the total energy consumption of [83, 56] %, compared to the
RSS and GSS, respectively. Similarly, for the case of 10, 20
and 40 workers, our solution results in a similar percentage
decrease of [81, 68] %, [76, 66] % and [68, 57] %, respectively.
As it appears in the total training time per global iteration
of the FL process, our solution is on average 20% and 12%
faster than the RSS and GSS, respectively. Finally, it should
be highlighted that the simulated FL environment (offline
phase), achieves a similar performance in the total energy
consumption (complete FL process), compared to the real
FL executions (online phase) for the same number of global



Total Avg.
(±STD) 5 Workers 10 Workers 20 Workers 40 Workers

Schedulers GA RSS GSS GA RSS GSS GA RSS GSS GA RSS GSS

Total Energy (J) 19.3
(±4.5)

116.4
(±23.2)

51.5
(±14.6)

52.8
(±7)

271.1
(±38)

168
(±27.9)

136.7
(±13)

576.4
(±69.4)

400.7
(±52.3)

367.7
(±33.7)

1135.7
(±101.2)

850.2
(±85.9)

Computation
Energy (J)

7.5
(±1.7)

51.1
(±12)

25.3
(±7.5)

30.5
(±4.4)

120.6
(±19.7)

112.2
(±20)

61.4
(±6.5)

264.4
±35.2)

194.2
(±27.8)

166.2
(±17.7)

526.9
(±5)

452.9
(±50.7)

Transmission
Energy (J)

11.8
(±3.2)

65.3
(±15.4)

26.2
(±8.4)

22.3
(±3.3)

150.5
(±24.1)

55.8
(±12.3)

75.4
(±8.5)

312
(±43.9)

206.5
(±31.9)

201.6
(±19.9)

608.8
(±59.1)

397.3
(±43.9)

Training Time
per Global
Iteration (s)

8.1
(±2.5)

9
(±1.2)

8.9
(±2.1)

7.2
(±1.7)

11
(±0.8)

7.6
(±1.5)

8.8
(±1.6)

12.5
(±0.4)

11.9
(±1.1)

12
(±1.4)

12.9
(±0.1)

12.9
(±0.1)

Global Iterations 15.4
(±4)

15.6
(±3.5)

15.7
(±4.4)

17.6
(±2.6)

18.1
(±2.7)

17.4
(±2.8)

18
(±2)

18.7
(±2.5)

18.4
(±2.5)

18.4
(±1.8)

18.3
(±1.7)

18.5
(±2)

TABLE III: Comparison of our solution (GA) against two baseline schedulers (RSS and GSS)

iterations. More specifically, the distance in the total energy
consumption between the offline and online phase, is equal to
2%, 8%, 8% and 7%, in favor of the online phase (lower total
energy consumption), for the case of 5, 10, 20 and 40 workers,
respectively, confirming the effectiveness of the simulated FL
environment.

VII. CONCLUSIONS

This paper proposes a safe GA based solution, targeting
the minimization of the overall energy consumption of an FL
process in a wireless communication network. A simulated FL
environment is designed for the GA’s offline phase, targeting
lower complexity and faster convergence. A penalty function is
introduced, towards a safe GA process that almost minimizes
the wasted resources of the system. Evaluation results show-
case a significant reduction in the overall energy consumption,
achieving up to 76% for the offline phase. For the online phase,
a decrease of up to 83% in the total energy consumption is
achieved compared to two state-of-the-art baseline solutions.
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