
Feature Selection for Automated QoE Prediction
Tatsuya Kikuzuki∗†, Mahdi Boloursaz Mashhadi∗, Yi Ma∗, and Rahim Tafazolli∗
∗ 5GIC and 6GIC, Institute for Communication Systems, The University of Surrey, UK

† Artificial Intelligence Laboratory, FUJITSU LIMITED, Japan
{t.kikuzuki, m.boloursazmashhadi, y.ma, R.Tafazolli}@surrey.ac.uk

Abstract—With the huge number of broadband users, auto-
mated network management becomes of huge interest to service
providers. A major challenge is automated monitoring of user
Quality of Experience (QoE), where Artificial Intelligence (AI)
and Machine Learning (ML) models provide powerful tools to
predict user QoE from basic protocol indicators such as Round
Trip Time (RTT), retransmission rate, etc. In this paper, we
introduce an effective feature selection method along with the
corresponding classification algorithms to address this challenge.
The simulation results show a prediction accuracy of 78% on the
benchmark ITU ML5G-PS-012 dataset, improving 11% over the
state-of-the-art result whilst reducing the model complexity at the
same time. Moreover, we show that the local area network round
trip time (LAN RTT) value during daytime and midweek plays
the most prominent factor affecting the user QoE.

Index Terms—user experience, machine learning, feature ex-
traction, histogram analysis, feature importance

I. INTRODUCTION

Quality of service (e.g., throughput, latency) has been
evaluated to observe network performance so far, but it has
turned out that it cannot be transformed to user experience
directly [1]. For this reason, network management based on
user Quality of Experience (QoE) has attracted considerable
attention of network and service operators recently [2]–[4]
where QoE is predicted from deep packet inspection (DPI)
or Network Functions (NFs) data. Accurate prediction of the
QoE is the key component in network management, and the
researchers have developed predictive machine learning (ML)
models such as support vector machine [5], decision tree
[6], reinforcement learning [7], random forests [8], [9], long
short-term memory [10], convolutional neural networks [11],
deep neural network (DNN) [12]–[14] and transformer [15]
to achieve this. Moreover, quality of the extracted features
plays an important role in these models, and various feature
extraction methods have been studied for QoE prediction such
as manually selected statistics [4]–[9], a filter method [13],
wrapper methods [10]–[12], [15], and an autoencoder [14].

The ITU AI/ML in 5G Challenge 2022 in collaboration
with ZTE provides the problem statement and the benchmark
dataset ML5G-PS-012 [16], where the aim is to develop
accurate ML models along with the corresponding feature
extraction methods to classify broadband users according to
their QoE. This is a challenging problem as the benchmark
dataset provides a small number of data, thereby being prone
to overlearning. Moreover, the QoE labels seem inaccurate, not
only due to the general noise of data acquisition, but also due
to the fact that various broadband users seem to have very

different expectations of service quality. For these reasons,
accurate feature extraction becomes critical, and participants
of the ITU AI/ML in 5G Challenge 2022 ML5G-PS-012
proposed different techniques, out of which the top 3 best
performing ones are based on signal statistics (mean, etc.)
[17], series dynamics [18], and wavelet transforms [19]. The
state-of-the-art performance achieved is a 67% [18] accuracy
in classifying broadband users into two groups: users with
bad experience (UBE) and users with good experience (UGE),
based on 8 protocol indicators.

In this paper, we propose a feature selection method for
automated QoE prediction, where we pre-process the dataset
and extract features based on insights from data networking
protocols as well as an accurate histogram analysis. We are
inspired by the fact that a histogram study is known to be
effective for feature selection as it has been applied to a variety
of data, including time-series sensor data [20], performance
monitoring data [21], and image data [22]. Our numerical
results show a prediction accuracy of 78% on the benchmark
ITU ML5G-PS-012 dataset, improving 11% over the state-
of-the-art result (i.e., 67%). The remainder of this paper is
organized as follows. In section II, we rigorously introduce
the ITU AI/ML in 5G Challenge 2022 ML5G-PS-012 problem
statement. In section III, we describe our proposed feature
selection method. In section IV, the performance of the pro-
posed method is validated through numerical results. Finally,
we present our concluding remarks in section V.

II. PROBLEM STATEMENT

In this section, we introduce the details of ML5G-PS-012.
The competitors are required to classify each user data into
UBE or UGE through time-series of 8 protocol indicators
obtained from real networks by the optical line terminal (OLT)
and the DPI. Fig. 1 shows the network layout and the definition
of 8 indicators where the DPI is located as dividing the
broadband end-to-end network into two parts: Local Area
Network (LAN) side including optical network unit (ONU)
and Wide Area Network (WAN) side including broadband
remote access server (BRAS). More formally, the ith input
time-series data is given as

{
x
(1:8)
tsi :tei

}
i
, and the ith label is

given as yi (yi = UBE or UGE). Indicator 1,2,4 is the time
interval between the syn packet and the syn + ack packet, the
syn + ack packet and the ack packet, or the first payload packet
and the ack packet, respectively. Indicator 3 is the response
interval of the first payload after the establishment of the TCP
session. Indicator 5,6 is the data transmission latency from
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Fig. 1. Network layout and definitions of indicators.
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Fig. 2. Examples of indicator values of UBE (a) and UGE (b).

the DPI to the user terminal or to the server, respectively.
Finally, indicator 7,8 represents the retransmission rate of
downlink or uplink. Fig. 2 shows some examples of indicator
values. The dataset contains a total of 500 (1 ≤ i ≤ 500)
data including 300 for training, 100 for validation, and 100
for testing. Various methods are compared in terms of their
classification accuracy on the test data.

The major challenge in ML5G-PS-012 is accurate feature
extraction for the following two reasons. First, given the
limited amount of data it is easy to overlearn. Each user data
is dense as the time span (tei−tsi ) is generally 1 week and the
number of raw time-series data is approximately 12000 though
the number of train data is only 300. Furthermore, the QoE
labels yi seem inaccurate/noisy, due to the fact that various
broadband users seem to have very different expectations of

service quality. The other reason is that UBE and UGE seem to
have very similar general statistics, e.g., mean value, standard
deviation. In order to solve ML5G-PS-012, [18] proposed a
solution with TSFresh library [23] focusing on dynamics of
the indicator signals, achieving a classification accuracy of
67%. The feature extraction based on signal statistics (mean,
etc.) and wavelet transformation explored in [17], [19] seem
to yield lower accuracy values. To improve the results, a more
detailed study of the indicator signals with insights from the
network traffic characteristics seems necessary.

III. THE PROPOSED FEATURE SELECTION

Fig. 3 shows an overall block diagram of the proposed
method1, in which the number of data N (N = 300 for
training, or N = 100 otherwise), the feature dimensionality
D (D = 8 at input), and the number of time-series data ni

(ni ≈ 12000 at input) are described above arrows. Firstly,
we clean the input data and replace outlier values with the
outlier threshold to remove invalid values and errors in the
dataset. Secondly, we group the input data based on the
meaning of each indicator and perform a histogram-based
indicator splitting. Thirdly, we split each remaining sample
along the measurement date (i.e., weekend or midweek) and
time (3 ranges). Finally, mean values of time-series data of
each dimension are selected as input features of a classifier.
Note that a total number of time-series data processed at
each block can be denoted as

∑N
i=1 Dni, and that N is fixed

throughout as each block is processed repetitively to each user
data. Algorithm 1 describes the proposed feature extraction
procedure, and the following subsections explain each block
in Fig. 3 with details.

A. Data Cleaning

Though the indicators 1,2,4,5,6 (x(1,2,4,5,6)
t ) represent round

trip time (RTT), raw data include value zero for these indi-
cators, which is not realistic. We remove the sample point if
any of these indicators are zero because that sample point is
considered not to be informative. In each user data, approxi-
mately 2000 time-series data are removed out of 12000 ones
in average.

B. Outlier Replacement

In order to ensure that outliers don’t distort statistical
analysis, we replace outlier values with the outlier threshold.
First, we tentatively set the outlier threshold as 3σ (standard
deviation) for indicators 7,8 and by an interquartile range
(IQR) method for the other indicators, and then tuned this
threshold further in the final solution. The IQR method was
adopted for indicators 1–6 because some values are very large
as shown in Fig. 2 making the σ value meaninglessly large.

1The source code to reproduce all numerical results in this paper is
available at https://github.com/University-of-Surrey-Mahdi/Histogram-Based-
Feature-Selection-Method
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Fig. 3. Block diagram of the proposed method.

Algorithm 1: Feature Extraction in the ith input data

Input: x(1:8)
tsi :tei

;
X(R1:R6)(T1:T3)(D1:D2) ← [ ] ;
for t = tsi · · · tei do

if x(1)
t or x

(2)
t or x

(4)
t or x

(5)
t or x

(6)
t = 0 then

delete x
(1:8)
t ;

else
if x(iindicator)

t > Outlier(iindicator) then
x
(iindicator)
t ← Outlier(iindicator);

end
x′
t
(WAN RTT) ← mean

(
xt

(1,4,6)
)

;
x′
t
(LAN RTT) ← mean

(
xt

(2,5)
)

;
x′
t
(LAN RES) ← xt

(3) ;
x′
t
(RET) ← mean

(
xt

(7,8)
)

;
if x′

t
(igroup) is in Rk then

if TIME (t) is in Tk then
if DATA (t) is in Dk then

add x′
t
(igroup) to X(Rk)(Tk)(Dk) ;

end
end

end
end

end
Return mean

(
X(R1:R6)(T1:T3)(D1:D2)

)
;

C. Indicator Grouping

We can categorize the input indicators into following 4
groups based on the definitions of indicators.

• WAN RTT: Indicators 1,4,6 (x(1,4,6)
t ) represent RTT in

WAN
• LAN RTT: Indicators 2,5 (x(2,5)

t ) represent RTT in LAN
• LAN Response (RES): Indicator 3 (x(3)

t ) represents the
response interval between two packets sent by the termi-
nal

• Retransmission (RET): Indicators 7,8 (x(7,8)
t ) represent

the retransmission rates in TCP transmission

For reducing noise, we calculate the average values of each
group thereby reducing the feature dimensionality to 4.

TABLE I
GROUP RANGES IN “HISTOGRAM-BASED INDICATOR SPLITTING”

Group Group range
R1 0 < x′

t
(WAN RTT) < 19

R2 19 ≤ x′
t
(WAN RTT) < 39

R3 0 < x′
t
(LAN RTT) < 23

R4 23 ≤ x′
t
(LAN RTT) < 60

R5 0 ≤ x′
t
(LAN RES) < 19

R6 0 ≤ x′
t
(RET) < 0.18

TABLE II
TIME RANGES IN “TEMPORAL SAMPLE SPLITTING”

Time Time range
T1 0AM ≤ TIME (t) < 7AM
T2 7AM ≤ TIME (t) < 7PM
T3 7PM ≤ TIME (t) < 0AM

TABLE III
DATE RANGES IN “TEMPORAL SAMPLE SPLITTING”

Time Time range
D1 DATE (t) is in weekend
D2 DATE (t) is in midweek

D. Histogram-based Indicator Splitting

The histograms of each indicator group are shown in Fig. 4.
In order to extract informative features from histograms, we
split time-series data of each indicator group based on which
distribution of the histograms those belong to. WAN RTT and
LAN RTT consist of multiple peaks as shown in Fig. 4 (a–b),
which correspond to locations of application servers in WAN
RTT, and to the type of link (local Wi-Fi or mobile carrier)
in LAN RTT. Since different locations of servers or links
are considered to have different impacts on user experience,
we split time-series data of each indicator group to represent
different distributions around each peak. In the final solution
where the parameters are tuned, 6 group ranges are selected
which are drawn as red arrows in Fig. 4 and listed in Table I.
The time-series data are split and those out of any group range
are deleted simultaneously, reducing ni to approximately 6000.

E. Temporal Sample Splitting

How network performance affect user experience is consid-
ered to depend on the measurement time or date. As the time
span in each dataset is generally 1 week, we split the time-
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series data into appropriate time and date ranges. In the final
solution, we split into 3 time ranges (0am–7am, 7am–7pm, and
7pm–0am) and into 2 date ranges (weekend and midweek),
which are listed in Table II and III respectively. Finally, the
number of output dimension D is 36, which is calculated as 6
(output dimension of “D. Histogram-based Indicator Splitting”
block) ×3 × 2. We then use temporal mean values of time-
series data of each dimension as input features to the classifier.

F. Classifier

We select Random Forest as a classifier in the final solution.
It provides the best classification accuracy among 11 ML
classifier models, including XGBoost, DNN, Gaussian Naive
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Bayes, Gradient Boosting, Support Vector, K-Neighbors, Extra
Tree, Ada Boosting, Decision Tree, Logistic Regression, and
Random Forest.

IV. NUMERICAL RESULT

In this section, we numerically evaluate the proposed
method in ML5G-PS-012. In subsection IV-A, we compare the
classification accuracy for the proposed method with previous
studies. In subsection IV-B, we further compare the algorithm
efficiency in terms of run time and a model size. Subsection
IV-C provides a feature importance study to draw conclusions
on the dominant factors that determine the user experience.

A. Classification Accuracy

Classification accuracy in ML5G-PS-012 is calculated by
the prediction accuracy of 100 test data with a ML model
trained by 300 train data. True label distribution is 50/50
between UBE/UGE.

Fig. 5 provides a comparison between 11 ML classifier
models applied on the 36 extracted features. The result shows
that Random Forest is the best classifier model, which is
selected in our final solution. We compare the classification
accuracy of the proposed method with previous studies in
Fig. 6. This figure shows the advantage of our proposed
method which improves the classification accuracy by 11% in
comparison with the state-of-the-art (67% to 78%). Fig. 6 also



TABLE IV
RUN TIME FOR TRAINING

Method Feature extraction [s] Classification [s]
Proposed method 1.8× 10+1 7.7× 10−3

[18] 2.4× 10+4 4.6× 10−1

[19] 2.8× 10+1 3.1× 10−1

[17] 3.2× 10−1 1.7× 10−3

TABLE V
RUN TIME FOR PREDICTING

Method Feature extraction [s] Classification [s]
Proposed method 6.1 7.5× 10−4

[18] 8.0× 10+3 2.6× 10−2

[19] 9.2 1.2× 10−2

[17] 1.1× 10−1 4.0× 10−4

TABLE VI
MODEL SIZE

Method Model size [kB]
Proposed method 33.5
[18] 119.6
[19] 495.0
[17] 0.7

shows that the F1 score of the proposed method is superior to
those of the previous studies.

Finally, the cross validation results show a classification
accuracy of 57.0±4.2% for the proposed method, which is
considerably higher than the benchmarks, i.e. 52.2±4.6%
[18], 51.3±4.7% [19], 51.9±4.3% [17]. These results show
sufficient generalization performance of our proposed method.

B. Complexity and Execution Time

Run time and a model size are evaluated for comparing the
algorithm efficiency of the proposed method with previous
studies. Run time is calculated as the average of 10 repeated
trials of training with 300 train data or of predicting with 100
test data on Dell OptiPlex 7050 (i7-7700 Quad-Core without
GPUs, 16GB RAM). A model size represents the size of
classifier model.

Table IV, V, or VI shows run times for training, those
for predicting, or model sizes respectively where methods are
sorted by classification accuracy. Table IV and V indicate that
extracting feature from dense time-series data is a bottleneck in
execution time for any method and that complexity of a model
is determined by that of feature extraction. Though the lightest
method is the method in [17] which just extracts the mean
values from input data, the classification accuracy of that is the
lowest 57%. The proposed method is the lightest among those
whose classification accuracy exceed 60% in terms of both run
time and a model size. Thereby, the evaluation result shows
that our proposed method has the advantage of algorithm
efficiency.
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Fig. 7. Permutation importance for each group.
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C. Feature Importance

In addition to the evaluation of classification accuracy and
algorithm efficiency, we show the key factors affecting the
user experience through a feature importance study. To this
end, we apply grouped permutation importance [24] to the test
dataset. Grouped permutation importance is the extended ver-
sion of permutation importance and can provide not only the
importance of each input feature, but also that of any feature
subset. Permutation importance of features [j1, j2, · · · , jn] is
then denoted as: s− 1

L

∑L
l=1 sl,[j1,j2,··· ,jn], where l, L are the

repetition index and the repetition number, s is the prediction
accuracy of the test data, and sl,[j1,j2,··· ,jn] is that of the test
data with features [j1, j2, · · · , jn] being randomly shuffled. In
this equation, the drop of sl,[j1,j2,··· ,jn] is indicative of how
much the ML model depends on the feature subset.

Fig. 7 shows permutation importance of the subsets of LAN
RTT, WAN RTT, RET, and LAN RES related features. The
result indicates that RTT values play a more important role,
while LAN RTT is the most crucial feature affecting the user
QoE. Fig. 8 shows permutation importance of the subsets
of each time and date range. In this figure, each subset is
named as “(date) (time)”. The result shows that the network
performance at daytime (7am–7pm) in midweek affects user
experience more than others.

V. CONCLUSION

In this paper, we proposed the feature selection method
for AI/ML-based QoE monitoring of broadband users. The

m14195
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proposed approach pre-processes the dataset to extract a
set of informative features from 8 basic protocol indicators
exploiting domain knowledge of data networking as well as
the histogram analysis results. The simulation results show
a prediction accuracy of 78% on the benchmark ITU ML5G-
PS-012 dataset, improving 11% over the state-of-the-art result.
The algorithm efficiency was also evaluated in terms of run
time and a model size, and the results show that the proposed
method is the most efficient among those whose classification
accuracy exceed 60%. Our grouped permutation feature impor-
tance study shows that the local area network round trip time
(LAN RTT) value during daytime and midweek plays the most
crucial role affecting the user QoE. In future works, feature
extraction method will be improved. We manually decided
the threshold value to split the data, but adjusting threshold
automatically inspired by wrapper method and autoencoder
improves the accuracy. In addition, more indicators (e.g.,
throughput, channel quality) as input data will give higher
accuracy.
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