
Resource Cooperation in MEC and SDN based
Vehicular Networks

Beiran Chen∗, Marco Ruffini∗
∗ CONNECT centre, School of Computer Science and Statistics, Trinity College Dublin, Ireland,

{chenbe, marco.ruffini}@tcd.ie

Abstract—Internet of Things (IoT) systems require highly
scalable infrastructure to adaptively provide services to meet
various performance requirements. Combining Software-Defined
Networking (SDN) with Mobile Edge Cloud (MEC) technology
brings more flexibility for IoT systems. We present a four-tier
task processing architecture for MEC and vehicular networks,
which includes processing tasks locally within a vehicle, on
neighboring vehicles, on an edge cloud, and on a remote cloud.
The flexible network connection is controlled by SDN. We propose
a CPU resource allocation algorithm, called Partial Idle Resource
Strategy (PIRS) with Vehicle to Vehicle (V2V) communications,
based on Asymmetric Nash Bargaining Solution (ANBS) in
Game Theory. PIRS encourages vehicles in the same location to
cooperate by sharing part of their spare CPU resources. In our
simulations, we adopt four applications running on the vehicles
to generate workload. We compare the proposed algorithm with
Non-Cooperation Strategy (NCS) and All Idle Resource Strategy
(AIRS). In NCS, the vehicles execute tasks generated by the
applications in their own On-Board Units (OBU), while in AIRS
vehicles provide all their CPU resources to help other vehicles’
offloading requests. Our simulation results show that our PIRS
strategy can execute more tasks on the V2V layer and lead to
fewer number of task (and their length) to be offloaded to the
cloud, reaching up to 28% improvement compared to NCS and
up to 10% improvement compared to AIRS.

Index Terms—MEC, V2V, CPU resource allocation, IoT, SDN

I. INTRODUCTION

MEC is a technology that extends services to the edge cloud
for IoT systems. In MEC-based IoT networks, computational
task offloading enhances processing performance for the tasks
generated by User Equipments (UEs) of the IoT network.
Researchers have been designing offloading strategies to meet
diverse performance requirements. However, the dynamically
changing characteristics of the location and service requests
from the UEs may still lead the fixed edge server deployment
to have “service holes” in IoT networks, therefore dynamic
communication between the UEs is necessary [1].

The vehicle is a type of UE in IoT system. Today’s vehicles
are equipped with OBUs with multiple sensors, processing
units, localization systems, and radio transceivers. These em-
bedded technologies can facilitate the setup of Vehicular Ad
Hoc Network (VANET) [2] across vehicles. However, the
processing capacity of vehicles is limited, and it is difficult
to execute computationally intense tasks within their own
OBUs. Therefore, task offloading to Edge Server (ES) or
cloud is considered as an option to increase the availability
of processing power [3].

SDN-based technologies can be widely adopted in IoT
system, from different networking aspects, e.g., access, edge,
core, data center networking [4], and also useful in V2V
systems [5] - [6]. The SDN controller inside the MEC server
can flexibly construct the network topologies between the
vehicles, and realize the V2V offloading dynamicity. Authors
in [5] proposed an architecture using SDN and MEC servers,
in which the SDN controller can keep calculating and selecting
the best V2V routing path between vehicles. In [7], the authors
extend the architecture to multi-hop V2V connection and
optimize the path base on the SDN controller deployed in
MEC for both V2V and V2I task offloading. Authors in [6]
proposed a vehicle trajectory prediction model to improve the
efficiency of V2V task offloading by utilizing the mobility
advantages of vehicles. However, these papers didn’t consider
the willingness of vehicles for resource sharing, since the
computational resources are managed in a centralized way as
a resource pool.

Our work integrates V2V, Vehicle to Infrastructure (V2I),
and SDN architecture for task offloading, and extends it with
the willingness and cooperation of the vehicles. We propose a
Game-Theory-based algorithm to optimize resource allocation.
We then investigate four different application types in our
simulation, which are typical use cases in the IoT-based
vehicular networks with different levels of computational task
loads [8].

In this paper, our contributions are as follows: (1) We
propose a four-tier resource cooperation architecture, which
uses SDN for communication control and MEC for task
offloading. (2) We propose a cooperation strategy, dubbed
PIRS, based on ANBS in Game Theory [9], at V2V layer to
reallocate the spare resource of each vehicle, which considers
vehicles’ cooperation history and willingness. (3) We simulate
the task offloading schemes (with cutting-edge simulator Edge-
CloudSim [10]) and benchmark our PIRS strategy against two
other strategies: non-cooperative NCS strategy and cooperation
with all idle resource (AIRS) strategy. The results show an
obvious performance advantage of our strategy.

II. SYSTEM MODEL

A. Architecture

Our proposed architecture is shown in Fig. 1. It’s a SDN-
based four-tier architecture, which includes processing at local
vehicle on-board, neighboring vehicles, edge cloud, and re-
mote cloud. We assume each vehicle is equipped with OBU,

ar
X

iv
:2

30
8.

04
56

4v
1

 [
cs

.N
I]

 8
 A

ug
 2

02
3

and has a certain computational ability. The tasks generated
by vehicles are prioritized to be executed in the local on-
board CPU (i.e., the OBU) first. If the on-board CPU capacity
is not sufficient, it cooperates/negotiates with neighboring
vehicles by V2V communications, gets resources from them,
and sends the remaining task to them to execute. After that, if
still not sufficient, the remaining task is offloaded to ESs by
V2I communication. Finally, the last option is to offload the
remaining task to the remote cloud, in case ESs get congested
and do not have enough computational resources, especially
when there are many demands coming from a large number
of vehicles for the ES. Each ES is associated with an Access
Point (AP). In our architecture, V2V connections use the
IEEE 802.11p standard, while V2I connections use the IEEE
802.11ac standard [8]. These connections are controlled by
SDN. Every vehicle, and ES has an SDN switch. All the
connection establishment between them and data transmission
are controlled by the SDN controller located in the central
office. The procedure of task offloading is handled by the MEC
orchestrator, located in the central office as well, adopting
architectures such as those defined in [11].

For modeling the mobility of vehicles, we divide the whole
map into several areas by AP coverage. When vehicles drive
in an AP coverage area for a short period and move out of
this area to another location, we define this short period as a
dwell time. Different locations are assumed to have different
levels of dwell time for the vehicles since different areas
have different average driving speeds. We have a randomly
distributed vehicle generator to map vehicles into APs, and a
dwell time to simulate the mobility of vehicles in areas covered
by different APs. Vehicles are assumed to move out of their
AP coverage area after the dwell time has expired and move
into an adjacent AP coverage area for a new dwell time.

Fig. 1. Proposed MEC architecture.

B. Offloading strategy

As mentioned above, in our architecture, when a task is
generated it has four ways to be executed: locally in the
vehicle, across neighboring vehicles, on the ES, and on the
remote cloud.

1) Local task execution: The strategy where a vehicle
Vi always executes the task K(LK , DK) on its own OBU

without cooperation with other vehicles, is named NCS.
The task length LK denoted by the number of instructions,
DK = (Dup

K , Ddown
K) is the task upload/download data size.

We assume every vehicle has the same CPU capacity and the
spare CPU resource of the vehicle Vi at time t is represented by
Ci(t). The execution time dlc(K) is determined by its current
spare CPU capacity Ci(t). Since there is no communication
delay, the delay dl(K) only includes the computational delay,
shown in Equation (1). The unfinished tasks are directly
offloaded to MEC.

dl(K) = dlc(K) = LK/Ci(t) (1)

2) Cooperative task execution with neighboring vehicles:
When a vehicle Vi finds that the local estimated delay dl(K)
is larger than the task’s delay tolerance dlimit,K , the vehicle
carries out a new estimation of the V2V delay dg(K) if the
processing were to be executed on a cooperating neighbouring
vehicle. In our scheme, the cooperation has the following
steps:

Geographical grouping: Vehicles are grouped by their
geographical locations. The SDN controller at the central
office collects the information of the vehicle Vi’s neighbors’
geographical region and spare CPU resource Cj(t), and sends
the neighbor set N = {N1, N2..., Nj} to the task owner vehi-
cle Vi. All this information is useful for selecting cooperating
neighboring vehicles.

Utility Equation: Each vehicle i evaluates its utility value
when it cooperates with other vehicles. Our utility equation
is defined in Equation (2) [12]. It considers the current
environment state and the vehicles’ willingness to cooperate.
The current environment state of vehicle Vi (i is the ID index
of vehicles) at time t, is denoted by s = [θ0, θ1]. θ0 means
the vehicle Vi has spare resources, while θ1 means it does
not. The risk probability vector Pθi = [Pθi(θ0, t), Pθi(θ1, t)]
represents the probability of the vehicle in a risky (the vehicle
might not have enough computing resources left for its own
tasks) or safe state (the vechicle does not risk to run out of
resources). Pθi(θ0, t) denotes the probability of the vehicle
Vi in risky state θ0, and Pθi(θ1, t) denotes the probability
of the vehicle in safe state θ1, defined by Equations (3).
This equation includes two terms: the first term is the real-
time usage Bi(t) spent on real-time resource Cr

i (t). The real-
time resource Cr

i (t) is the total resource vehicle Vi has at
time t. The real-time spare CPU resources are defined as
Ci(t) = Cr

i (t)−Bi(t).
The second term represents the willingness of vehicle Vi

to join the current round of cooperation. The cooperation
willingness probability vector is βi(t) = [βi,0(t), βi,1(t)],
(βi,0(t) ≥ 0, βi,1(t) ≥ 0). Here βi,0(t) is the ‘giving’
probability, which denotes the vehicle’s willingness to give its
resource to other vehicles at a given time, while βi,1(t) is the
‘getting’ probability, which denotes the vehicle’s intention to
get resources from other vehicles within that same time. Note
that βi,0(t) + βi,1(t) = 1 [13], i.e., vehicles are not allowed
to both give and get resources within the same time window.
The willingness probability vector βi(t) changes after each

cooperation round, and depends on all previous cooperation
rounds of Vi.

Ui (s, a, t) = E {Ji (s, a, t)} = Mθ · PθTi · Ji(s, a, t)

=

[
Mθ11,Mθ12
Mθ21,Mθ22

]
·
[
Pθi(θ0, t)
Pθi(θ1, t)

]
· Ji(s, a, t)

(i, j = 1, 2....n i ̸= j)

(2)

Where, Pθi and Ji(s, a, t) are derived by the following
Equations [12]:

Pθi(θ0, t) =
Bi(t)

Cr
i (t)

+ (βi,0(t)− βi,1(t)) ;

Pθi(θ1, t) = 1− Pθi(θ0, t)
(3)

Ji(s, a, t) = Pai ·Ma · PaTj

= [Pai(a0, t), Pai(a1, t)] ·
[
Ma11,Ma12
Ma21,Ma22

]
·
[
Paj(a0, t)
Paj(a1, t)

]
(4)

The factor Ji(s, a, t) in Equation (4) reflects the reward that
the vehicle can get from its current action [12]. We define
a vehicle Vi action space as a = [a0, a1] having two action
choices, giving out resources to help others, denoted as a0,
or getting resources from others, denoted as a1. The giving
probability vector Pai = [Pai(a0, t), Pai(a1, t)] represents
the probability of the vehicle selecting the give/get action.
Pai(a0, t) is the probability that the vehicle gives out its
resource. Pai(a1, t) is the probability that the vehicle chooses
to get other’s resource. In our case, the task owner vehicle
joining the cooperation selects a1, and its giving probability
Pai = [0, 1], while its neighboring vehicle who takes part
in the cooperation selects a0, and Pai = [1, 0]. Based on
Game Theory, the payoff matrix Ma and Mθ are defined
empirically. The vehicles are encouraged to be rewarded for
cooperating with each other to execute the tasks. Therefore, the
Nash Equilibrium point, in this case, will be reached when the
neighboring vehicles prefer to form a coalition with the task
owner vehicle without getting into a risk environment which
might lead to a lack of CPU resources to process their own
tasks. The central office gives a list of neighboring vehicles
sorted by their utilization values to the task owner vehicle Vi.

Selecting and cooperating with neighboring vehicles:
After the task owner vehicle Vi gets the cooperation list
N c from the central office, it selects the top utility value
neighbors to be cooperating candidates to execute the task
K(LK , DK), which is generated by vehicle Vi at the time t.
The Vi estimates the delay time dg(K) of the offloading task to
those cooperating candidates. This is represented in Equation
(5). The delay dg(K) includes communication delay dgm(K)
between vehicles and computational delay dgc(K). We assume
the tasks in the V2V layer can be partitioned. We denoted
the communication data rate with bV . The vehicle Vi selects
min(N c, Nn) neighbors to cooperate. Nn is the maximum
number of vehicles that one vehicle can connect to.

If the estimated execution time dg(K) is less than the
task’s maximum tolerable time dlimit,K , the task K(LK , DK)

will be executed on the V2V layer. In our scheme, each
vehicle is an SDN switch and is controlled by the SDN
controller located in the central office. The SDN controller
can build a temporary connection when the vehicle Vi forms
a coalition with selected cooperation candidates. This coalition
is temporary. It is formed when the vehicles cooperate to
execute a task, and it’s cancelled when the task is finished.
In Equation (5), LK denotes the task length and Dup

K /Ddown
K

represents task upload/download data size. Ci(t) is the spare
CPU resource of Vi, while

∑min(Nc,Nn)
j=1 Cj(t) is the sum of

resources provided by each cooperating neighboring vehicle.
dg(K) = dgc(K) + dgm(K)
dgc(K) = LK

Cr
i (t)

Cr
i (t) = Ci(t) +

∑min(Nc,Nn)
j=1 Cj(t)

dgm(K) =
Dup

K

bV
+

Ddown
K

bV

(5)

We assume a cooperating neighboring vehicle Nj has Cj(t)
spare resource value at the time t. If the vehicle Nj provides
all of its spare resources to help process Vi’s offloading task
at current time t, we call this reallocation algorithm AIRS.
However, the drawback of the AIRS approach is that vehicle
Nj might become unable to process its own upcoming tasks
so that it has to offload them to other vehicles or even to
ES/remote cloud, which would have cost implications.

Here we propose a PIRS algorithm, based on ANBS in
Game Theory [9], where neighboring vehicle Nj provides part
of its spare resources for cooperation. The task owner vehicle
Vi cooperates with neighboring vehicles Nj in the candidate
list N c one by one in descending order of their utility values.
In each cooperation round, candidate neighboring vehicle Nj ,
which adopts the PIRS algorithm does not provide all its spare
resources for cooperation, but only part of it to process task
owner vehicle Vi’s offloading. We consider this cooperation as
a bargain problem and assume both vehicles are rational and
intend to maximize their extra resource utility in the bargain.

The set of spare resources in the utility equation in this
bargain problem can be described as Γ = {γi |i = 1, 2}},
where γi = {(Cr

i (t)−Bi(t))|i = 1, 2}, which is a nonempty
compact convex set with boundary [14]. Cr

i (t) is the real-
time total CPU resource for each vehicle, including its own
CPU resource and the resource it gets externally, while Bi(t)
is the real-time resource usage. The cooperation problem is
described in Equation (6):

Γ∗ = argmax
Cr

i (t)

∏
i

(Cr
i (t)−Bi(t))

λi(t),

s.t.

2∑
i=1

Cr
i (t) = Φ

2∑
i=1

λi(t) = 1

Cr
i (t) ≥ Bi(t),

Cr
i (t) ≥ 0, (i = 1, 2)

(6)

where Φ is the total real-time resource of the vehicles
considered.

λi(t) =
βi,1(t)

βi,1(t) + βj,1(t)
(i, j = 1, 2, 3...n) (7)

λi(t) denotes the bargaining power of the vehicles. In our
case, the vehicles’ bargaining power [14] is decided by their
willingness probability vector βi(t) as Equation (7). At each
allocation step, the vehicle gets its available real-time resource
as Cr

i (t) = Bi(t) + λi(t) ·
∑2

i=1 (C
r
i (t)−Bi(t)).

After the cooperation, the algorithm updates the parameters
of the cooperating vehicles. Part of the spare resources of
neighboring vehicle Nj are provided to execute K(LK , DK)
offloaded from Vi, thus Vj’s risk probability of lacking CPU
resources increases. Therefore, the cooperation willingness
probability vector βi(t) changes. In addition, the cooperation
also changes the participants’ bargaining power λi(t), which
will affect their next round of cooperation. We use the updating
rule derived from [15], as the Equation (8) - Equation (9).

βi,m(t) = βi,m(t− 1) + α∆βi,m(t),

(m = 0, 1) , α ∈ (0, 1) (8)

where, α is the learning rate and the ∆βi,m(t) holds as:

∆βi,m(t) =
∆Ji(s, am, t)

∆Ji(s, am, t) + ∆Ji(s, al, t)
,

∆Ji(s, am, t) = Ji(s, am, t)− Ji(s, am, t− 1),

(m, l = 0, 1 m ̸= l) (9)

If the estimated execution time dg(K) is more than
the task’s maximum tolerable delay dlimit,K , the task
K(LK , DK) will be offloaded to ES/remote cloud.

3) Offloading to Edge or remote cloud: When vehicles
decide to offload tasks to ES/remote cloud, they communicate
with their nearest ES. When the ES is congested, tasks can
be offloaded to the remote cloud. The delay de(K) of V2I
includes communication and computational delay which is
determined by the computational capacity of offloading ES,
shown in Equation (10).

de(K) = dec(K) + dem(K)
dec(K) = LK

CE

dem(K) =
Dup

K

bE
+

Ddown
K

bE

(10)

where, LK denotes the task length and Dup
K /Ddown

K represents
task upload/download data size. CE is the CPU resource
provided by ES/remote cloud.

In summary, the whole procedure of our proposed algorithm
PIRS, as well as AIRS and NCS, are shown in Algorithm 1.
The computational complexity of algorithm PIRS and AIRS is
mostly affected by the sorting algorithm in Line 13, in which
the algorithm gets candidates list N c by sorting candidates’
utility value Equation (2). Our code adopts Python built-in
Timesort algorithm [16], and the complexity is O(nlogn). The

computational complexity of NCS is O(1) since it does not
have sharing and offload all remaining tasks to MEC.

Algorithm 1 Four-tier offloading system with V2V coopera-
tion algorithm PIRS, AIRS and NCS

1: Initialization: task K(LK , DK) generated by vehicle Vi

2: if strategy is NCS then
3: estimate delay dl(K) Eqn.1
4: if dl(K) < dlimit,K then
5: executes the task locally
6: else
7: the task failed
8: if strategy is PIRS or AIRS then
9: Offloading strategy:

10: V2V cooperate to execute the task
11: 1) get geographical neighbor set N
12: 2) select candidates list N c from neighbor set N ,by

sorting their utility value Eqn.2
13: 3) calculate the total resource Vi can get from neigh-

bors:
14: for neighbor Nj in candidate list N c do
15: if Strategy is PIRS then
16: Nj gives a part of its spare resource Eqn.6
17: update willingness probability βi(t), Eqn.8-9
18: else if Strategy is AIRS then
19: Nj gives all spare resource

4) calculate the delay dg(K), Eqn.5
20: if dg(K) < dlimit,K then
21: V2V cooperates to execute the task
22: else
23: Offloading to Edge/remote cloud
24: if Virtual Machine (VM) utilization < utilization

threshold then
25: offload to nearest ES
26: else
27: offload to remote cloud
28: calculate the delay de(K), Eqn.10
29: if de(K) < dlimit,K OR Vi change place then
30: the task failed
31: else
32: the task successfully executed

III. EXPERIMENTAL RESULTS

A. Simulation settings

We implement our own Python-based simulator for the
V2V part and use an open-source Java-based simulator, Edge-
CloudSim [10], for the V2I part, and then integrate them
together. In our simulations, the task execution can fail for
two reasons. The first reason is the mobility of vehicles. If
the vehicle moves out of the wireless network coverage, it
is not connected to the previous ES anymore, and it cannot
get the response of its previously requested task. The second
reason is the delay. If a task execution cannot finish within its
maximum tolerable delay, it fails. In our simulation, we adopt

TABLE I
APPLICATION PARAMETERS

Augmented Reality Health App Compute Intensive Infotainment App
Usage percentage(%) 30 20 20 30
Task arrival poison mean (s) 1 1 10 5
Maximum tolerable delay (s) 5 8 8 1
Active/Idle Period (s) 40/5 45/90 60/120 30/45
Upload/Download
Data size(KB) 1500/25 1250/20 2500/200 2500/200

Task Length (GI) 9 3 45 45
VM Utilization on Edge (%) 6 2 30 30

TABLE II
SIMULATION PARAMETERS

Parameter Value
Simulation Time 30 minutes
WAN data rate 1 Gbps
V2I communication data rate 250 Mbps
V2V communication data rate 10 Mbps
CPU capacity per Vehicles/Edge/Remote Cloud 2/160/1600 GIPS
Maximum number of V2V connection Nn 6
Number of locations Type 1/2/3 1/1/2
Average dwell time in Type 1/2/3 30/20/10 seconds

the parameters of four task applications in paper [8] as our use
cases, shown in Table I. The usage percentage of the applica-
tion is defined as the proportion of the vehicles running this
application. The task inter-arrival time means how frequently
a given task generates a processing load. This inter-arrival
time is exponentially distributed [8]. The maximum tolerable
delay is the time limit for the task finishing time. If the task
execution time goes beyond it, the task fails. There are also
active/idle periods for generating the task. During the active
period, applications generate tasks with the aforementioned
inter-arrival time, while during the idle period, applications
do not generate any processing load. The upload/download
data size is the communication data size for the task when it
is offloaded to other vehicles or to the edge/remote cloud. The
task length represents the task computational quantity and is
also an exponentially distributed random variable [8]. The VM
utilization denotes the CPU overhead on the VM when it is
running on ES. Other parameters of the configuration are listed
in Table II. We adopt EdgeCloudSim’s built-in nomadic mo-
bility model for our vehicles. In this model, different locations
have different values to represent the different average dwell
times the vehicles spend at these locations. In our simulation,
we set three types of locations with different average dwell
times. We use the EdgeCloudSim default value to set the
ES layer and remote cloud computational capacity, as well
as network communication data rates.

B. Simulation results

We investigate the performance of our PIRS algorithm and
compare it to two baselines V2V algorithms: AIRS and NCS.
Our results, which include mean and standard deviation, are
shown in the following 4 plots. Firstly, we investigate the
amount of failed tasks for those three systems. As mentioned
before the reasons for failed tasks are the mobility of vehicles
and exceeding the tolerable delay. Fig. 2 shows the normalized
failed task percentage for the three systems. The systems
adopting PIRS and AIRS have lower failed task percentages
than the system using NCS. The system with PIRS has the
best performance. When the vehicle number is higher, the
advantage of PIRS over AIRS is reduced, but the advantage

of PIRS over NCS increases. Please note that, in order to
better show the performance comparison, we use aggressive
parameter settings (i.e., very frequent task inter-arrival time)
in order to increase the overall probabilities of failed tasks.

Fig. 2. Failed tasks normalized percentage with the four-tier system.

Fig. 3. Normalized total failed tasks’ task length.

Fig. 4. Offloading task percentage.

In Fig. 3, we analyze the total length of failed tasks, and we
can see the system with the PIRS leaves the smallest amount
of computational task length uncompleted when the vehicle
number is less than 80. In other words, this system executed
the highest amount of computations successfully. The system
with the AIRS has a more uncompleted computational task
length than PIRS but less than the system with the NCS.
The advantage of PIRS is more obvious with lower density

of vehicles. The reason is that the AIRS algorithm makes
the neighbor vehicles Nj provide all of their spare CPU
resources at each cooperation, while PIRS takes only part
of Nj spare resources. The proposed PIRS algorithm thus
provides a more fair distribution in the usage of vehicles’
computational resources. This is especially useful for a low
number of vehicles, because if a vehicle provides all its
computational capacity to another vehicle, it would then have
to offload its own task to other vehicles, but there might not
be any vehicle nearby. When the number of vehicles becomes
higher, there are more options for offloading to other vehicles,
thus the performance of PIRS and AIRS show less difference.

Fig. 5. Normalized total offloading task length.
In order to understand how much the V2V resource sharing

helps for the whole system performance, we also investigate
the first V2V layer performance separately. Fig. 4 shows the
percentage of remaining tasks, which need to be offloaded to
the MEC layer and remote cloud after the three different algo-
rithms reallocate CPU resources in the V2V layer. Compared
to the NCS and AIRS algorithms, PIRS can complete more
tasks in the V2V layer, thus offloading fewer tasks to the MEC
layer and cloud. The advantage is around 20% to 30% for
different scenarios of vehicle densities. Fig. 5 shows the total
task length offloaded to ES/remote cloud (this includes the
potential failed tasks). We can see that PIRS has the shortest
task lengths offloaded to ES/remote cloud when the number of
vehicles is less than 80. In the best case, the average number
of tasks offloaded by PIRS with 40 vehicles is 10% lower than
AIRS, and 28% lower than NCS, respectively. The reason is
the same as mentioned above. When the number of vehicles
increases over 80, even though a vehicle gives out all of its
spare resources to Vi at the previous cooperation, it has a better
chance to group with another vehicle, which has adequate
spare resources for its future upcoming tasks. Therefore in
this scenario, PIRS does not have much advantage compared
to AIRS. Finally, both PIRS and AIRS perform better than the
non-cooperation case NCS where there is no resource sharing
between vehicles.

IV. CONCLUSION

We have proposed a four-tier architecture for vehicular
networks, with flexible network connection controlled by
SDN in V2V communication. We implement a CPU resource

allocation algorithm, dubbed PIRS, based on ANBS in Game
Theory, which focuses on allocating idle resources in a proper
proportion for each vehicle in every cooperation round. We
have carried out simulations to investigate the performance of
PIRS and then compared the performance of PIRS with two
benchmark algorithms, AIRS and NCS. The results of our
simulations show that our proposed approach performs better
in all aspects considered: it provides a lower amount of failed
tasks, a lower amount of offloading to the edge and remote
cloud, and higher success in executed task lengths than AIRS
and NCS, especially when the density of the vehicles is lower.

ACKNOWLEDGEMENT

Financial support from Science Foundation Ireland (SFI) grants
17/CDA/4760, 18/RI/5721 and 13/RC/2077 p2 is acknowledged.

REFERENCES

[1] H. Guo, J. Liu, J. Zhang, W. Sun, and N. Kato, “Mobile-Edge Computa-
tion Offloading for Ultradense IoT Networks,” IEEE Internet of Things
Journal, vol. 5, no. 6, pp. 4977–4988, 2018.

[2] M. Ruffini and H.-J. Reumerman, “Power-rate Adaptation in High-
mobility Distributed Ad-hoc Wireless Networks,” in 2005 IEEE 61st
Vehicular Technology Conference, vol. 4, 2005, pp. 2299–2303.

[3] A. Mukhopadhyay, G. Iosifidis, and M. Ruffini, “Migration-Aware Net-
work Services With Edge Computing,” IEEE Transactions on Network
and Service Management, vol. 19, no. 2, pp. 1458–1471, 2022.

[4] S. Bera, S. Misra, and A. V. Vasilakos, “Software-Defined Networking
for Internet of Things: A Survey,” IEEE Internet of Things Journal,
vol. 4, no. 6, pp. 1994–2008, 2017.

[5] C. Huang, M. Chiang, D. Dao, W. Su, S. Xu, and H. Zhou, “V2V
Data Offloading for Cellular Network Based on the Software Defined
Network (SDN) Inside Mobile Edge Computing (MEC) Architecture,”
IEEE Access, vol. 6, pp. 17 741–17 755, 2018.

[6] H. Guo, L. Rui, and Z. Gao, “V2V Task Offloading Algorithm with
LSTM-based Spatiotemporal Trajectory Prediction Model in SVCNs,”
IEEE Transactions on Vehicular Technology, vol. 71, no. 10, pp. 11 017–
11 032, 2022.

[7] C. Huang and J. Lin, “The k-hop V2V Sata Offloading Using the
Predicted Utility-centric Path Switching (PUPS) Method Based on
the SDN-controller Inside the Multi-access Edge Computing (MEC)
Architecture,” Vehicular Communications, vol. 36, p. 100496, 2022.

[8] C. Sonmez, A. Ozgovde, and C. Ersoy, “Fuzzy Workload Orchestration
for Edge Computing,” IEEE Transactions on Network and Service
Management, vol. 16, no. 2, pp. 769–782, 2019.

[9] E. Kalai, “Nonsymmetric Nash Solutions and Replications of 2-person
Bargaining,” International Journal of Game Theory, vol. 6, no. 3, pp.
129–133, 1977.

[10] C. Sonmez, A. Ozgovde, and C. Ersoy, “EdgeCloudSim: An Environ-
ment for Performance Evaluation of Edge Computing Systems,” in 2017
Second International Conference on Fog and Mobile Edge Computing
(FMEC), 2017, pp. 39–44.

[11] S. Das, F. Slyne, A. Kaszubowska, and M. Ruffini, “Virtualized
EAST–WEST PON Architecture Supporting Low-latency Communi-
cation for Mobile Functional Split Based on Multiaccess Edge Com-
puting,” Journal of Optical Communications and Networking, vol. 12,
no. 10, pp. D109–D119, 2020.

[12] B. Chen, Y. Zhang, and G. Iosifidis, “Resource Sharing in Public Cloud
System with Evolutionary Multi-agent Artificial Swarm Intelligence,” in
Service-Oriented Computing – ICSOC 2020 Workshops, vol. 2, 2021.

[13] S. Givigi and H. Schwartz, “Evolutionary Swarm Intelligence Applied
to Robotics,” in IEEE International Conference Mechatronics and Au-
tomation, 2005, vol. 2, 2005, pp. 1005–1010 Vol. 2.

[14] X. Ma, H. Dong, P. Li, L. Jia, and X. Liu, “A Multi Service Train-
to-Ground Bandwidth Allocation Strategy Based on Game Theory and
Particle Swarm Optimization.” IEEE Intelligent Transportation Systems
Magazine, vol. 10, no. 3, pp. 68 – 79, 2018.

[15] H. M. Schwartz, Multi-agent Machine Learning: A Reinforcement Ap-
proach. John Wiley and Sons, Inc., Hoboken, New Jersey, 2014.

[16] Python, “TimeComplexity,” Accessed: Feb. 2023. [Online]. Available:
https://wiki.python.org/moin/TimeComplexity

https://wiki.python.org/moin/TimeComplexity

	Introduction
	System Model
	Architecture
	Offloading strategy
	Local task execution
	Cooperative task execution with neighboring vehicles
	Offloading to Edge or remote cloud

	Experimental results
	Simulation settings
	Simulation results

	Conclusion
	References

