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Abstract—Radio frequency fingerprint identification (RFFI)
is a lightweight device authentication technique particularly
desirable for power-constrained devices, e.g., the Internet of
things (IoT) devices. Similar to biometric fingerprinting, RFFI
exploits the intrinsic and unique hardware impairments resulting
from manufacturing, such as power amplifier (PA) nonlinearity,
to develop methods for device detection and classification. Due
to the nature of wireless transmission, received signals are
volatile when communication environments change. The resulting
radio frequency fingerprints (RFFs) are distorted, leading to low
device detection and classification accuracy. We propose a PA
nonlinearity quotient and transfer learning classifier to design
the environment-robust RFFI method. Firstly, we formalized and
demonstrated that the PA nonlinearity quotient is independent
of environmental changes. Secondly, we implemented transfer
learning on a base classifier generated by data collected in
an anechoic chamber, further improving device authentication
and reducing disk and memory storage requirements. Extensive
experiments, including indoor and outdoor settings, were carried
out using LoRa devices. It is corroborated that the proposed PA
nonlinearity quotient and transfer learning classifier significantly
improved device detection and device classification accuracy. For
example, the classification accuracy was improved by 33.3% and
34.5% under indoor and outdoor settings, respectively, compared
to conventional deep learning and spectrogram-based classifiers.

Index Terms—Internet of things, device authentication, radio
frequency fingerprinting identification, power amplifier nonlin-
earity, transfer learning.

I. INTRODUCTION

The rapid growth of the Internet of things (IoT) device
population has sparked extensive demands on IoT security
in recent years. Many security-critical IoT applications need
more stringent security support [1]. Device authentication is
one of the most important categories, which includes rogue
device detection and the classification of registered devices [2].
Traditionally, device authentication is achieved by public-
key cryptography (PKC). However, the implemented public
key algorithms are not optimal for IoT devices because they
are computationally costly. Further, PKC generally requires a
certification authority when sharing keys. The authority may
not always be available, considering the large volume and
wide-area deployment of IoT devices [3].

A lightweight and reliable authentication technique is thus
required for IoT security. Radio frequency fingerprint identifi-
cation (RFFI) is a non-cryptographic authentication technique
that attracted much research interest [4]–[7]. It exploits the
intrinsic features brought by various hardware impairments re-
sulting from imperfect manufacturing processes. The features
manifested as slight distortions on transmitted signals. Like
the biometric characteristics used for authentication, the subtle
features are unique for different devices and hard to duplicate.
Therefore, receivers can extract the features from received
signals, followed by the verification with the pre-shared feature
information for device authentication. The process does not
involve computationally costly algorithms; hence, it consumes
less energy and is suitable for power-constrained IoT devices.

An RFFI classifier is a machine learning model trained using
radio frequency fingerprints (RFFs) for multi-class classifica-
tion. Specifically, deep learning is leveraged as it minimizes
the process of locating transient signal segments [8]–[12]. It
automatically extracts RFFs from received signals, making
it the technique requiring minimal manual selection to train
RFFI classifiers. For the network architecture, convolutional
neural network (CNN) is mostly implemented for image
recognition tasks, which makes it especially suitable for device
fingerprinting [13]–[18]. Among the feature selection, in-phase
and quadrature (IQ) samples [19], FFT results [20], [21], and
spectrogram [22] are widely studied. In [22], the spectrogram
CNN model was shown to achieve the highest classification
accuracy. Therefore, we adopt deep learning and spectrogram-
based classifiers to benchmark proposed classifiers.

Due to the nature of wireless communications, RFFs are
susceptible to environmental changes. Large-scale fading, mul-
tipath fading, and the Doppler effect affect wireless channels
and modify received signal characteristics [23]–[25]. Tradi-
tional RFFs, e.g., spectrogram, extracted from the received sig-
nals are distorted and cannot be used for authentication [26]–
[28]. We propose using a power amplifier (PA) nonlinearity
quotient to mitigate the wireless channel effects introduced
by environmental changes. The PA nonlinearity quotient is
generated by taking division on the frequency domain of
two consecutive signals transmitted with different power. The
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division mitigates the wireless channel effects, and RFFI
classifiers are trained to exploit the resulting RFFs.

Implementing environment-robust RFFs is limited when
communication environments have many fast-moving objects
because multipath fading and the Doppler effect mostly dom-
inate wireless channels. Particularly, fast fading can happen
when transmitters have low data rates, i.e., IoT devices.
In [23], [28], [29], data augmentation is implemented to
alleviate the impact of fast fading by training classifiers under
channels with simulated multipath fading and the Doppler
effect. However, the simulations had no pre-knowledge of the
real deployment environments and significantly increased the
required disk and memory storage for training classifiers.

Transfer learning can be implemented to combine RFFs
resulting from different wireless channels [30]–[32]. Hence,
distortions caused by multipath fading and the Doppler ef-
fect are acknowledged in device authentication. The required
storage for transfer learning is less than data augmentation.
Therefore, we implement transfer learning to alleviate the
impact of fast fading. Specifically, a base classifier is trained
with the original RFFs of the devices under test (DUTs);
then, the classifier is retrained with the RFFs collected in real
deployment environments.

This paper aims to design and validate an environment-
robust RFFI system for IoT device authentication. The ap-
proach trains a classifier using the PA nonlinearity quotient.
Transfer learning is adopted to alleviate the impact of fast
fading and reduce training costs. Extensive experiments, in-
cluding indoor and outdoor settings, were carried out using
LoRa devices. The results show that the proposed PA non-
linearity quotient and transfer learning classifier significantly
outperformed conventional deep learning and spectrogram-
based classifiers. Our contributions are summarized as follows.

• We formalized the PA nonlinearity quotient and demon-
strated that it is independent of environmental changes.
The improvements in rogue device detection and device
classification are backed by experimental validation.

• We developed data collection of real deployment, includ-
ing indoor and outdoor environments. Further, we imple-
mented transfer learning using the data to alleviate the
impact of fast fading. The approach reduced the disk and
memory storage requirements for training. The resulting
classifiers have pre-knowledge of the real deployment en-
vironments compared to the data augmentation approach.

• We designed an RFFI system that involves the PA non-
linearity quotient and transfer learning. Samples resulting
from natural multipath fading and the Doppler effect were
implemented to validate the system.

II. POWER AMPLIFIER NONLINEARITY QUOTIENT

The PA is an indispensable component in any wireless
device, with the implementation to amplify low-power signals
to high-power ones. It is inherently nonlinear [33]. For low-
power and narrowband systems, i.e., IoT devices, the PA
is regarded as memoryless, meaning the nonlinear output
depends only on the input at a particular time. The nonlinearity

can be characterized by an amplitude/amplitude (AM/AM)
function and an amplitude/phase (AM/PM) function. Several
models have been proposed to formulate the functions [33].

Implementing PA nonlinearity for RFFI is widely studied in
the literature [34]–[39]. However, the implementation is often
limited for static or semi-static channels. The RFFI perfor-
mance drops significantly when communication environments
change. We propose the PA nonlinearity quotient to design an
environment-robust RFFI.

The signal of a narrowband system that reaches a receiver
is given as

s(t) = h(τ, t) ∗ f [x(t)] + n(t), (1)

where x(t) is baseband signal, h(τ, t) is channel impulse
response, f [·] denotes the nonlinear effect of hardware im-
pairment at transmission power, and n(t) is additive white
Gaussian noise (AWGN). “∗” denotes convolution operation.

When generating the PA nonlinearity quotient, two consec-
utive signals emitted with high and low transmission power
correspondingly are received and developed an element-wise
division on the frequency domain. The signal representation
on the frequency domain is obtained through the short-time
Fourier transform (STFT). The result of the STFT on the
received signal is a matrix expressed as

Sp =


S1,1
p S1,2

p · · · S1,M
p

S2,1
p S2,2

p · · · S2,M
p

...
...

. . .
...

SW,1p SW,2p · · · SW,Mp

 , (2)

where p = {h, l} denotes high-power and low-power, respec-
tively. The elements in the matrix are given as

Sw,mp =

W−1∑
n=0

sp [n] g [n−mR] e−j2π
w
W n

for w = 1, 2, ...,W and m = 1, 2, ...,M, (3)

where sp [n] is the discrete signal received by the receiver
with a sampling interval, g [n] is the window function with
length W , and R is hop size. The experiments implement
LoRa, hence M is given by LoRa configurations as

M =
K · 2

SF

B · fS −W
R

+ 1, (4)

where K is number of LoRa symbols, SF is LoRa spreading
factor, B is bandwidth, and fS is sampling frequency. The
configurations are discussed in Section III-A. W is 1024 and
R is 512. M is calculated to be 319.

The STFT result of the high-power signal is expressed
as (5.1), where X denotes the ideal spectrum of the transmitted
signal, H denotes the channel frequency response, and F (·)
denotes the nonlinear hardware effect at the transmission
power in the frequency domain. Only the preamble of the re-
ceived signal is used to generate the PA nonlinearity quotient.
The ideal spectrum of the low-power preamble is the same as
the high-power one, i.e., Xw,m = Xw,M+m. Hence, the STFT
result of the consecutive low-power signal is given as (5.2).



TABLE I
DUT CONFIGURATIONS

Carrier
Frequency

Bandwidth
(B)

Transmission
Power (h/l)

Spreading
Factor (SF )

Coding
Rate

915 MHz 62.5 kHz 17/10 dBm 10 4/5

By removing the significantly distorted preambles caused by
fast-moving objects nearby and implementing transfer learn-
ing, we assume intense multipath fading and the Doppler effect
are mitigated. Slow fading mostly dominates the wireless
channels. Therefore, the channel frequency response does not
change significantly during one packet duration, i.e., Hw,m ≈
Hw,M+m. The result of the element-wise division of received
signals on the frequency domain (Q) is given as

Q = Sh./Sl =
[
Fh(X

1)

Fl(X
1)

Fh(X
2)

Fl(X
2)

· · · Fh(X
M )

Fl(X
M )

]
, (6)

where “./” denotes the element-wise division operation
and Xm = [X1,m X2,m · · · XW,m]T . No channel
frequency response (H) is present in Q. The proposed
environment-robust RFFI can be developed exploiting the PA
nonlinearity quotient, which is Q in dB scale, expressed as

Q̃ = 10 log10(|Q|2). (7)

III. EXPERIMENTS

A. Experimental Settings

The experiments implemented 25 Arduino Nano-controlled
LoRa SX1276 modules with the same circuit design and
specifications as DUTs. 20 DUTs were randomly selected
as legitimate devices (DUT: “A” to “T”), and 5 DUTs were
selected as rogue devices (DUT: “Attacker 1” to “Attacker 5”).
The device configurations are given in Table I. The LoRaWAN
protocol supports 125 kHz, 250 kHz, and 500 kHz bandwidths,
while LoRa supports bandwidths ranging from 7.8 kHz to
500 kHz. The proposed RSSI system does not focus on specific
protocols. Therefore, a bandwidth of 62.5 kHz was used to
reduce packet loss and maintain high throughputs. A universal
software radio peripheral (USRP) platform with a 1 MS/s
sampling frequency (fS) was used to collect RF samples.
Fig. 1 shows the devices used in the experiments.

The data collection was developed in three environments.
• Anechoic chamber: the collection of channel effect-free

RFFs for training the base classifier required by transfer
learning was carried out in the anechoic chamber on the
top floor of the QUT GP campus S-block building. DUTs
were placed 3 meters away from the USRP platform.
The anechoic chamber was designed to absorb multipath
signals. Therefore, RF samples collected in the environ-
ment can generate the PA nonlinearity quotient without
the impact of multipath fading and the Doppler effect.

• Indoor: DUTs were placed in an office room for the
indoor setting. The USRP platform was placed in the
adjacent room, and DUT signals traveled through a wall.
People were freely walking in the office during the
data collection. The environment was considered to have
moderate multipath fading and a slight Doppler effect.

• Outdoor: in the outdoor setting, DUTs were placed 104.5
meters away from the USRP platform, as shown in Fig. 2.
Buildings blocked the line of sight, and people freely
walked in the environment. The outdoor environment was
considered to have more significant multipath fading and
the Doppler effect than the indoor environment.

The DUTs transmit packets with alternating high-power and
low-power modes, and the USRP platform passively receives
the packets in the data collection. More than 2800 packets
were collected for each DUT within one hour. Hence, more
than 8400 packets were collected for each DUT in all three
experimental environments.

B. Data Preprocessing

The data preprocessing includes synchronization, preamble
extraction, normalization, and the PA nonlinearity quotient
generation. The packets collected indoors and outdoors are
required to go through the distorted preamble removal process
before generating the PA nonlinearity quotient.

1) Synchronization: transmission power does not impact
the data rate. Hence, the time-on-air for the DUT packets
stays unchanged for the high-power and low-power
transmission. The starting points of the packets are
marked and used for synchronization to avoid inaccurate
preamble extraction.

Sh =


H1,1Fh(X

1,1) H1,2Fh(X
1,2) · · · H1,MFh(X

1,M )
H2,1Fh(X

2,1) H2,2Fh(X
2,2) · · · H2,MFh(X

2,M )
...

...
. . .

...
HW,1Fh(X

W,1) HW,2Fh(X
W,2) · · · HW,MFh(X

W,M )

 , (5.1)

Sl =


H1,M+1Fl(X

1,1) H1,M+2Fl(X
1,2) · · · H1,2MFl(X

1,M )
H2,M+1Fl(X

2,1) H2,M+2Fl(X
2,2) · · · H2,2MFl(X

2,M )
...

...
. . .

...
HW,M+1Fl(X

W,1) HW,M+2Fl(X
W,2) · · · HW,2MFl(X

W,M )

 . (5.2)



Fig. 1. Devices used in the experiments. Left: a DUT in operation. Middle:
20 DUTs as legitimate devices and 5 DUTs as rogue devices. Right: a USRP-
2922 platform as the receiver.

104.5m

Fig. 2. Outdoor experimental environment.

2) Preamble extraction: preambles are payload-independent
and have no software-defined features such as MAC
addresses. Therefore, the intrinsic hardware features in
the preamble symbols are the desirable source for RFFI.
The preamble length is a flexible configuration for LoRa,
with a minimum value of ten symbols. To study the
worst-case scenario, we set and extracted ten symbols
for one preamble per packet in the experiments.

3) Normalization: the process normalizes the received sig-
nal magnitude to remove the device-specific DC offset
by dividing the root mean square. The PA nonlinearity
feature is unaffected.

4) Distortion removal and PA nonlinearity quotient gen-
eration: we introduce Algorithm 1 to remove the
severely distorted preambles caused by fast-moving ob-
jects nearby. The correlation between the high-power
and low-power spectrogram should stay the same since
PA nonlinearity is only affected by the input power [40].
The distorted preambles can be found by comparing the
correlation of the channel-affected spectrogram to the
correlation of the anechoic chamber spectrogram. The
distortion is considered severe and can be removed if the
difference is over a tolerance (θ = 0.2 implemented in
experiments). After the distortion removal, an element-
wise division on the frequency domain is developed to
generate the PA nonlinearity quotient. Fig. 3 shows the
collected preamble spectrogram and the PA nonlinearity
quotient generated by a DUT.

Algorithm 1: Distortion Removal and PA Nonlinearity
Quotient Generation.

Input: Sh,k,Sl,k %STFT results of indoor or outdoor preambles
(k = indoor or outdoor)

Input: Sh,c,Sl,c %STFT results of anechoic chamber preambles
Input: θ % Tolerance
Output: Q̃ % PA nonlinearity quotient

1 ρk = corr{max(Sh,k),max(Sl,k)}
2 ρc = corr{max(Sh,c),max(Sl,c)}
3 ρd = ‖ρc − ρk‖
4 if ρd ≤ θ then
5 Q = Sh,k.

/
Sl,k % Element-wise division

6 Q̃ = 10 log10(|Q|2)
7 else
8 remove Sh,k,Sl,k

Indoor OutdoorAnechoic chamber

Fig. 3. Spectrogram and PA nonlinearity quotient of a DUT in the experi-
ments. Top: high-power preamble spectrogram. Middle: low-power preamble
spectrogram. Bottom: PA nonlinearity quotient, Q̃ in (7).

C. Analytical Metrics

Device authentication exploiting RFFI involves two essen-
tial parts: device classification and rogue device detection. The
classification accuracy and receiver operating characteristic
(ROC) curve are implemented to evaluate the device classi-
fication and rogue device detection performance, respectively.

1) Classification Accuracy: The classification accuracy is
defined as the number of correctly classified RFFs divided by
the total number of tested RFFs. The results are obtained from
the confusion matrix after developing classification tests.

2) ROC Curve: The rogue device detection was studied
as binary classification in the experiments. The output values
of the softmax function are compared to a threshold. The
RFFs associated with the output values smaller than the
threshold will be considered unauthorized. Since the threshold
is configurable, it is hard to use a detection rate to analyze
classifiers’ performance. We adopted the ROC curve in the
binary classifier study to overcome this. For each class of a
classifier, ROC analysis applies threshold values in [0,1] to
calculate the true-positive rate (TPR) and the false-positive
rate (FPR) for the outputs generated by each threshold. The
area under the ROC curve (AUC) is the integral of a ROC
curve with respect to FPR. The value of AUC is in the range
of 0 to 1. A larger AUC indicates better classifier performance.
In our experiments, a larger AUC indicates that the classifier is
more capable of detecting rogue devices. A micro-averaging
method is applied to generate the averaged AUC and ROC
curves to analyze the rogue device detection for all classes.



TABLE II
LAYERS, PARAMETERS, AND ACTIVATION OF THE PROPOSED CLASSIFIER

Layer Dimension Parameters Activation
Input 256× 256 — —

Convolution, BN 8× (3× 3) 80, 16 ReLU
MaxPooling 2× 2 — —

Convolution, BN 16× (3× 3) 1168, 32 ReLU
MaxPooling 2× 2 — —

Convolution, BN 32× (3× 3) 4640, 64 ReLU
FullyConnected 20 2304020 SoftMax

IV. CLASSIFIER ARCHITECTURE

The architecture of the PA nonlinearity quotient and transfer
learning classifier is summarized in Table II. It consists of
three convolution layers with 8, 16, and 32 3 × 3 filters,
respectively. A batch normalization layer and the rectified
linear unit (ReLU) activation follow each convolution layer.
After the activation, a 2 × 2 max pooling layer with stride
2 is implemented. The output of the last ReLU activation is
fed to a fully connected layer. An output layer with softmax
function is implemented last to produce vectors of probabilities
of outputs. The PA nonlinearity quotient is resized to 256×256
with 8-bit depth to go to the input layer. Adam optimizer is
implemented to reduce the losses. The mini-batch size is 32.
The initial training rate is 0.005 and remains unchanged.

Transfer learning retrains a pre-trained classifier on new
datasets. In the experiments, the convolution layers of the pre-
trained classifier recognize generic RFF patterns. We replaced
the fully connected and output layers with new layers. For
fine-tuning the transferred classifier, the training rate was
configured to 0.0001, and the learning rate factor of the new
layers was configured to 20.

V. RESULTS AND DISCUSSION

A. Device Classification

The base classifier was trained firstly using complete le-
gitimate device (DUT: “A” to “T”) datasets in the anechoic
chamber. Smaller training sets, including 50, 100, 150, and
200 packets, were randomly selected for each legitimate device
from the indoor and outdoor datasets to implement the transfer
learning. The conventional deep learning and spectrogram-
based classifiers were trained as the comparison. The same
test sets, including more than 1000 packets per DUT, were
implemented to validate the proposed PA nonlinearity quotient
and transfer learning classifier and the deep learning and
spectrogram-based classifier. No training set packets were used
in the test sets.

Fig. 4 shows the device classification results of indoor ex-
periments. The proposed PA nonlinearity quotient and transfer
learning classifier outperformed the conventional deep learning
and spectrogram-based classifier with an improvement of
33.3% average classification accuracy. More training packets
lead to higher classification accuracy. The highest accuracy is
99.4%, with 200 packets retraining the base classifier. The PA
nonlinearity quotient improved the average classification accu-
racy by 19.4% compared to the spectrogram-based classifier.
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Fig. 4. Device classification results of the indoor experiments.
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Fig. 5. Device classification results of the outdoor experiments.

Fig. 5 shows the classification results of outdoor experi-
ments. The proposed PA nonlinearity quotient and transfer
learning classifier outperformed the conventional deep learn-
ing and spectrogram-based classifier with an improvement
of 34.5% average classification accuracy. The PA nonlinear-
ity quotient improved the average classification accuracy by
10.9% compared to the spectrogram-based classifier.

Table III compares device classification performance among
the proposed classifier and recent notable works in literature.
The PA nonlinearity quotient and transfer learning classifier
achieved high device classification accuracy while requiring
fewer training samples and reducing the disk and memory
storage requirements.

B. Rogue Device Detection

The training sets to retrain the base classifier included 100
randomly selected packets per DUT for studying the rogue
device detection for the proposed classifier. Deep learning
and spectrogram-based classifiers were trained for comparison.



TABLE III
DEVICE CLASSIFICATION COMPARISON WITH NOTABLE WORKS

Work Experimental
Environment

No. of
Devices

Training Samples
(Per Device)

Classification
Accuracy

Ours Indoor
Outdoor 20 200 99.4%

98.2%
[23] Indoor 30 100 98.4%
[41] Indoor 54 698 84.6%
[42] Indoor 7 800 99.0%

The test sets included more than 1000 packets per DUT
and more than 1000 packets for each rogue device (DUT:
”Attacker 1” to ”Attacker 5”). No training set packets were
used in the test sets.

Fig. 6 shows the ROC curves for the indoor experiments.
The proposed PA nonlinearity quotient and transfer learning
classifier outperformed the deep learning and spectrogram-
based classifier, with an AUC value of 0.992 compared to
0.939. Fig. 7 shows the outdoor experiment results. Similar
to the indoor experiments, the proposed classifier improved
the AUC significantly. The PA nonlinearity quotient was more
robust to environmental changes than the spectrogram, with
larger AUC values in the indoor and outdoor experiments.

VI. CONCLUSION

In this paper, we investigated the technique to make RFFI
resilient to environmental changes. We proposed the PA non-
linearity quotient and transfer learning classifier that miti-
gates channel effects to enhance the RFFI implementation
for device classification and rogue device detection. Exten-
sive experiments, including indoor and outdoor settings, were
developed to evaluate the proposed classifier. The experiment
results demonstrated that the proposed classifier significantly
improved classification accuracy and rogue device detection
for RFFI. The PA nonlinearity quotient outperformed the
spectrogram to enhance RFFI in indoor and outdoor settings.
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