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ABSTRACT

With the rapid deployment of quantum computers and quantum satellites, there is a pressing need to
design and deploy quantum and hybrid classical-quantum networks capable of exchanging classical
information. In this context, we conduct the foundational study on the impact of a mixture of classical
and quantum noise on an arbitrary quantum channel carrying classical information. The rationale
behind considering such mixed noise is that quantum noise can arise from different entanglement
and discord in quantum transmission scenarios, like different memories and repeater technologies,
while classical noise can arise from the coexistence with the classical signal. Towards this end, we
derive the distribution of the mixed noise from a classical system’s perspective, and formulate the
achievable channel capacity over an arbitrary distributed quantum channel in presence of the mixed
noise. Numerical results demonstrate that capacity increases with the increase in the number of
photons per usage.

Keywords Quantum Channel, Classical-Quantum Noise, Hybrid Classical-Quantum System, Classical Information

1 Introduction

The classical capacity of a quantum channel is the maximum possible data rate at which classical information can be
transmitted through a quantum channel. On the other hand, the quantum capacity of a quantum channel is the maximum
data rate at which quantum information can be transferred over a quantum channel. In the former case, only the classical
environment is considered disregarding any quantum effects; in the latter scenario, quantum effects are considered
without any classical world impairments. However, in a realistic communication scenario with quantum links carrying
classical information, both classical and quantum channel effects and uncertainties will be encountered [1].

Classical capacity can be enhanced by exploiting pre-shared entangled states as a connecting resource between two
end-nodes of a communication link. Under ideal conditions, capacity can be doubled by sharing entanglement as
compared to unassisted capacity. The effect of a non-ideal (noisy) channel on the entanglement-assisted classical
capacity of a quantum channel was studied in [2]. However, [2] is limited to a linear channel with Gaussian distributed
input, output and classical noise without accounting for any quantum-domain uncertainties and noise. The same is
the case for Shannon’s bound [3] or Holevo bound [4] or Lloyd-Shor-Devetak (LSD) bound [5], where [3] and [4]
concentrate on classical capacity of quantum channels with Gaussian input states and Gaussian classical noise and [5]
accounts for quantum capacity of a Gaussian quantum channel.

To realize the full potential of quantum communication systems when used to transfer classical information, we need to
encode classical information into a set of quantum states at the input of the quantum channel, and decode those quantum
states back to classical information through measurement at the output of the quantum channel. In this paper, we make
the first ever attempt to answer the generic question of what the capacity of such a channel will be. We assume an
arbitrarily distributed quantum channel, plagued with both classical and quantum noise. We relate the communication
theorist’s concept of classical noise and uncertainties with the physicist’s description of quantum field noise, where
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the relationship is additive. Using this additive relationship, we derive the hybrid noise model mathematically and
calculate the achievable capacity of an arbitrary quantum channel carrying classical information affected by joint
quantum-classical noise and uncertainties.

Channel capacity can be calculated as the maximum number of distinguishable longitudinal modes of a propagating
quantum field, that can arrive at the output of the channel over a certain duration of time and bandwidth of operation.
The longitudinal modes are essentially re-scaled electromagnetic wave functions of a harmonic oscillator, multiplied
by phase factors arising from a specific geometry of the beam of quantum particles (or photons). The amplitude of
a focused paraxial beam (classical electromagnetic equivalent description of a beam of photons) corresponds to the
amplitude of a quantum harmonic oscillator, where the intensity of the classical electromagnetic beam corresponds to
the probability distribution of the quantum oscillator. Therefore in-spite of their difference in spatial and temporal scales,
it is possible to draw an analogy between the paraxial optical wave equation and the stationary and time-dependent
Schrodinger equations [6] guiding the propagation of a quantum field and pre-shared entangled particles, respectively,
as is done in [7], [8].

The paraxial approximation to the scalar Helmholtz equation [6] corresponds to the Schrodinger equation, and the Guoy-
phase of classical wave optics [9] corresponds to the time-coordinate of the quantum harmonic oscillator. Therefore, it
is possible to map the equivalence of the qualitative behavior of the field and intensity distribution of the classical beam,
with the amplitude and the probability distributions of quantum harmonic oscillators and vice-versa. Stemming from
these observations, we bring in the equivalence between quantum and classical noise (uncertainties) only in terms of
their probability distributions, instead of the evolution of the two noise processes in spatial and temporal scales.

The rest of the paper is organized as the following. Section II summarizes different channel capacity formulations for
single Gaussian quantum communication channels. Section III derives classical capacity of an arbitrary noisy quantum
channel from a classical perspective. Section IV demonstrates how the capacity of the noisy channel changes with the
number of photons used per link to exchange classical information. Section V provides concluding remarks on our
work.

2 Single Gaussian Channel Classical Capacity

Owing to the huge randomness in the quantum world and the large variety of channels, modes and conditions that can
exist, it has always been very difficult for scientists to pin down on a single generalized equation for the capacity C of a
quantum channel carrying classical information. The best way forward will be to develop a physical understanding
of the single linear quantum channel capacity before proceeding with a formal development. We can start with the
Shannon’s theorem which quantifies C for a single classical communication channel plagued with additive white
Gaussian noise (AWGN) given as,

Cc = B log2

(
1 +

S

N0B

)
bits/sec (1)

where S is the signal power, B is the channel bandwidth (in Hz) and N0 is the (white) power spectrum of channel
noise (i.e. noise power per Hz). It is worth-mentioning here that the noise is band-limited and the input waveform is
constrained to an ideal lowpass or bandpass bandwidth B. The input and output waveforms are time-limited. The
ratio S/N0 is referred to as the signal-to-noise ratio (SNR) or channel SNR (CSNR) and is an important metric for
classical communication system. The SNR depends not only on the plaguing noise but also on the signal power
available at either end of the channel, where the output signal power is again controlled by the channel properties.
The Shannon bound expressed in (1) is valid only if the probability density function (PDF) of the input and output
waveforms are Gaussian. Intuitively from (1), we can say that there is no limit on C for a classical channel as there is no
bound on the SNR of a classical signal. SNR can only be bounded by the channel properties (h) and the channel noise (n).

The next thing to discuss is how to calculate C for a single quantum channel heuristically. The first step would be to
replace the AWGN with quantum mechanical noise, disregarding the effect of classical information passing through the
channel. Unlike classical signals, the energy contained within the quantum field is bounded and it follows the Einstein’s
relation, E = ℏf where E is the energy contained in the quantum field (quantum-mechanical noise energy), ℏ is the
Planck’s constant and f is the frequency of operation. It is worth-mentioning here that our signal is classical, and the
noise introduced by the quantum channel is quantum-mechanical in nature.

Since the energy content within a quantum field is bounded, the spectral density of quantum-mechanical noise is lower
bounded by N0 ≥ ℏf . Using Shannon’s theorem as the underlying concept, we can write the quantum capacity of a
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linear quantum channel as,

Cq = B log2

(
1 +

S

ℏfB

)
bits/sec. (2)

It is noteworthy here, that though bounded, quantum noise is neither additive nor Gaussian or white. The power spectral
density (PSD) is bounded by the product of the Planck’s constant and the frequency of operation.

Let us go back again to the physical interpretation of (2). Quantum particles (photons or bosons) exhibit wave-particle
duality. That means the bosons used in a quantum channel to transport classical information can exist in both the wave
and the packet regimes, where for the wave-like regime S/ℏfB >> 1 (many bosons/signals per longitudinal mode)
and for the particle-like regime S/ℏfB << 1 (many longitudinal modes per signal). Therefore, for the wave-like
regime, (2) can be modified to express,

Cq−w =
(
rate of transmission of modes

)
× log2

(
maximum number of distinguishablestates per mode

)
= B log2

(
γS

ℏfB

)
bits/sec. (3)

where γ is a constant of order unity. For the particle-like regime, (2) can be modified as,

Cq−p =
(
rate of transmission of bosons

)
× log2

(
maximum number of distinguishablemodes per quantum state

)
=

S

ℏf
log2

(
ℏfB
S

)
bits/sec. (4)

An intuitive conclusion that can be made from (4) is that if ℏ → 0, the particle-like behavior fades away, leaving only
the classical wave-like behavior. We will revisit (3) and (4) a little bit later.

If the noise, input and output waveforms are assumed to be Gaussian distributed, the classical capacity over a Gaussian
quantum channel carrying classical information without entanglement is upper bounded by the Holevo bound [4]. The
Holevo bound is expressed as,

Cc−q =

(
1 +

N(f)B + Sα

ℏfB

)
log2

(
1 +

N(f)B + Sα

ℏfB

)
−

(
N(f)B + Sα

ℏfB

)
log2

(
N(f)B + Sα

ℏfB

)
+

(
N(f)

ℏf

)
× log2

(
N(f)

ℏf

)
−
(
1 +

N(f)B

ℏf

)
log2

(
1 +

N(f)B

ℏf

)
(5)

where N(f)/(ℏf) is the noise PSD and α is the amplification factor of the quantum channel. The quantum capacity of
a class of Gaussian quantum channels with input Gaussian states can be expressed as [5],

Cq−q =max{0, log2 |α| − log2 |1− α|}. (6)

If the transmitter and the receiver pre-share entanglement, then the classical capacity of a Gaussian quantum channel
modifies to [2],

Cq−ce = g(S) + g(S′)− g

(
D + S′ − S − 1

2

)
− g

(
D − S′ + S − 1

2

)
(7)

where S′ is the average output signal energy, D corresponds to the displacement operator capable of extracting magnitude
and associated phase from the complex number representation and D =

√
(S + S′ + 1)2 − 4α2S(S + 1), g(S) is the

entropy of the input and g(S′) is the entropy of the output.

3 Single Arbitrary Channel Classical Capacity

Equations (1) and (2) express the upper bound for channel capacity when classical information is sent over a Gaussian
classical channel, and when quantum information is sent over a Gaussian quantum channel, respectively; considering
that both the channels are linear and the PDFs of the input and output waveforms are Gaussian. Now a bigger question
(and mostly unsolved) is what will happen if we want to send classical information over a quantum channel. If we
assume that the quantum channel is linear and the PDFs of the input and output waveforms of the classical channel are
Gaussian, then heuristically we can write,

Ccqc = B log2

(
1 +

S

BNxy(f)

)
bits/sec. (8)
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Var[N ] =

M∑
i=1

KTni/ℏτ∑
f=0

[
KTn2

i e
− K2T2n4

i
2ℏ2τ2N0B

p!ℏτ
√
2πN0B

(
ℏfτ
KT

)p

e
n2
i f

N0B+ ℏτf
KT − (ℏfτ)2

2N0BK2T2

− K2T 2n2
i e

− K2T2n2
i

ℏ2τ2N0B

p!2ℏ2τ22πN0B

(
ℏfτ
KT

)2p

e
2nif

N0B + 2ℏτf
KT − (ℏfτ)2

N0BK2T2

]
(13)

where Nxy(f) is the Cross-PSD of classical additive white Gaussian noise X and quantum mechanical noise Y . Now a
Gaussian PDF for both the input and output waveforms of the classical information means either a coherent state or a
quadrature-squeezed channel. For coherent channels, classical information at the input is contained in the complex field,
i.e. both the (real) amplitude and phase. At the output, information can be retrieved by measuring both the real and
imaginary parts. Such a measurement will involve non-commuting observables, if received at the end of a quantum
channel. However, such a measurement will only be degraded by quantum noise and conventional quantum uncertainties
of the observables. Therefore coherent channels never represent a quantum channel carrying classical information in
practice. Observables over a practical quantum channel will be degraded by both quantum and classical noise and both
classical and quantum uncertainties (classical uncertainties include random arbitrary phase-space displacement).

Relative to the coherent state channel, the quadrature-squeezed state channel model is even more constrained. Informa-
tion is transmitted over the coherent excitation of only one of the components in the complex plane (either amplitude
(real) or phase (imaginary)). Information is read out only by measuring one of the quadrature states and can be detected
through a homodyne receiver. Quadrature-squeezed state channels are highly impractical as a model, though they are
easy to handle in terms of formulating error-correction, transmission and resource management algorithms. Quantum
uncertainties will be contained in only one quadrature component.

If the measurement of the observables is degraded by both classical and quantum noise, the channel capacity can
heuristically be given by (8). Now if the input and output waveforms have PDFs that follow arbitrary distributions,
the resultant measurement of the observable will be crippled by classical and quantum uncertainties. Let us consider
that the arbitrarily distributed channel envelope is represented by the random variable Z. The channel SNR can then
be expressed as, γ = Z2 S

Nxy(f)
. For a continuous-input continuous-output (memoryless) linear arbitrarily distributed

communication channel, the capacity can be derived in terms of,

Ccqc = Eγ

[
B log2(1 + γ)

]
bits/symbol. (9)

where the expectation is taken over γ. Equation (9) can be rewritten as,

Ccqc =
∫ ∞

0

B log2(1 + γ)fγ(γ)dγ =

∫ ∞

0

B log2

(
1 +

z2S

Nxy(f)

)
fγ

(
z2S

Nxy(f)

)
dγ. (10)

Using transformation of variables we can calculate,

dγ = d

{
z2S

Nxy(f)

}
=

2zS

Nxy(f)
dz. (11)

Putting (11) in (10), we can express the generalized capacity as,

Ccqc =
∫ ∞

0

B log2

(
1 +

z2S

Nxy(f)

)
fZ

(
z2S

Nxy(f)

)
2zS

Nxy(f)
dz =

2BS

Nxy(f)

∫ ∞

0

z log2

(
1 +

z2S

Nxy(f)

)
fZ

(
z2S

Nxy(f)

)
dz

(12)

In order to solve (12), the first step is to derive an expression for the Cross-PSD Nxy(f), which is the cross PSD of the
classical noise X which is Gaussian distributed with zero mean and variance N0B, and the quantum mechanical noise
Y which can be initially assumed to be Poisson distributed. It is worth-mentioning here that, in general, if photons are
considered to be the carrier of quantum information, quantum noise can be assumed to be Poisson distributed [10]. In
that case, the quantum intensity noise can be expressed in terms of its probability mass function (PMF),

fY (y) =
yp

p!
e−y (14)

where Y = ℏfτ
KT , p is the number of photons travelling over a time interval 0 ≤ t ≤ τ , f is the frequency at which

photons are emitted or transmitted, K is the Boltzmann’s constant, and T is the temperature of operation. The PDF of
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Nxy(f) = NN (f) =

∫ ∞

−∞
Var[N ]e−j2πftdt =

M∑
i=1

KTni/ℏτ∑
f=0

[
KTn2

i e
− K2T2n4

i
2ℏ2τ2N0B

p!ℏτ
√
2πN0B

(
ℏfτ
KT

)p
e

n2
i f

N0B+ ℏτf
KT − (ℏfτ)2

2N0BK2T2

j2πf

− K2T 2n2
i e

− K2T2n2
i

ℏ2τ2N0B

p!2ℏ2τ22πN0B

(
ℏfτ
KT

)2p
e

2nif

N0B + 2ℏτf
KT − (ℏfτ)2

N0BK2T2

j2πf

]
(17)

Figure 1: Variation of the normalized noise power
with frequency of operation where the classical noise
bandwidth B = 10KHz and 1000 photons are travers-
ing in unit time.

Figure 2: Variation of the normalized noise power with
temperature T in degree Kelvin where f = 100 MHz and
1000 photons are traversing in unit time.

the classical AWGN on the other hand can be given by,

fX(x) =
1√

2πN0B
e−

x2

2N0B . (15)

To compute Nxy(f), we need to find the variance of the joint variable representing the combined classical and quantum
noise. We know that classical noise is additive. If quantum noise is also assumed to be additive, the joint noise variable
can be given by,

N := X + Y. (16)
Noise can be modelled as the complex interaction between each particle of the medium and the rest of the system.

Noise within any medium is a consequence of the large number of statistically independent interactions of the particles
with the wave, or particles (molecules/quantum particles) that are propagating through the medium. Using Planck’s
radiation law and the concept of linear Stoke’s friction, any kind of noise can be expressed as an additive phenomenon,
A(= a1 + a2 + . . .+ aj + . . .+ aN ), where, aj can be derived from a distribution with zero mean and variance equal
to a random number derived from the fluctuation-dissipation theorem [11]. Possible distributions from which aj can be
derived are α- stable Lévy type [12], Laplace distribution [13], Gaussian distribution, or Poisson distribution.

Combination of classical and quantum noise can take any form, such as additive N = X + Y , or multiplicative
N = X ∗ Y , or classical noise being a function of quantum noise, N = X(Y ). In this paper, we will consider the
joint classical-quantum noise to follow an additive combination. In order to calculate the joint PDF, fN (n), we have
to combine a discrete random variable with a continuous random variable. We can start by finding the cumulative
distribution function (CDF) as,

FN (n) = P (N ≤ n) = P (X + Y ≤ N ) =
∑
y

P (X ≤ N − Y )PY (y) =
∑
y

FX(n− y)PY (y) (18)

The PDF can be derived from (18) as,

fN (n) =
d

dn
FN (n) =

d

dn

∑
y

FX(n− y)PY (y) =
∑
y

d

dn
FX(n− y)PY (y) =

∑
y

fX(n− y)PY (y). (19)

where N is a hybrid continuous discrete variable. Putting (14) and (15) back in (19), we can express the PDF of the
joint noise variable as,

fN (n) =

n∑
y=0

e−n2/2N0B

p!
√
2πN0B

ype
ny

N0B+y− y2

2N0B =

n∑
y=0

e−n2/2N0B

p!
√
2πN0B

(
ℏfτ
KT

)p

e

(
n

N0B+1
)

ℏfτ
KT − (ℏfτ)2

2N0BK2T2 . (20)
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Figure 3: PDF of the noise envelope with varying photon numbers traversing per use with B = 10KHz, f = 100MHz
and T = 290K, i.e. room temperature.
Using the change of variables, we can express (20) as,

fN (n) =

KTn/ℏτ∑
f=0

e
− K2T2n2

2ℏ2τ2N0B

p!
√
2πN0B

(
ℏfτ
KT

)p

e
nf

N0B+ ℏτf
KT − (ℏfτ)2

2N0BK2T2 . (21)

Using the initial PDF expression of mixed noise in (20), we can derive the mean, second moment and variance of N as,

E[N ] =

M∑
i=1

niP (N = ni) =

M∑
i=1

ni∑
y=0

nie
−n2

i /2N0B

p!
√
2πN0B

ype
niy

N0B+y− y2

2N0B (22)

E[N 2] =

M∑
i=1

ni∑
y=0

n2
i e

−n4
i /2N0B

p!
√
2πN0B

ype
n2
i y

N0B+y− y2

2N0B (23)

Var[N ] =

M∑
i=1

ni∑
y=0

[
n2
i e

−n4
i /2N0B

p!
√
2πN0B

ype
n2
i y

N0B+y− y2

2N0B − n2
i e

−n2
i /N0B

p!22πN0B
y2pe

2niy

N0B+2y− y2

N0B

]
(24)

and the variance of N can be expressed in terms of the frequency of operation f as in (13), by a change of variable. The
PSD of N can be calculated by applying the Fourier Transform to Var[N ], to obtain (17) where p is the average number
of photons per use, p = S/ℏfB. If p is the average number of photons per second per Hz, the average transmission rate
is Bp, and hence the average input power to the channel is given by, S = Bℏfp and the average number of photons per
use p = S/ℏfB is the most crucial dimensionless quantity. The capacity with Gaussian input and output therefore can
be obtained by putting (17) back in (8).

4 Numerical Results and Discussions

In this section, we demonstrate how our developed joint classical-quantum noise power changes with different factors
affecting it, and how its behaviour shifts between the dominant classical and quantum regimes depending on the
environmental parameters. Based on the noise samples generated by the PDF in (21), we also portray how the upper
bound on channel capacity changes when classical information is sent over an arbitrarily distributed quantum channel.
We start by deciding on the number of noise samples we generate, i.e., M = 10. We choose a large enough M so
that the noise PDF exhibits similar characteristics on an average over the entire range of frequency, temperature and
bandwidth of operation.

The first set of curves (Fig. 1) are generated by varying the normalized noise power with frequency and at different
temperatures. Noise power increases with frequency; however the rate of increase slows down with the increase in
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Figure 4: Achievable Capacity with increasing average unit signal-to-noise per bandwidth ratio with B = 10KHz,
f = 100MHz and T = 290K, i.e. room temperature.

temperature. The reason can be attributed to the fact that at lower temperatures, the noise PSD is the mean-squared
current fluctuation per unit bandwidth. At higher temperatures, the noise samples start behaving closer to the quantum
shot noise regime which becomes frequency-independent and linearly proportional to the current.

A very similar effect is visible when noise is varied with temperature where the rate of increase in noise power shows
downward trend with increase in bandwidth (refer to Fig. 2). Using the relation, Nxy(f) ∝ ⟨∂I(f)2⟩/B where I(f) is
the current fluctuation due to frequency, we can see that the noise PSD is inversely proportional to the bandwidth. This
inverse relationship with bandwidth results in the slow hike in noise power with temperature increase. For both the
results in Fig. 1 and Fig. 2, we used a moderate number of photons per use, i.e., p = 1000.

The third set of results are generated by plotting the PDF of Nxy . By varying the photon number per use, we generated
the PDFs and we can see quite a bit of difference in characteristics as we move from a moderate p to a large p. When p
is moderate, we see the noise behavior dominated by the classical Gaussian characteristics with an impulse-like nature,
narrower at the top and wide at the bottom. When p increases, the noise is dominated by the Poisson light-like quantum
characteristics with small humps appearing at the tail. The plots in Fig. 3 therefore validate the fact that the noise
characteristics is highly dominated by the average number of photons per use.

With the increase in p, the average input power to the channel S = Bℏfp increases, which results in an increase in
channel capacity per unit bandwidth, as is evident in Fig. 4. However, the channel capacity obtained in presence of both
classical and quantum noise is way lower than is achievable over standard classical or quantum communication channel.
This leaves us with the possibility to explore different parameters, like frequency of operation, system bandwidth,
temperature, relation between classical and quantum-domain uncertainties etc., that will effect the capacity and can be
tuned to optimize achievable capacity.

Since in this paper we are looking at the quantum channel from the classical perspective, let us look at how the Shannon
bound on the classical channel capacity will numerically compare with our derived capacity of a quantum channel
carrying classical information. Classical Shannon’s capacity can be calculated from (1). That means for S/N0 = 30
dB, and B = 10 KHz, Cc/B = log2(1 + S/(N0B)) = log2(1.1) ∼ 0.14 bits/sec/Hz. From Fig. 4, for p = 1000/use,
Ccqc/B = 0.05 bits/sec/Hz and for p = 2000/use, Ccqc/B = 0.095 bits/sec/Hz. This scenario can be interpreted as
the region where we can play with the number of photons that can possibly be used to carry the information. We can
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consider the Shannon classical capacity as the achievable upper bound which can be reached by controlling the number
of photons and the signal bandwidth.

5 Conclusions

In this paper, we have studied the mixture of classical and quantum noise and uncertainties observed when classical
information is exchanged over a quantum link. We have calculated the capacity of such links under the assumption that
the mixture of classical and quantum noise is additive. We also assume that the probability distribution of the additive
mixture is possible to derive, even if the evolution of the classical and quantum noise processes are different in spatial
and temporal scales. We also demonstrated the impact of different factors on the additive noise mixture model, and
the achievable capacity over an arbitrary quantum channel in presence of the mixed noise. Numerical results reveal
that noise power increases with frequency and decreases with bandwidth. Temperature also plays an important role
in the noise behavior, where the noise starts behaving closer to quantum shot noise with an increase in temperature.
The number of photons used per link also has a considerable impact on channel capacity, where the capacity can be
enhanced with the increase in the photon number per usage.
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