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Abstract—Targeting high-throughput and low-power commu-
nications, we implement two successive cancellation (SC) de-
coders for polar codes. With 16nm ASIC technology, the area
efficiency and energy efficiency are 4Tbps/mm2 and 0.63pJ/bit,
respectively, for the unrolled decoder, and 561Gbps/mm2 and
1.21pJ/bit, respectively, for the recursive decoder. To achieve
such a high throughput, a novel code construction, coined as
fast polar codes, is proposed and jointly optimized with a
highly-parallel SC decoding architecture. First, we reuse existing
modules to fast decode more outer code blocks, and then modify
code construction to facilitate faster decoding for all outer code
blocks up to a degree of parallelism of 16. Furthermore, parallel
comparison circuits and bit quantization schemes are customized
for hardware implementation. Collectively, they contribute to an
2.66× area efficiency improvement and 33% energy saving over
the state of the art.

Index Terms—Fast polar codes, Tbps communication, fast
decoding, recursive decoder, unroll decoder.

I. INTRODUCTION

A. Motivations and Background

Higher throughput has always been a primary target along

the course of mobile communications evolution. Driven by

high data rate applications such as virtual/augmented reality

(VR/AR) applications, the sixth generation wireless technol-

ogy (6G) requires a peak throughput of 1Tbp/s [1]. This is

roughly a 50× ∼ 100× increase over the 10 ∼ 20Gbp/s target

throughput for 5G standards.

To support such a high data rate, we need to propose

new physical layer design to further reduce implementation

complexity, save energy, and improve spectral efficiency. This

is particularly true when the peak throughput requirement

is imposed on a resource constrained (limited processing

power, storage, and energy supply etc.) device. Since channel

coding is well-known to consume a substantial proportion of

computational resources, it poses a bottleneck for extreme

throughput. To this end, channel coding is one of the most

relevant physical layer technologies in order to guarantee

1Tbp/s peak throughput for 6G.

Polar codes, defined by Arıkan in [2], are a class of linear

block codes with the generator matrix GN of size N , defined

by GN , F⊗n, in which N = 2n and F⊗n denotes the n-th
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Kronecker power of F = [ 1 0
1 1 ]. Successive cancellation (SC)

is a basic decoding algorithm for polar codes.

Although the SC decoding algorithm seems unsuitable for

high-throughput applications due to its serial nature, state-of-

the-art SC decoders [3] [4] [5] [6] [7] managed to significantly

simplify and parallelize the decoding process such that the

area efficiency of SC decoding has far exceeded that of belief

propagation (BP) decoding for low-density parity-check codes

(LDPC). In particular, these works represent SC decoding

as a binary tree traversal [3], as shown in Fig. 1(a). Each

subtree therein represents a shorter polar code. The original

SC decoding algorithm traverses the tree by visiting all the

nodes and edges, leading to high decoding latency. Simplified

SC decoders can fast decode certain subtrees (shorter polar

codes) and thus “prune” those subtrees. The resulting decoding

latency is largely determined by the number of remaining

edges and nodes in the pruned binary tree. Several tree-pruning

techniques have been proposed in [3], [8] and [9]. To achieve

1Tbp/s throughput, more aggressive techniques need to be

proposed on both the decoding and encoding sides.

B. Contributions

This paper introduces a novel polar code construction

method, coined as “fast polar codes”, to facilitate parallelized

processing at an SC decoder. In contrast to some existing

decoding-only techniques, we take a joint encoding-decoding

optimization approach. Similar to existing methods, our main

ideas could be better understood from the binary tree traversal

perspective. They are (a) pruning more subtrees, (b) replacing

some non-prunable subtrees with other fast-decodable short

codes of the same code rates and then prune these “grafted”

subtrees, (c) eliminating the remaining non-prunable subtrees

by altering their code rates. As seen, both (b) and (c) involve

a modified code construction. Consequently, we are able to

fast decode any subtree (short code) of a certain size, without

sacrificing parallelism.

The algorithmic contributions are summarized below:

1) We introduce four new fast decoding modules for nodes

with code rates { 2
M , 3

M , M−3
M , M−2

M }. Here M = 2s

is the number of leaf nodes in a subtree, where s is

the stage number. These nodes are called dual-REP

(REP-2), repeated parity check (RPC), parity checked

repetition (PCR), dual-SPC (SPC-2) nodes, respectively.

More importantly, these modules reuse existing decod-

ing circuits for repetition (REP) and single parity check

(SPC) nodes.

http://arxiv.org/abs/2107.08600v1
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Fig. 1. (a) decoding architecture as a binary tree; (b) node v received/response
information

2) For medium-code-rate nodes that do not natively support

fast decoding, we graft two extended BCH codes to

replace the original outer polar codes. BCH codes enjoy

good minimum distance and natively support efficient

hard-input decoding algorithms, thus strike a good bal-

ance between performance and latency. The extension

method is also customized to enhance performance.

3) We propose to re-allocate the code rates globally, such

that all nodes up to a certain size support the above

mentioned fast decoding algorithms. This approach com-

pletely avoids the traversal into certain “slow” nodes.

For code length N = 1024 and code rate R = 0.875,

the proposed fast polar codes enable parallel decoding of all

length-16 nodes. The proposed decoding algorithm reduces

55% node visits and 43.5% edge visits from the original polar

codes, with a cost of within 0.3dB performance loss. Two

types of decoder hardware are designed to evaluate the area

efficiency and energy efficiency.

The implementation-wise contributions are summarized be-

low:

1) We design a recursive decoder to flexibly support any

code rates and code lengths N ≤ 1024. This de-

coder layout area is only 0.045mm2. For code length

N = 1024 and code rate R = 0.875, it achieves a

25.6Gbp/s code bit throughput, with an area efficiency

of 561Gbps/mm2.

2) We also design an unrolled decoder that only supports

one code rate and code length. The decoder layout

area is 0.3mm2. For code length N = 1024 and code

rate R = 0.875, it provides a 1229Gbp/s code bit

throughput, with an area efficiency of 4096Gbps/mm2.

II. FROM SIMPLIFIED SC DECODING TO FAST POLAR

CODES

Following the notations in [3], a node v in a tree is directly

connected to a parent node pv, left child node vl and right

child node vr, respectively1. The stage of a node v is defined

by the number of edges between node v and its nearest leaf

node. All leaf nodes are at stage s = 0. The set of nodes

of the subtree rooted at node v is denoted by Vv . Thus Vroot

denotes the full binary decoding tree. The set of all leaf nodes

1A leaf node vleaf has no child node, and a root node vroot has no parent
node.

is denoted by U , the index of a leaf u [3] is denoted by l(u),
and the indices of U is denoted by l(U). Meanwhile, the set of

the leaf nodes in subtree Vv is denoted by Uv, and the indices

of Uv is denoted by l(Uv).
The set of all information bit positions is denoted by I and

that of all frozen bits by Ic. The set of the information bit

positions in subtree Vv is denoted by Iv and the remaining

frozen bit positions therein by Ic
v .

A. Simplified SC Decoding

If Ic
v matches patterns, a so-called pattern-based simplified

decoding can be triggered to process the node in parallel rather

than bit-by-bit. From the binary tree traversal perspective, all

the child nodes of v do not need to be traversed. Thus decoding

latency is reduced.

The existing so-called pattern-based simplified decoding

includes 4 different types. A node v is a Rate-1 node [3] if all

leaves in the subtree Vv are information bits, and a Rate-0 node

[3] if all leaves in the subtree Vv are frozen bits. To improve

the decoder’s efficiency, [8] defines single parity check (SPC)

and repetition (REP) nodes. We can employ pattern-specific

parallel processing for each type of nodes. Obviously, we

need to identify and exploit more special nodes or patterns

for latency reduction.

In this paper, we present four new types of corresponding

nodes:

• Define a node v as a dual-SPC (SPC-2) node if Vv

includes only two frozen bits, and the frozen bits indices

are the two smallest in l(Uv).
• Define a node v as a dual-REP (REP-2) node if Vv

includes only two information bits, and the information

bits indices are the two largest in the l(Uv).
• Define a node v as a repeated parity check (RPC) node

if Vv includes only three frozen bits, and the frozen bits

indices are the three smallest in the l(Uv).
• Define a node v as parity checked repetition (PCR)

node if Vv includes only three information bits, and the

information bits indices are the three largest in the l(Uv).

We describe their corresponding fast decoding methods in

Section III.

Pattern-based simplified decoding skips the traversal of

certain subtrees when it matches the above patterns.

Currently, there are eight pattern types to cover eight code

rates of a sub tree: {0, 1
M , 2

M , 3
M , M−3

M , M−2
M , M−1

M , 1}. In

other words, nodes with other code rates cannot be fast

decoded. We need to work on the following two parameters.

1) Ratio of simplified nodes: currently eight out of the

M +1 code rates support simplified decoding. The ratio

is thus 8
M+1 . Note that only the lowest and highest codes

rates can be simplified, meaning code rates between
3
M and M−3

M do not benefit from the fast decoding

algorithm. For short and medium length codes, many

nodes fall into this range due to insufficient polarization.

We hope to further reduce latency by introducing more

fast-decodable patterns to cover more code rates.

2) Degree of parallelism: it can be represented by M , since

the M bits in a simplified node are decoded in parallel.
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The larger M is, a larger proportion of the binary tree

can be pruned due to simplified decoding. we hope to

increase M for higher throughput as well.

For M = 8, the ratio of simplified nodes is 8/9, with only

one code rate 4
8 unsupported, but the degree of parallelism is

only 8. For M = 16, the ratio of simplified nodes reduces

to 8/17, leaving a wide gap of nine unsupported code rates
4
16 , ...,

12
16 , but the degree of parallelism doubles.

B. BCH node

To cover medium code rates, we need to find some patterns

which can be fast decoded with good BLER performance.

The bad news is, to the best of our knowledge, there exists

no parallel decoding method for polar codes with code rates

between 3
M and M−3

M . The good news is that the outer codes

represented by a subtree can be replaced by any codes, as

shown in many previous works [10] [11] [12]. A good solution

is removing the polar nodes with code rate falling into the gap,

and grafting a different code that allows fast decoding.

BCH codes are good candidates due to their good minimum-

distance property and fast hard-input decoding algorithms.

If the error correcting capability is t, it is easy to design

BCH codes whose minimum Hamming distance is larger than

2× t. This leads to good BLER performance. Meanwhile, the

Berlekamp-Massey (BM) algorithm can decode a BCH code

with t = 1 or t = 2 within a few clock cycles. When grafted to

polar codes as fast-decodable nodes, hard decisions are applied

to the LLRs from the inner polar codes (parent nodes) before

sending to the outer BCH codes (child nodes). Here the BCH

codes are called “BCH nodes”.

But BCH codes do not readily solve our problem. They

only support a few code rates and code lengths, meaning they

cannot cover all the codes rates within the gap. For the degree

of parallelism M = 16, the target code length is 24, so the

nearest code length of BCH is 15. Meanwhile, BCH codes

only support code rates 7
15 and 11

15 within the gap and the

corresponding number of information bits are k = 7, k = 11.

To overcome the issues, we first extend the code length to

16 bits. For the BCH codes with k = 7 and t = 2, the original

codes can correct two error bits. We add an additional bit to

be the parity check of all BCH code bits. The proposed two-

step hard decoding works as follows. When the hard decision

incurs three bit errors, and one of the errors has the minimum

amplitude, the SPC bit can help correct one error bit first.

Then the remaining two error bits can be corrected by the

BM algorithm. But the same SPC extension no longer works

for BCH codes with k = 11 and t = 1. The reason is as

follows. If there are two or more bit errors in the node, the

SPC function and BM algorithm both fail. Else if there is one

error, the failure of SPC decoding will lead to more errors

during BM decoding. Instead of SPC extension, we repeat

one BCH code bit to improve its reliability.

Now that we have grafted two types of BCH nodes, the

pattern-based decoding can support 10 code rates. The ratio

of simplified nodes increases to 10/17, and the maximum gap

reduces to 4
16 . Figure 3 shows the code rates supported by

pattern-based decoding for degree of parallelism M = 16.

15 14 13 1116 7 3 2 1 0

R1
SPC

SPC2
RPC

R0
REP

REP2
PCRBCH 

M4T1
BCH 

M4T2

Code Rate Gap Before Grafting BCH

Maximum Code Rate Gap 

After Grafting BCH

Original fast-decodable nodes (rates)

Newly supported nodes (rates)

Grafted BCH Nodes

Unsupported code rates

7 Information number In Pattern

Fig. 2. Nodes (code rates) supporting fast decoding for degree of parallelism
M = 16.

C. Fast polar codes via rate re-allocation

Even with the inclusion of BCH nodes, the fast decoding

algorithm could not cover all the code rates of length-16

subtrees. As the second part of the solution, we propose to

construct fast polar codes to avoid the “slow” nodes, and only

use the existing ten patterns. Here “fast” resembles that of fast

SC decoding but is achieved by altering the code construction

instead of decoding. We show that it greatly reduces decoding

latency and increases throughput with only slight performance

loss.

The following steps show how to construct fast polar codes

only with node patterns of discontinuous code rates:

1) Employ traditional methods such as Gaussian approxi-

mation (GA) or polarization weight (PW) to build polar

codes with the parameter of code length N and code

rate R.

2) Split all N synthesized sub-channels to N/16 segments.

Each segment constitutes a 16-bit long block code, or

equivalently a subtree with 16 leaf nodes.

3) Find out all “slow” segments which do not match the

supported code rates or patterns. Re-allocate the code

rates among segments to match the nearest supported

code rate or pattern, which has K information bits.

4) If the number of information bits of the current segment

exceeds or fall short of K , we remove or add a few

information bits according to reliability. Apply this pro-

cess to the remaining “slow” segments until all segments

become fast-decodable.

The resulting code is coined as “fast polar code”. A detailed

description of the construction algorithm for fast polar codes

can be found in Appendix A.

Take code length N = 1024, code rate R = 0.875 as

an example, we count the number of fast-decodable nodes

to be visited, f+/−-functions [13] to be executed and edges

to be traversed. These numbers provide a good estimate of

SC decoding latency [3] [8], and are thus used to compare

between the construction proposed in this section and the GA

construction in Table I. As seen, the traversed nodes and edges

reduce by 55% and 43.5% , respectively, while the f+/−-

function executions reduce only by 8.9%. Note that the former

two parameters have a greater influence than f+/−-functions

because it cannot be parallelized in any form.
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TABLE I
COMPARISON OF TRAVERSED NODES, EDGES AND EXECUTED f+/−

BETWEEN GA CONSTRUCTION AND THE PROPOSED FAST POLAR CODE

CONSTRUCTION

Distribution of fast-decodable nodes

GA Construction Fast Polar Code Construction

Rate-1 4 SPC 20 Rate-1 2 SPC 9

SPC-2 2 RPC 0 SPC-2 1 RPC 0

PCR 1 REP-2 1 PCR 3 REP-2 1

REP 11 Rate-0 1 REP 1 Rate-0 1

BCH t=1 0 BCH t=2 0 BCH t=1 3 BCH t=2 2

Count with respect to binary tree traversal

GA Fast Reduction(%)

Nodes 40 22 55%

f+/− 4160 3792 8.9%

edges 76 43 43.5%

EsN0
4 6

B
LE

R

10-2

10-1

100
R=0.75

GA
Fast Polar

EsN0
4 6

10-2

10-1

100
R=0.8125

GA
Fast Polar

EsN0
4 6

10-2

10-1

100
R=0.875

GA
Fast Polar

EsN0
6 8

10-2

10-1

100
R=0.9375

GA
Fast Polar

Fig. 3. BLER Performance comparison between GA and fast polar code
construction.

It is worth noting that the proposed fast polar code construc-

tion algorithm reallocates the code rates of some nodes against

their actual capacity derived from channel polarization. This

inevitably incurs BLER performance loss. To evaluate the loss,

we run simulations and Fig. 3 compares the BLER curves of

both constructions under code length N = 1024, and code

rates R = {0.75, 0.8125, 0.875, 0.9375}. There is a maximum

of 0.3dB loss at BLER 10−2 between GA polar codes and the

fast polar codes when adopting QPSK modulation.

III. FAST DECODING ALGORITHMS

In this section, we describe the algorithms to support fast

decoding of the newly defined SPC-2, REP-2, RPC and PCR

nodes. For BCH nodes, we employ the classic BM algorithm

which takes hard inputs and supports hardware-friendly fast

decoding.

Each fast-decodable node v at stage s can be viewed as an

outer code of length M = 2s. The code bits of v as an outer

code are denoted by Xv, with M bits.

A. SPC-2

For a dual-SPC node v, we divide its code bits Xv into two

groups, Xeven
v whose indices are even numbers, and Xodd

v

whose indices are odd numbers. According to the definition

of an SPC-2 node, there are two parity-check bits in the subtree

Vv , and the corresponding parity functions p[0] and p[1] can

be written as
{

p[0] :
⊕

x = 0, x ∈ Xv

p[1] :
⊕

x = 0, x ∈ Xodd
v

We add the two parity functions to get a parity function p[2]:

p[2] = p[0]⊕ p[1] :
⊕

x = 0, x ∈ Xeven
v

Since the two parity functions p[1] and p[2] involve two

disjoint sets of code bits, the decoding of an SPC-2 node can

be parallelized to two SPC nodes. Each SPC node inherits half

of the elements from Xv . We can reuse two SPC decoding

modules to fast decode an the SPC-2 node.

B. REP-2

For a dual-REP node v, we divide its code bits Xv into two

groups, Xeven
v whose indices are even numbers, and Xodd

v

whose indices are odd numbers. According to the definition

of an REP-2 node, there are two information bits in the subtree

Vv . They are denoted by uM−2 and uM−1.

It can be easily verified that Xodd
v are the repetition of uM−1

and Xeven
v are the repetition of uM−2 ⊕ uM−1. Accordingly,

we can divide a length-M dual-REP node into two M/2 REP

nodes. We can reuse two REP decoding modules in parallel

to fast decode a the REP-2 node.

C. RPC

For an RPC node v, we divide its code bits Xv into four

groups as follows:

X i
v = {x ∈ Xv,mod(l(x), 4) = i}, i ∈ {0, 1, 2, 3} (1)

According to the definition of an RPC node, there are three

parity-check bits in the subtree Vv , and the parity functions

p[0], p[1] and p[2] can be written as






p[0] :
⊕

x = 0, x ∈ X0
v ∪X1

v ∪X2
v ∪X3

v

p[1] :
⊕

x = 0, x ∈ X1
v ∪X3

v

p[2] :
⊕

x = 0, x ∈ X2
v ∪X3

v

We add the latter two parity functions to get parity function

p[3]:

p[3] = p[1]⊕ p[2] :
⊕

x = 0, x ∈ X1
v ∪X2

v

And add this parity function to the first one to get parity

function p[4]:

p[4] = p[0]⊕ p[3] :
⊕

x = 0, x ∈ X0
v ∪X3

v

We define ĉi =
⊕

x, x ∈ X i
v, i ∈ [0, 1, 2, 3]. According to

parity functions p[1] to p[4], one can easily verify that the

following relationship holds:

ĉ1 ⊕ ĉ3 = ĉ2 ⊕ ĉ3 = ĉ1 ⊕ ĉ2 = ĉ0 ⊕ ĉ3 = 0 (2)
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Equation (2) implies the existence of a virtual repetition code

of rate 1
4 , because:

ĉ0 = ĉ1 = ĉ2 = ĉ3 = 0

or

ĉ0 = ĉ1 = ĉ2 = ĉ3 = 1

where ĉ0, ĉ1, ĉ2, ĉ3, are the virtual repeated code bits.

Given the above knowledge, the decoding algorithm for an

RPC node at stage s where s ≤ 2, can be easily derived as

Algorithm 1, in which sig(α) ,

{

0, α ≥ 0
1, α < 0

.

Algorithm 1 Decoding a repeated parity check (RPC) node.

Input:

The received signal αv = {αvk , k = 0 · · ·M − 1};

Output:

The codeword to be recovered: x̂ = {x̂k, k = 0 · · ·M−1};

1: Initialize: ∆0 = 0,∆1 = 0
2: Initialize: δi = ∞, ci = 0, pi = 0 for i = 0 · · · 3;

3: Initialize: x̂k = sig(αvk) for k = 0 · · ·M − 1;

4: for i = 0 · · · 3 do

5: for j = 0 · · ·M/4 do

6: k = j × 4 + i;
7: ci = ci ⊕ sig(αvk);
8: if |αvk | < δi
9: pi = k;

10: δi = |αvk |;
11: end for

12: if ci = 1
13: ∆0 = ∆0 + δi
14: else

15: ∆1 = ∆1 + δi
16: end for

17: for i = 0 · · · 3 do

18: if((∆0 > ∆1) ∩ (ci = 0)) ∪ ((∆0 < ∆1) ∩ (ci = 1))
19: x̂pi

=∼ x̂pi

20: end for

D. PCR

For a PCR node v, we divide its code bits Xv into four

groups in the same way as in (1). According to the definition

of an RPC node, there are three information bits in this node.

They are denoted by uM−3, uM−2 and uM−1.

We define ci, i ∈ {0, 1, 2, 3} according to the following

equation

[c0 c1 c2 c3] = [0 uM−3 uM−2 uM−1]×G4 (3)

It can be easily verified that X0
v are the repetition of c0,

X1
v are the repetition of c1, X2

v are the repetition of c2, and

X3
v are the repetition of c3. Thus, we divide the input signal

αv into four groups according the indices and combine the

input signals within each group into four enhanced signals

∆i, i ∈ {0, 1, 2, 3}, as in an REP node.

Equation (3) implies the existence of a virtual single parity

check code of rate 3
4 , with virtual code bits ci, i ∈ {0, 1, 2, 3},

so we can reuse SPC module to decode it. A detailed descrip-

tion of PCR decoding is given in Algorithm 2.

Algorithm 2 Decoding a parity checked repetition (PCR)

node.
Input:

The received signal αv = {αvk , k = 0 · · ·N − 1};

Output:

The codeword to be recovered: x̂ = {x̂k, k = 0 · · ·N−1};

1: Initialize: ∆i = 0 for i = 0 · · · 3;

2: for i = 0 · · · 3 do

3: for j = 0 · · ·N/4 do

4: k = j × 4 + i
5: ∆i = ∆i + αvk

6: end for

7: end for

8: {ĉ0, ĉ1, ĉ2, ĉ3} = SPC DEC({∆0,∆1,∆2,∆3})

9: for i = 0 · · · 3 do

10: for j = 0 · · ·N/4 do

11: k = j × 4 + i
12: x̂k = ĉi
13: end for

14: end for

IV. HARDWARE IMPLEMENTATION

We designed two types of hardware architectures to verify

the performance, area efficiency and energy efficiency.

• Recursive Decoder: It supports flexible code length and

coding rates of mother code length N from 32 to 1024
with the power of 2. With rate matching, flexible code

length with 0 < N ≤ 1024 and code rate with 0 < R ≤ 1
are supported. The f+/− functions in nodes are processed

by single PE (processing element) logic, and one decision

module to support all 9 patterns2. The decoder processes

one packet at a time.

• Unrolled Decoder: It only supports a fixed code length

and code rate. In our architecture we hard coded code

length N = 1024, and code rate R = 0.875. This fully

unrolled pipelined design combines exclusive dedicated

PEs to process each f+/− function in the binary tree.

Same to the decision modules that 21 dedicated node

specific logic are implemented to support 21 nodes pat-

terns. With 25 packets simultaneously decoding, thanks

to the unrolled fully utilization of processing logic and

storage, this decoder provides extreme high throughput

with high area efficiency and low decoding energy.

Both the above mentioned decoder implementations adopt

successive cancellation algorithm accelerated by pattern-based

fast decoding. The maximum degrees of parallelization are 128
for SPC and SPC-2 nodes, and 256 for R1 nodes. All other

nodes enjoy a degree of parallelism of 16.

A. Parallel Comparison Circuit

We observe that there are several large SPC nodes in the

right half of the binary tree. As described, these SPC nodes

need to be processed with a higher degree of parallelism to

achieve a higher throughput. The SPC decoding algorithm is

2R0 node is bypassed in SC decoding.
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very simple as follows. First, get the signs of an SPC node’s

input signals, find the minimum amplitude of input signals

and record its position. Then, do a parity check of the signs.

If it passes, then return these signs, else reverse the sign of

recorded minimum-amplitude position and return the updated

signs.

To process a large SPC node, a circuit is required to locate

a minimum amplitude from a large amount of input signals.

The traditional pairwise comparison method requires a circuit

of depth log2(M), where M is the number of amplitudes to

be compared. Finding the smallest among eg., 128 amplitudes

takes 7 steps comparison, considering clock frequency is

at 1Ghz, it is very challenging to meet timing constraints

completing all comparisons in one clock cycle.

We advocate a parallel comparison architecture to replace

the traditional one. For a node v at stage s, its input signals

αv include M = 2s elements, the amplitudes of which are

denoted as [A0 A1 · · · AM−1]. Each amplitude has x-bit

quantization. We fill the x-bit quantized binary vectors into

the columns of a matrix as follows:

[A0 · · · Ai · · · AM−1] =

















b00 · · · b0i · · · b0M−1
...

. . .
...

. . .
...

bj0 · · · bji · · · bjM−1
...

. . .
...

. . .
...

bx−1
0 · · · bx−1

i · · · bx−1
M−1

















Rewrite the matrix with respect to its row vectors ma-

trix and we have [B0 · · · Bj · · · Bx−1]
T

, in which Bj =
[

bj0 · · · bji · · · bjM−1

]

, j ∈ {0, 1 · · ·x − 1} is a row vector.

Bj can be represented as an M -bit variable. We propose

Algorithm 3 to find out the minimum-amplitude position

through a reverse mask D, in which the bit “1” indicates the

minimum.

Algorithm 3 Parallel Comparison Algorithm.

Input:

The received signal αv = {αvk , k = 0 · · ·M − 1};

Output:

The Reverse Mask: D is an M -bit Variable;

1: Initialize: [B0 · · · Bj · · · Bx−1]
T

from αv;

2: Initialize: An N -bits variable C = 0, .

3: for j = x− 1 · · · 0 do

4: M -bit Variable E = (C|Bj)
5: if(Not all bits in E are “1”)

6: C = E
7: end for

8: Reverse Mask D =∼ C

The parallel comparison algorithm reduces the comparison

logic depth from log2(M) to 1. But the reverse mask D may

have two or more minimum positions. That means the input

signals αv include two or more minimum amplitudes. It must

generate an error if there are two minimum amplitudes. To

avoid this error occur, we can apply an additional circuit to

ensure the uniqueness of the selected minimum position.
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Fig. 4. Performance comparison between Floating Point and Fixed Point.

B. Bit quantization

An attractive property of polar codes is that SC decoding

works well under low-precision quantization (4 bits to 6 bits).

Lower precision quantization is the key to higher throughput,

as it effectively reduces implementation area and increases

clock frequency.

There are two types of quantization numbers, one is for

channel LLR and the other is for internal LLR. We first

test the case with 6-bit input quantization and 6-bit internal

quantization. According to Fig 4, this setting achieves the

same performance as floating-point. The second one is 5-bit

quantization/5-bit internal quantization. It incurs < 0.1dB loss.

Finally, 4-bit input quantization/5-bit internal quantization

incurs < 0.2dB loss. In this paper, we evaluate the physical

implementation result under 5-bit quantization both input and

internal signals to strike a good balance between complexity

and throughput.

At the same time, we also compare the BLER performance

between the original SPC and parallelized SPC. None of the

quantization schemes yields harmful loss.

C. Layout View

We carry out the two physical implementations for both the

recursive and unrolled architecture.

With TSMC 16nm technology, the recursive decoder syn-

thesis area is 0.032mm2, the clock frequency is 1.00Ghz.

The decoder’s layout size is 192µm× 234µm = 0.045mm2.

With the same ASIC technology node, the unrolled decoder

synthesis area is 0.17mm2, the clock frequency is 1.20Ghz.

The decoder’s layout size is 500µm × 600µm = 0.3mm2.

Figure 5 shows the two layout graphs of the decoders. Note

that the area of the unrolled decoder is actually much larger

than the recursive decoder.

V. KEY PERFORMANCE INDICATORS

The key performance indicators (KPIs) are reported in this

section. First of all, we evaluate the area efficiency using

equation AreaEff(Gbps/mm2) = Info Size(bits)
Latency(ns)×Area(mm2) .

The recursive decoder takes 40 clock cycles to decoder one

packet under fast polar code construction with code length
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TABLE II
COMPARISON WITH HIGH THROUGHPUT POLAR DECODER

Implementation This Work (Unroll) This Work (Recursive) [5] [16] [7]

Construction Fast-Polar Fast-Polar Polar Product-Polar Polar

Decoding Algorithm Fast-SC Fast-SC SC PDF-SC OPSC

Code Length 1024 1024 32768 16384 1024

Code Rate 0.875 0.875 0.864 0.864 0.83

Technology All in TSMC 16nm
Clock Frequency(Ghz) 1.20 1.00 1.00 1.05 1.20

Throughtput/Coded-bit (Gbps) 1229 25.6 5.27 139.7 1229

Throughtput/Info-bit (Gbps) 1075 22.4 4.56 120.73 1020

Area/Layout(mm2 ) 0.30 0.045 0.35 1.00 0.79

Area Eff/Coded-bit(Gbps/mm2 ) 4096 561 15.1 139.7 1555

Power(mW ) 784 30.9 - 94 1167

Energy(pJ/bit) 0.63 1.21 - 0.67 0.95

500um

6
0
0
u
m

195um

2
3
4
u
m

Unrolled Decoder

Recursive

Decoder

Fig. 5. Layout Graph of Recursive and Unrolled Decoder under the same
scale.

N = 1024, and code rate R = 0.875. Thus the throughput is

(1024 bits × 1 Ghz)/40 cycles = 25.6Gbps for coded bits,

and ((1024 × 0.875) bits × 1 Ghz)/40 cycles = 22.4Gbps
for information bits. With TSMC 16nm process, the area

efficiency for coded bits is 561Gbps/mm2.

The unrolled decoder takes 25 clock cycles to decoder one

packet. It is fully pipelined, meaning a new packet of decoded

results would be generated continuously every cycle after the

first 25 clock cycles of the first packet processing time. The

throughput is thus 1024 bits × 1.2 Ghz = 1229Gbps for

coded bits, and (1024 × 0.875) bits × 1 Ghz = 1075Gbps
for information bits. With TSMC 16nm process, the area

efficiency for coded bits is 4096Gbps/mm2.

We further evaluate the power consumption and decoding

energy per bit through a simulation in which 200 packets

are decoded. The process, voltage and temperature (PVT)

condition of evaluation is TT corner, 0.8V and 20◦C, and

the resulting of recursive decoder’s power consumption is

30.9mW , and decoding each bit costs 1.21pJ of energy on

average; while the unrolled decoder’s power consumption is

784mW , and decoding each bit costs 0.63pJ of energy on

average.

We also compare the decoding throughput, area efficiency

and power consumption with several high-throughput decoders

in literature, and present the results in Table II. From the

KPIs, we conclude that unrolled decoders are more suitable for

scenarios requiring extremely high throughput but only support

fixed code length and rate; recursive decoders are much

smaller, which are better for resource constrained devices, and

at the same time provides flexible code rates and lengths - a

desirable property for wireless communications.

VI. CONCLUSIONS

In this paper, we propose a new construction of fast polar

codes, which is solely composed of fast-decodable special

nodes at length 16. By viewing the decoding process as a

binary tree traversal, the fast polar codes can reduce 55% of

node visits, 8.9% of f+/− calculation and 43.5% of edge

traversal over the original polar construction at code length

N = 1024, and code rate R = 0.875, at the cost of slight

BLER performance loss.

We implement two types of decoders for the fast polar

codes. The recursive decoder can support flexible code lengths

and code rates, and support code length up to 1024. This

decoder layout area is only 0.045mm2, and can provide

25.6Gbps coded bits throughput, with an area efficiency of

561Gbps/mm2.

The unrolled decoder only supports one code length N =
1024 and one code rate R = 0.875. However, the fully

pipelined structure leads to hardware with ultra-high area

efficiency and low decoding power consumption. This de-

coder layout area is 0.3mm2, and can provide 1229Gbps
code bit throughput, with an area efficiency as high as

4096Gbps/mm2.

These results indicate that fast polar codes can meet the

high-throughput demand in the next-generation wireless com-

munication systems. And the recursive hardware design and

unrolled hardware design can be adopted to satisfy different

system requirements.

APPENDIX

A. Fast Polar Code Construction Algorithm
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Algorithm 4 A method to construct fast polar codes.

Input:

Code length N , information length K , the set of fast-

decodable modes Θ.

Output:

Re-allocate node-wise code rates such that all nodes

support fast decoding.

1: Construct an (N,K) polar code based on GA or PW

methods.

2: Divide the code into segments of length 16 and the number

of segments is denoted by Ns.

3: Progressively refine the code construction as follows. All

the frozen bit positions are intialized as active states and

“active” bit position can be transformed to an informtaion

bit position in the refining process.

4: for t = 1 · · ·Ns do

5: while the t-th segment does not belong to Θ do

6: Denote by i the least reliable information bit position

in the t-th segment.

7: Denote by j the most reliable frozen bit position of

active states in the subsequent segments, and denote

by kj the number of information bits in that segment.

8: if kj ≥ 11 and kj < 16 or kj < 3 then

9: Mark i as a frozen bit position and j as an

information bit position.

10: else

11: Mark j as inactive state.

12: end if

13: end while

14: end for
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