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Abstract—We propose a novel framework to learn how to
communicate with intent, i.e., to transmit messages over a
wireless communication channel based on the end-goal of the
communication. This stays in stark contrast to classical com-
munication systems where the objective is to reproduce at the
receiver side either exactly or approximately the message sent
by the transmitter, regardless of the end-goal. Our procedure is
general enough that can be adapted to any type of goal or task,
so long as the said task is a (almost-everywhere) differentiable
function over which gradients can be propagated. We focus on
supervised learning and reinforcement learning (RL) tasks, and
propose algorithms to learn the communication system and the
task jointly in an end-to-end manner. We then delve deeper into
the transmission of images and propose two systems, one for the
classification of images and a second one to play an Atari game
based on RL. The performance is compared with a joint source
and channel coding (JSCC) communication system designed to
minimize the reconstruction error of messages at the receiver
side, and results show overall great improvement. Further, for
the RL task, we show that while a JSCC strategy is not better
than a random action selection strategy even at high SNRs, with
our approach we get close to the upper bound even for low SNRs.

Index Terms—Semantic/Goal-Oriented Communications, In-
terlligent Air Interface, Integrated Communication and Com-
putation

I. INTRODUCTION

The seminal work by Shannon in 1948 [1] quantifying the
maximum data rate that a noisy communication channel can
support set the foundation of modern communication systems.
In Shannon’s work, all messages were treated equally regard-
less of semantic meaning or final goal of the communication.
This assumption, together with the guarantee that separation of
source and channel coding performs equally as a joint source
and channel coding (JSCC) strategy in the infinite blocklength
regime, motivated the split of the communication and the
application into two independent systems. This principle has
defined the way all communications systems are designed until
today.

But the advent of machines with intelligence and commu-
nication capabilities is starting to reveal the limitations of the
classic theory. Communication systems have been designed up
until now with the objective of reconstructing the messages at
the receiver side with the highest fidelity possible, because a
human has always been assumed to be the ultimate consumer
of information. With machines however, fidelity of recon-
structed messages is not necessarily the most relevant criterion
to guarantee optimal operation. Consider for example a robotic

application where a robot collects sensing information and
sends it to a central server for processing, after which the
output is sent back to the robot. Depending on the task, e.g.
object detection, there are clearly some segments of the sensor
information more relevant for the optimal performance of the
task than others, such as areas on the video feed of the robot
where relevant objects lie. An optimal communication system
for such a task should be designed with the awareness of this
contextual relevance.

Shannon and Weaver famously identified three levels of
problems within the broad subject of communication [2]:
The technical level, the semantic level, and the effectiveness
level. In this work, we focus on the effectiveness level of
communications by proposing learning mechanisms to design
goal-oriented communications (GOCom) systems. Inspired by
the recent success of deep learning techniques for the design
of JSCC systems for the transmission of images [3], [14], text
[4] or even videos [5], we design a GOCom system where
an encoder and a decoder separated by a wireless channel are
jointly learned in order to generate a task output based on
an input signal (see Fig. 1a for reference). Our framework
is general enough to handle any kind of learning task and
communication channel, as long as the task and the channel
are (almost-everywhere) differentiable functions. We introduce
algorithms for both supervised learning and reinforcement
learning (RL), and we present the case study of GOCom for
image transmission. Within the case study, we design two
communications systems, the first one focused on an image
classification task, while the second one is focused on a RL
task. We show with simulation results that the intuition behind
designing specialized communications systems for a particular
task indeed holds and GOCom increases performance when
compared with JSCC, especially in bad channel conditions.
Moreover, we show that for the application of playing the
Atari game BreakOut with RL, the agent is extremely sensitive
to the distortion of reconstructed signals and fails drastically
with a JSCC strategy, while by using our GOCom approach,
the communication system is able to focus on the relevant
parts of the transmitted information.

Prior Art: GOCom is starting to gain a great deal of
attention. A research direction [6], [7] is focused on the
architectural challenges, layer structure and new applications
towards a 6G system supporting these new types of com-
munication. Another research direction is studying particular
applications that benefit from GOCom, such as multi-agent
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Fig. 1: System model.

RL (MARL) environments [8], remote image retrieval [9], or
computational offloading of robotics tasks in a cloud server
[10]. To the best of our knowledge, this is the first work that
proposes a unified framework in GOCom for any type of input
signal and for both supervised learning and RL tasks.

II. THE GOCOM SYSTEM MODEL

We aim to design a communications system specific for a
particular goal or task, a problem setting usually known as
GOCom. In this section, we present the system model of such
a communication system together with that of a JSCC system,
another modality of communication that has regained in recent
years a great deal of attention thanks to deep learning.

Let h be any differentiable task mapping an input signal
x ∈ X into an output y ∈ Y , i.e. h : X → Y . Such a
task can be e.g. image classification, action selection, or path
planning, just to name a few. Let H be the transfer function
of a differentiable channel model such as AWGN or Rayleigh
(block) fading channel, which we loosely call the wireless
channel hereafter. The goal in GOCom is to transmit the
signal x ∈ X over the wireless channel H with the intent to
perform task h at the receiver side. To this end, the transmitter
encodes signal x into an encoded representation z ∈ Z , which
is transmitted through H . The encoding procedure is done
by what we call a goal-oriented encoder (GOE) represented
by f : X → Z . At the other side, the receiver receives a
corrupted version ẑ of the transmitted signal, which is input
to a goal-oriented decoder (GOD) g : Z → Y to obtain
the task output ŷ. The key difference between GOCom and
classical communications systems is that, unlike in classical
communications, the decoder g in GOCom is not designed to
invert the encoding function f but to directly transform the
received signal ẑ into the output y of the task h. Figure 1a
shows the system model for GOCom. The GOCom framework
thus allows us to learn specialized communication systems for
each particular type of input and task.

We propose to design GOCom systems by learning mech-
anisms such as neural networks (NNs), which implies that
i) all functions, i.e. GOE f , GOD g and channel H need
to be almost-everywhere differentiable, and ii) the learnable
functions (f and g) are parametrized by a set of parameters
that can be adapted during learning. To account for the latter
condition, and with a little abuse of notation, we define
parameter vectors θ and φ that contain all parameters (e.g.
weights of a NN) of the GOE and GOD, respectively; and
rewrite these functions as fθ and gφ, respectively.

Figure 1b shows the system model of a JSCC communica-
tion system. Similarly to GOCom, in JSCC the encoder e maps
the input signal x into an encoded representation z, which
implicitly performs the codification of source and channel in
one single step, i.e. e : X → Z . The difference comes at
the receiver side where the decoder g inverts the encoding
operation with the objective to reconstruct the original transmit
signal x, i.e. d : Z → X . As with GOCom, we assume that
both encoder and decoder are parametric functions that can
be learned, and thus we collect their parameters in vectors
η and δ, respectively. In JSCC, as well as in conventional
communications systems, the communication can be seen as a
goal-agnostic procedure where the objective is to reconstruct
at the receiver the input signal x with the highest fidelity as
possible, regardless of the final intent of the communication.

An important aspect of designing GOCom systems is the
relationship between hξ, and fθ and gφ. On could consider a
communication system in which the set of task parameters ξ
might be split into two subsets ξ1 and ξ2 such that ξ = [ξ1, ξ2],
and assign ξ1 as the parameters of the transmitter, while
ξ2 are the parameters of the receiver, i.e., θ = ξ1, and
φ = ξ2. This would be analogous to conventional split learning
with analog transmission where a large learning model is
split in two parts, and each one is computed at different
devices. While an interesting research direction, there is an
important disadvantage to this scheme: Large models tend to
be asymmetric in the way complexity is distributed across
layers, and the layer sizes tend to be large at the beginning,
while reducing in deeper layers. This has the implication
that the communication requirements for the same task using
different splitting points can differ greatly, and there is little
control over the communication rate of such system. Instead,
we propose another way of designing GOCom systems in
which, upon selecting a bandwidth compression rate r, i.e. the
ratio between the number of transmit symbols and the size of
the input signal, the GOE function fθ is designed to encode
the input signal x into the transmit signal z so the rate r is
satisfied. At the receiver side, the GOD function gφ is split into
two functions; a first function kχ de-maps the received signal ẑ
into another space W , and the output w ∈ W is used as input
to a second function lµ : W → Y to finally produce ŷ. Note
that if W has the same cardinality as X , and the same task
function hξ is considered as lµ, i.e., lµ := hξ, we can write
gφ as gφ := hξ ◦ kχ, where ◦ is the composition operator and
φ = [χ, ξ]. Figure 1c shows the resulting architecture of our
approach. In this case, we can reuse a pre-trained model for



a particular task h as initialization for χ before learning the
GOCom system end-to-end.

In this study, we focus on two different channel models, i.e.
AWGN and slow fading channel. The transfer function of the
AWGN channel is given by Ha(z) = z+n, where n ∈ Cs rep-
resents independent and identically distributed (i.i.d.) samples
from a circularly symmetric complex Gaussian distribution,
i.e., n ∼ CN (0, σ2), where σ2 is the average noise power.
For slow fading, we use a Rayleigh distribution, given by the
transfer function Hr(z) = cz, where c ∼ CN (0, Hr) is a
complex random variable. The transfer function of slow fading
with AWGN noise is thus given by Hs(z) = cz + n. We
assume perfect channel knowledge at the receiver side.

III. TYPES OF TASKS AND THEIR IMPLEMENTATION IN
GOCOM

We introduce in this section the types of tasks that our
framework is able to deal with, and how to implement them
in a GOCom system.

Let cθ,χ,ξ : X → Y be the function representing the
communication system in Fig. 1c with input x and output
ŷ. Mathematically speaking, cθ,χ,ξ is the composition of fθ,
H , kχ and hξ, i.e. cθ,χ,ξ := hξ ◦ kχ ◦ H ◦ fθ. Because
GOCom systems can be trained for a variety of tasks, from
e.g. classification to RL, we introduce a generic notion of
the learning problem P for a particular task as follows: A
problem P = {cθ,χ,ξ,O, p, qinit, q(xt+1|xt,yt), T} consists of
a GOCom function cθ,χ,ξ, an objective function O, a channel
distribution p, an initial distribution over all observations qinit,
a transition distribution q(xt+1|xt,yt) with t = 1, ..., T being
the step index of an episode, and an episode length T . In
supervised learning problems, the length is T = 1. The
objective function O provides problem-specific evaluation of
the performance, which might be a misclassification loss in a
classification problem, a distance loss in a regression problem,
or a reward of a Markov decision process in the case of RL.
Regardless of the task, our system model is general enough
to deal with any kind of learning problem and channel model.
We only assume that the objective function is smooth enough
in the set of parameters θ, χ and ξ while the channel model
is differentiable, so we can use gradient-based methods.

For the objective O of the learning problem P , we propose
the linear combination of two terms: The first term is related to
the minimization (maximization) of the task hξ at the receiver
side, whereas the second term is a regularization term bringing
the output of the demapping function kχ closer to the transmit
signal x. Mathematically speaking, the objective is defined as:

O(x,w,y) = (1− α)Ltask(x,y) + αLcomm(x,w), (1)

where Ltask is the task objective loss function, Lcomm is a
distance metric, and α ∈ [0, 1] is a scalar balancing the weight
of the task and the reconstruction functions in the objective.

Depending on the task, the objective can be the mini-
mization of a loss function (e.g. image classification) or the
maximization of a utility function (e.g. RL). We take the
convention of defining the task problem as a loss function, so

in the case of a maximization problem as in RL, we simply
negate the task objective in the optimization problem. The
reason for including the communication loss Lcomm into the
overall objective is a two-fold one:

First, the set of task parameters ξ can be much larger than
the set of parameters related to the communication functions (θ
and χ), in particular for complex tasks that require large NNs
with millions or even billions of parameters. In such cases,
the GOCom model can very quickly overfit to the training
set and channel, degrading performance greatly. Adding the
communication loss Lcomm as regularization term helps combat
the overfitting in this kind of scenarios.

Second, by adding the term Lcomm, we can help with
explainability issues that a system that jointly learns to com-
municate and to perform a task end-to-end might present.
This is achieved because, by adding Lcomm to the problem,
we encourage the system to find representations of w close
enough to x, thus making the intermediate representations
more explainable to the human eye.

As mentioned earlier, although GOCom systems can be used
in principle for any differentiable task h, we focus here in
the two most predominant learning techniques: supervise- and
reinforcement learning. In the following, we formally define
the optimization problem and present an algorithm to train a
GOCom system for both learning techniques. We finalize the
section describing how to initialize the system parameters.

A. Supervised Learning

In supervised learning, one has a labeled dataset D =
{xi,yi}ni=1 containing n pairs of input x-label y and the goal
is to learn a function able to map the inputs to the outputs,
while generalizing to unseen pairs (for supervised learning, we
omit index t since horizon T = 1. The sub-index here refers to
sample index). Problems can be of regression nature, where the
goal is to predict the outputs of a continuous-valued function,
or of classification nature, where the goal is to determine the
class, i.e., an integer value, to which the inputs belong to.

More formally, inputs (xi)
n
i=1 are generated according to

the distribution qinit, and the task loss is represented by
the expectation of the regularized error between the model
output for xi and the corresponding target value yi for that
observation, channel realization and task. The problem can be
defined as follows:

min
θ,ξ,χ

Ex,ẑ∼q,p(·|z) [(1− α)Ltask(x,y) + αLcomm(x,w)] . (2)

Since the dataset contains a finite number of samples, Problem
(2) is typically approximated by the empirical cost, yielding

min
θ,ξ,χ

1

n

∑
xi,yi∼D

[(1− α)Ltask(xi,yi) + αLcomm(xi,wi)] , (3)

where (∀i ∈ {1, ..., n}), wi = kχ(ẑi) is the intermediate
output of the communication module, zi = fθ(xi) is the
transmit signal, and ẑi ∼ p(ẑ|zi) is a random variable drawn
from the channel distribution given the transmit signal zi.
Given a dataset D and a channel distribution p, we can jointly
learn θ, ξ, and χ, as detailed in Algorithm 1. The OPT function



in line 9 of Algorithm 1 refers to any optimizer that can
be used to update the parameters, such as stochastic gradient
descent (SGD) or the Adam optimizer.

Algorithm 1: GOCom for supervised learning
Input: regularization parameter α, learning rate λ,

dataset D
1 Init θ, χ and ξ
2 while not done do
3 Sample mini-batch Dm with m datapoints from D

// Forward pass
4 Encode: (∀i ∈ Dm), zi ← fθ(xi)
5 Transmit: (∀i ∈ Dm), ẑi ∼ p(z|xi)
6 Demap: (∀i ∈ Dm), wi ← kχ(ẑi)
7 Task: (∀i ∈ Dm), ŷi ← hξ(wi)

// Backward pass
8 Compute gradients:

(∀i ∈ Dm), ∇θ,χ,ξO(xi,yi,wi)
9 Update parameters: (∀i ∈ Dm), θ, χ, ξ ←

OPT(θ, χ, ξ,∇θ,χ,ξO(xi,yi,wi), λ)

Output: θ, χ, ξ

B. Reinforcement Learning

In a RL environment, the learning problem P contains an
initial state distribution qinit(x1) and a transition distribution
q(xt+1|xt,yt) mapping the probability of transitioning to state
xt+1 given current state xt and action yt. Together with the
distribution function, the problem defines an objective O and
a reward function Rt. The problem is therefore a Markov
decission process (MDP) with horizon T , where the agent is
allowed to query a certain number of sample trajectories for
learning. The model learned cθ,χ,ξ can be seen as a policy that
maps from states xt to a distribution over actions yt at each
timestep t = 1, ..., T . Following (1), we can now define the
reward at time instant t of a GOCom system for a RL task as:

R̂(xt,yt,wt) = −(1− α)R(xt,yt) + αLcomm(xt,wt), (4)

and the loss for problem P and policy cθ,χ,ξ is given by:

O(cθ,χ,ξ) = Ext,yt,ẑt∼q,c,p(·|z)

[
T−1∑
t=0

γtR̂(xt,yt,wt)

]
, (5)

where γ is the discount. In case that the action space Y is
discrete, we can resort to standard RL algorithms for discrete
action spaces such as deep Q-network (DQN) [11], while in
the case of continuous action space with deterministic policy
we can use continuous policy gradient methods such as deep
deterministic policy gradient (DDPG) [12].

In the case of RL algorithms which exploit a replay
buffer as in the aforementioned works or in most of modern
RL algorithms, we need to modify the replay buffer for
GOCom systems. More precisely, a replay buffer B stores
tuples (xt,yt, Rt,xt+1) at timestep t so they can be later
on drawn randomly to guarantee that samples are i.i.d., an
important condition to reduce probability of divergent behavior

of RL algorithms. We need to modify the buffer replay in
GOCom systems by also adding wt to the replay buffer, and
substituting the reward Rt at time instant t for the modified
reward R̂t := R̂(xt,yt,wt). The replay buffer then stores
tuples of the form (xt,yt,wt, R̂t,xt+1). Other strategies for
modern RL algorithms such as ε-greedy exploration or the
inclusion of target and critic networks need no modification
in GOCom. Algorithm 2 shows the learning procedure for RL
tasks.

Algorithm 2: GOCom for RL
Input: regularization parameter α, learning rate λ,

dataset D
1 Init θ, χ and ξ. Optionally target and critic networks
2 while not done do
3 Sample m trajectories Dm = {(x1,y1, ...,xT )i}mi=1

from D using cθ,χ,ξ
// Forward pass

4 Encode: (∀i ∈ Dm,∀t = 1, ..., T ), zi,t ← fθ(xi,t)
5 Transmit:

(∀i ∈ Dm,∀t = 1, ..., T ), ẑi,t ∼ p(zi,t|xi,t)
6 Demap: (∀i ∈ Dm,∀t = 1, ..., T ), wi,t ← kχ(ẑi,t)
7 Action: (∀i ∈ Dm,∀t = 1, ..., T ), ŷi,t ← hξ(wi,t)
8 (optional) Update and sample from replay buffer B

// Backward pass
9 (∀i ∈ Dm,∀t = 1, ..., T ), estimate gradients

∇θ,χ,ξO(cθ,χ,ξ) using selected RL algorithm
10 Update parameters:

(∀i ∈ Dm,∀t = 1, ..., T ), θ, χ, ξ ←
OPT(θ, χ, ξ,∇θ,χ,ξO(xi,yi,wi), λ)

11 (optional) Update target network(s), critic network
Output: θ, χ, ξ

C. Parameters Initialization

For the initialization of parameters in line 1 of both Al-
gorithms 1 and 2, we first train the task model ξ of task
hξ without the encoding and transmission of signals (xi)

n
i=1

over the wireless channel. This represents the scenario where
the transmitter performs the task locally, and it can be seen
as the performance upper bound of a GOCom system. The
trained model is identified as ξpre, and we use this model
as starting point for learning a GOCom system end-to-end.
Optionally, one may fix ξpre during the training of the GOCom
system, therefore only updating θ and χ in steps 9 and 10 of
Algorithms 1 and 2, respectively. This is useful e.g. when the
task model is much larger than the encoder-demapper models,
because in these cases the learning procedure may overfit
very quickly if the task model is updated when running either
Algorithm 1 or 2. The set of parameters θ and χ are initialized
randomly. Other initialization strategies are possible, e.g. by
initializing the communication system with the models learned
from JSCC, but we did not observe major differences when
evaluating different applications.

We will compare in Section IV GOCom systems learned
under this initialization strategy with a baseline where we use



an independently trained JSCC system and task, and combine
them to see the performance of the task when the reconstructed
output of the JSCC communication system is used as input to
the task.

IV. DESIGN AND EVALUATION FOR IMAGE TRANSMISSION

In this section, we design and evaluate two GOCom systems
for transmission of images. The first system is designed to
perform a classification task of images, while the second one
transmits the images to perform a RL task with discrete action
space at the receiver.

A. GOCom for Image Classification

1) System Design: The first application that we study is
image classification. To this end, we use the CIFAR10 dataset,
a dataset comprising of 60k images of ten different classes.
The images are three-dimensional signals with size 32× 32×
3 pixels, where the first two dimensions indicate the height
and width of the images, respectively, and the third dimension
identifies the RGB color scheme. The training dataset contains
50k images, while the test dataset has 10k.

For the task function hξ, we use the ResNet50 NN com-
monly used for image classification tasks [13]. The ResNet50
network is pre-trained using the ImageNet dataset, a very large
dataset containing around 14 million samples an 20k labels.

We use transfer learning to adapt the ResNet50 trained on
ImageNet to the CIFAR10 dataset. Concretely, we remove the
last layer of ResNet50, i.e., the layer in charge of generating
the class of an image, and replace it with a small NN
consisting of a 2D average pooling layer, followed by a
flattening layer, and three dense layers with 1024, 512 and
10 neurons each. The first two dense layers have the ReLu
function as non-linear function, while the last layer has the
sigmoid function in charge of generating the probabilities
of each image belonging to each class. We also add a pre-
processing block before the ResNet50 network consisting on
the normalization of pixel values between [0, 255] into [0, 1],
and applying 2D up-sampling layer with up-sampling factor
of 2. This helps the network improve its performance at the
expense of increasing the total number of parameters. While
training the task function hξ, we fix the parameters belonging
to the ResNet50 NN and only update the added layers on top.
This helps to avoid overfitting. The resulting set of parameters
is referred to as ξpre.

For the encoder fθ and demapper kχ functions, we use the
same architecture as in [14], where authors propose a JSCC
system based on convolutional neural networks (CNNs) with
attention mechanism. The attention mechanism is introduced
to input the current SNR value to the NN and help it op-
erate under a much larger SNR range as done in previous
studies. More concretely, they design the encoder with 5
feature learnings (FLs) modules, i.e., blocks based on 2D
convolutional layers, and 4 attention features (AFs) modules,
i.e., attention blocks that take the output of the previous FL as
input, together with the current SNR, and produce a scaled
output according to the SNR. Each of the 4 AF modules

is introduced in between two FL modules, thus creating an
alternating structure.

Each FL l, l = 1, ..., 5, at the encoder function fθ consists
of a convolutional layer with parameters Fl×Fl×Kl|Sl, where
Fl is the filter size of FL l, Kl filters, and Sl is the stride
parameter. The parameters for layers 1 to 5 are: 9×9×256|2,
5× 5× 256|2, 5× 5× 256|1, 5× 5× 256|2 and 5× 5× 16|2,
respectively. Following the convolutional layer, each FL l has
a generalized divisive normalization (GDN) layer, followed by
the PreLu activation function. The last FL of the encoder fθ
does not include the PreLu function. Instead, after the last
FL, the generated real-valued signal is first converted into a
complex signal with half the entries, and then it is normalized
to power 1 to guarantee that the power constraints of the
transmitter are satisfied, i.e. z = z/(sE[zz∗]), where s is the
number of transmit symbols and (·)∗ is the complex conjugate.

Each AF module takes the input from the previous FL and
implements a 2D average pooling layer, to which output the
SNR value is concatenated, followed by two dense layers. The
first dense layer has 16 neurons, and the second one has 256.

Similarly to the encoder, the demapper function kχ imple-
ments five FL modules and 4 AF modules, with each AF
module in between two AF modules. The AFs are exactly
the same as in fθ, while FLs 1 to 4 implement the inverse
GDN (IGDN) instead of the GDN layer, followed by the PreLu
activation function. The last FL, i.e., FL 5, implements a GDN
layer followed by the sigmoid function. The parameters of the
convolutional layers 1 to 5 are 5× 5× 256|1, 5× 5× 256|1,
5× 5× 256|1, 5× 5× 256|2 and 9× 9× 3|2, respectively.

Since the input size of CIFAR10 is 32 × 32 × 3 and
the transmit signal has 8 × 8 × 16/2 complex symbols, the
compression ratio r of the system is r = 512/3072 = 1/6.
For more details about the architecture of fθ and kχ, we refer
the reader to [14].

2) Numerical Evaluation: We compare our proposed
GOCom system with a JSCC system followed by the pre-
trained task as baseline, i.e., the output of the JSCC is input
to the task. For both systems, we use Adam optimizer with
learning rate 10−4.

After the initialization explained previously, the task hξ is
trained for 11 epochs, after which it starts to overfit. The
achieved performance is 89% accuracy, and we deem it as
the upper bound for the communication systems.

The JSCC system fθ ◦ kχ is trained for 200 epochs. The
reconstruction performance of the JSCC system is based on the
peak SNR (PSNR), given by PSNR = 10 log10(MAX2/MSE),
where MAX is the max value of the input signal, 255 in our
case, and MSE is the mean squared error. The system is trained
in the range [−2, 20] dB, and the performance for several SNR
values is given in Table I.

All GOCom models (GOC in Fig. 2) are trained for 200
epochs. Figure 2 shows the results regarding classification
accuracy of both systems over the SNR for AWGN and slow
fading channels. Several observations can be drawn from Fig.
2. GOCom improves accuracy of the algorithm greatly in the
lower SNR range compared to JSCC (more than 10% im-



TABLE I: PSNR of reconstructed signal with JSCC.

Channel model SNR
0 dB 5 dB 10 dB 15 dB 20 dB

AWGN 23.82 27.44 30.57 32.63 33.56
Slow fading 22.46 25.07 26.79 27.62 27.92
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(b) Slow fading channel.

Fig. 2: Classification accuracy over SNR of CIFAR10.

provement in accuracy, or around 20% relative improvement).
For very low values of α (0.01), accuracy flattens at a low
level for high SNRs, while in the lower SNR the accuracy
is better. A value of α = 0.1 seems to be a good balance,
therefore obtaining good performance across the SNR range.
Under slow fading channel, the performance of GOCom with
α = 0.1 (Fig. 2b) is consistently better than that of JSCC.
This hints that, the more challenging the channel distribution
is for the communication, the better GOCom systems perform
compared to JSCC. The difference in performance between
GOCom with α = 0.1 and α = 0.01 also points towards the
importance of adding the regularization term when learning
GOCom systems.

B. GOCom for Reinforcement Learning

1) System Design: We now focus on a RL task that takes
images as inputs and generates actions as outputs. More
specifically, we use as task function hξ the DQN algorithm
to learn how to play the Atari game BreakOut. In BreakOut,
the agent controls a platform at the bottom of the screen, which
can be moved left or right. The agent needs to hit a ball falling
from the top, where several layers of bricks form a wall. If
the ball hits any of the bricks, the score increases by one, and
if the ball passes the platform at the bottom, the player loses
a life. In total there are 5 lives, and the goal is to score as
many points as possible before losing all lives.

Authors in [11] designed the DQN algorithm to play Atari
games, in many cases achieving super-human performance.
We use the exact same algorithm and NN as in [11], where
the input to the algorithm is a 3D signal with dimensions
84 × 84 × 4, where the first two dimensions represent the
height and width of the screen, while the third one is used to
input four consecutive frames of the game to the algorithm.
The action space is discrete with 4 possible actions, namely,
move left, move right, fire a new ball, or no operation. The
reward is calculated as the difference between the current score
and the score in the previous frame. The NN consists of three
2D convolutional layers with values 8 × 8 × 32|4, 4 × 4 ×

64|2 and 3 × 3 × 4|1, respectively, all layers with ReLu as
non-linear function, followed by a flatten layer and two dense
layers with 512 and 4 neurons respectively. For more details
on the algorithm, we refer the reader to [11].

Regarding the encoder fθ, we implement a CNN with
three 2D convolutional layers with parameters 8 × 8 × 32|4,
4 × 4 × 64|2 and 3 × 3 × 192|1, respectively. The first two
layers use the PReLu activation function, while the last one
implements the conversion into complex-valued output and the
normalization to guarantee the power constraint. Similarly, the
demapper kχ implements three 2D transposed convolutional
layers with parameters 3 × 3 × 192|1, 4 × 4 × 64|2 and
8×8×32|4, respectively. The first two layers also implement
the PReLu activation function, while the last layer uses the
sigmoid function. Since the input size to the encoder is
84 × 84 × 4 and the transmit signal contains 7 × 7 × 192/2
complex symbols, the compression ratio r of the system is
r = 192× 72/(2× 842 × 4) = 1/6.

2) Numerical Evaluation: We compare our proposed
GOCom system with a baseline based on a JSCC system
trained to reconstruct the 3D input signal (84× 84× 4 pixels)
independently of the task, and then we feed the output of the
JSCC to the pre-trained task hξpre , which was previously pre-
trained for 10 million episodes. To guarantee a fair comparison
between JSCC and GOCom, the encoder eη and decoder dγ
components of the JSCC system have the same architecture
and number of parameters as the encoder fθ and demapper
kχ of our GOCom system previously introduced.

The dataset to train the JSCC system contains 12k samples
randomly drawn from several BreakOut episodes, and we split
the dataset in 10k samples for training and 2k samples for
testing. The optimizer is Adam with learning rate λ = 10−4,
and we train during 1028 epochs. Because there is no attention
mechanism for the communication model as in the image
classification task, we train two models, one at 0 dB and one
at 20 dB. Table II shows the test results for several SNRs of
both models under AWGN. We can see that the reconstruction
accuracy is very high despite the low complexity of the NN
and the low number of samples. This is because all samples
in this task are very similar to each other, so it is easy for the
NN to reconstruct them with high accuracy.

TABLE II: PSNR of reconstructed signal with JSCC.

Train SNR SNR
0 dB 5 dB 10 dB 15 dB 20 dB

0 dB 44.87 45.38 45.50 45.68 45.74
20 dB 35.84 41.78 44.65 45.87 46.27

We train two GOCom systems for 4 million episodes each
under AWGN, one at 0 dB and one at 20 dB. The task is
initialized with hξpre , and α is set to 0 in both experiments.
We evaluate the four models, i.e. JSCC at 0 dB and 20 dB, and
GOCom at 0 dB and 20 dB, over the SNR range [−2, 20] dB.
We run 100 episodes for each experiment at each test SNR, and
plot the average reward of the 100 episodes together with its
standard deviation in Fig. 3. As upper bound we consider the



pre-trained task hξpre with no communication system evaluated
also over 100 episodes. The average reward of the upper bound
is 35.57. We also plot the reward obtained by a strategy where
actions are picked randomly, which achieves an average reward
of 1.28.
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Fig. 3: Rewards over SNR under AWGN for the DQN task.

Looking at Table II (also see Fig. 4b), we observe that the
quality of the reconstructed signal with JSCC is extremely
high, also according to human perception. However, both
JSCC systems fail drastically at the game of BreakOut, since
they barely improve the random strategy (see Fig. 3). Our
explanation is that in JSCC, all pixels contribute equally to the
loss function, but in the game BreakOut, those pixels around
the platform and the ball are more critical than the rest. If
those pixels are not reconstructed with very high fidelity, the
reward can be disproportionately affected. Observing Fig. 4b,
where the output of the JSCC system trained and tested at 20
dB is depicted, one can see that, even though the quality of
the reconstructed signal is very high according to the human
eye, for the RL task it is not the case, since the ball is
barely appreciable. On the other hand, the GOCom systems
show a remarkable performance even at very low SNR, almost
reaching the upper bound already at 8 dB for the system
trained at 20 dB. However, if we look at the output w of the
demapper function kξ in Fig. 4c, the signal has no structure for
a human, which has negative impact in the explainability of the
system, but the gains in terms of performance are remarkable.

V. CONCLUSIONS

We have introduced a new framework to learn how to
communicate with intent. The main idea relies on jointly
learning how to communicate and perform a learnable task
such as supervised or reinforcement learning. The intuition
behind it is as follows: The relevant information in the source
to perform a certain task is task-specific, and it might vary
greatly between tasks. Therefore, we would like to design
specialized communication systems that take this context into
account when performing source and channel coding. The
expected benefits are a higher efficiency in the communication

(a) Input signal x. (b) JSCC. (c) GOCom.

Fig. 4: Input signal (left) and output signals for JSCC (center)
and the demapper for GOCom (right).

and robustness against channel degradation, among others.
We show in the evaluation results that the performance of
such a system improves when compared with a JSCC system,
especially under challenging channel conditions. Further, for
the RL task, the performance of the GOCom system is
remarkably good, while the JSCC system fails drastically even
at high SNR values. This result points towards the need of
GOCom systems for intelligent machine interactions.
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