Loading [a11y]/accessibility-menu.js
High-precision and robust indoor localization based on foot-mounted inertial sensors | IEEE Conference Publication | IEEE Xplore

High-precision and robust indoor localization based on foot-mounted inertial sensors


Abstract:

In this paper we present a high-precision and robust indoor navigation system based on foot-mounted inertial sensors. We use a finite state machine based step detection t...Show More

Abstract:

In this paper we present a high-precision and robust indoor navigation system based on foot-mounted inertial sensors. We use a finite state machine based step detection technique for precise localization. This approach is able to detect different stances of the foot with high accuracy. The FSM-based step detection technique precisely detect Zero Velocity Updates (ZUPTs). ZUPTs can be applied in time in the navigation filter and positively affect the grade of the navigation solution. The functionality of the step detection module in combination with a constraint, stochastic cloning (SC) Kalman filter are analyzed with real sensor data recorded with our personal navigation system. Even with ultra-low cost inertial sensors, this approach delivers a personal navigation system for precise positioning in indoor environments and outdoor areas.
Date of Conference: 11-14 April 2016
Date Added to IEEE Xplore: 30 May 2016
Electronic ISBN:978-1-5090-2042-3
Electronic ISSN: 2153-3598
Conference Location: Savannah, GA, USA

Contact IEEE to Subscribe

References

References is not available for this document.