Robust Position and Velocity Estimation Methods in Integrated Navigation Systems for Inland Water Applications

Knowledge for Tomorrow

D. Arias-Medina, M. Romanovas, I. Herrera-Pinzón, R. Ziebold

German Aerospace Centre (DLR)

IEEE/ION PLANS 2016

Integrated Inertial Navigation

13. April 2016

Introduction

- Motivation
- Objectives

\diamond Methods

- Robust Estimation
- Sensor Fusion
- Tests and Results
- Summary and Outlook

source: www.waterways-forward.eu

Introduction

- Motivation
- Objectives

Methods

- Robust Estimation
- Sensor Fusion
- ♦ Tests and Results
- Summary and Outlook

source: www.waterways-forward.eu

- Maritime transport is the backbone of international trade and the global economy:
 - \sim 80% global trade by volume is made by sea
 - Around 400 Mio. passengers move through European ports each year

Nautical Transport Systems are essential for the global economic development, competitiveness and prosperity

Unfortunately...

• The number of shipping accidents is not decaying over the years

source: www.maritimearticsegurity.ca

source: www.fyens.dk

source: www.abc.es

source: www.marinetraffic.com

- Kiel Canal: world busiest artificial waterway
- Collision of two medium-sized vessels at night
- Positioning systems on both vessels showed a safe passing-distance
- RADAR was not used

Global Navigation Satellite Systems (GNSS) are the cornerstone and main information supplier for Positioning, Navigation and Timing (PNT) in maritime systems.

- The performance of satellite based navigation can be easily disturbed due to space weather events, jamming, reflection of the signals, ...
- Classical positioning is solved applying a Least Squares (LS) method →
 <u>single contaminated signal induce</u>
 <u>large errors in the position</u>
- Receiver Autonomous Integrity Monitoring (RAIM) is the standard for GNSS fault detection but... it cannot handle multiple simultaneous faults!

source: www.nasa.gov

• Satellite – based navigation lacks *robustness*: capability of a system to continue operating despite abnormalities

Objectives

What do we want?

Provide a reliable navigation solution mitigating GNSS faulty signals

P. 6/23

What is the problem?

- **x** Multiple simultaneous faulty signals, specially in urban canyons or <u>waterways</u>
- ✗ Standard RAIM is not sufficient

What is our solution?

- Implementation of <u>robust estimators</u> for the positioning problem
- Integration of these algorithms within an inertial + satellite based navigation

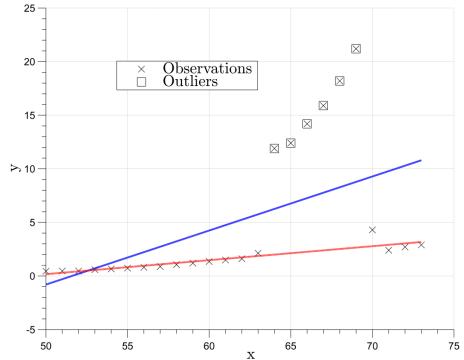
◊ Introduction

- Motivation
- Objectives

\diamond Methods

- Robust Estimation
- Sensor Fusion
- ♦ Tests and Results
- Summary and Outlook

source: www.waterways-forward.eu


Robust Estimation

- GNSS positioning problems are generally solved \rightarrow LS estimator
- In a LS, it is assumed that the noises are Gaussian...

But this is often not the case!

Clue definitions

- Outliers observations that appear unusually large or small and "out of place"
- Breakdown Point ϵ^* smallest percentage of contaminated data that can cause the estimator to take arbitrarily large values
- Gaussian Efficiency similarity of a method to classical LS under Gaussian conditions

 Overpassing the limitations of LS for regression has concerned mathematicians and engineers for years...

Iteratively Reweighted Least Squares (IRLS)

- Full set approach \rightarrow all observations are used to compute $\overline{\mathbf{x}}$ solution, observations with large residuated are downweighted
- Appealing implementation for its similarity to regular LS nmin $\sum_{i}^{n} w(x_i) \rho\left(\frac{r_i}{w(x_i)\hat{\sigma}}\right)$, $\epsilon^* = \frac{1}{n+1}$ Gaussian efficient
- Breakdown point ϵ^* not very high min s($r_1, ..., r_n$), $\epsilon^* = (\frac{1}{2} p + 2)/n$

Best Subset Selection

- Bottom up approach \rightarrow from *n* observations, $\binom{n}{p}$ subsets are made \blacktriangleright Least Median of Squares (LMS)
- The solution is checked using the observations not taking part in the solution
 Least Trimmed of Squares (LTS)
- The best subset is the one to (r) minimize (r) the contract of 0.5 minimize the cost function
- Breakdown point ϵ^* up to 50%
- Low Gaussian efficiency

There are also other approaches...

Receiver Autonomous Integrity Monitoring (RAIM)

Kalman Filtering for Sensor Fusion

- Standard approach for multi-sensor fusion and navigation
- Incorporate of all the available information (uncertainties, noise statistics, dynamical models, kinematic constraints) in a statistically consistent way
- Kalman Filter (KF) is valid for linear problems →
 Extended & Unscented KF (UKF, EKF)

â

 $\hat{\mathbf{x}}_{k-2}^{+}$

k-2

measurements

state estimate

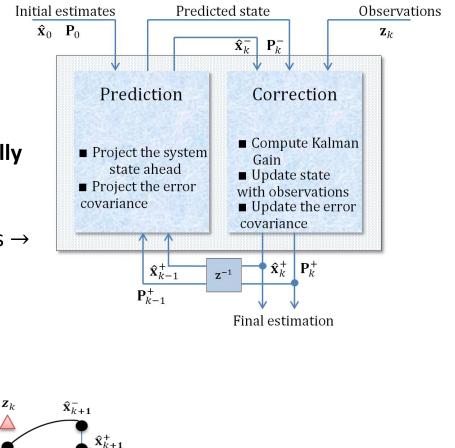
 $\hat{\mathbf{x}}_{k-1}^{-}$

 \mathbf{z}_{k-1}

k-1

 $\hat{\mathbf{x}}_{k-1}^{+}$

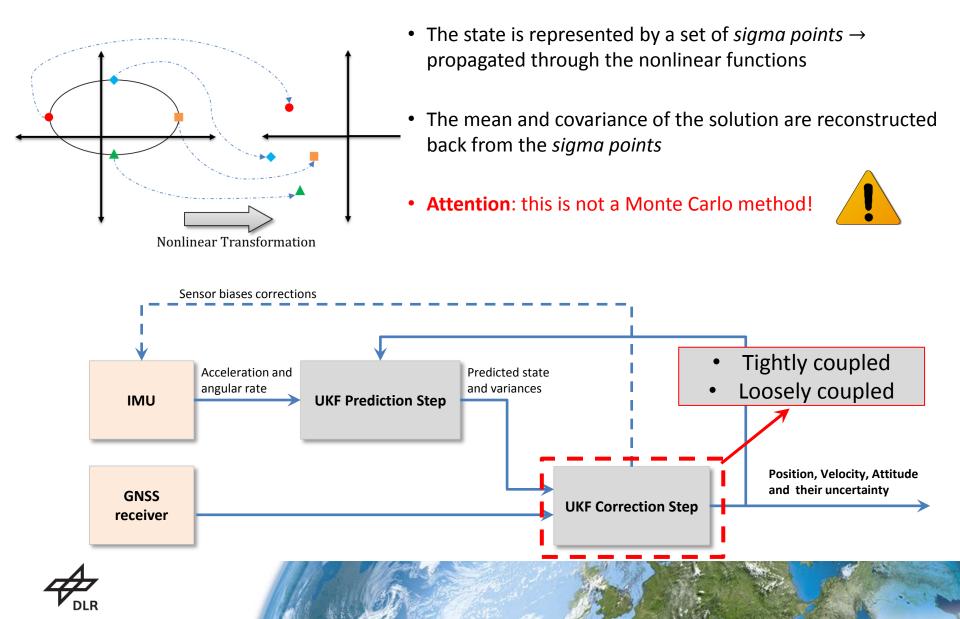
 $\hat{\mathbf{X}}_{k}^{+}$


 $\hat{\mathbf{X}}_k^-$

k

 \mathbf{z}_{k+1}

Iteration


k+1

UKF for IMU/GNSS Navigation

\diamond Introduction

- Motivation
- Objectives

♦ Methods

- Robust Estimation
- Sensor Fusion

Tests and Results

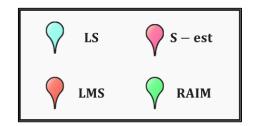
Summary and Outlook

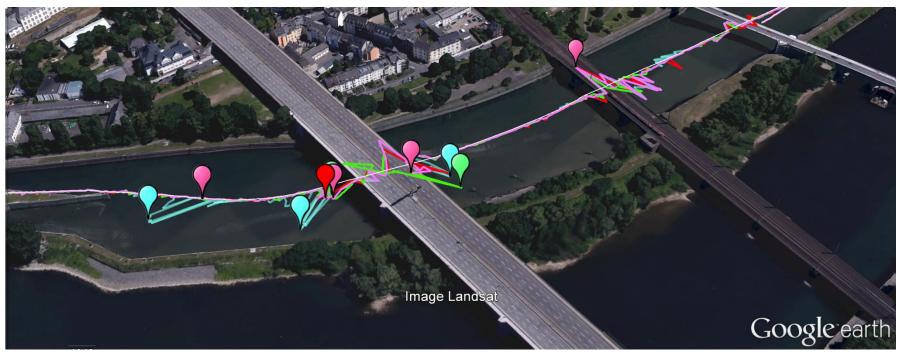
source: www.waterways-forward.eu

Experiment Setup

- The test scenario is the Moselle River in Koblenz (Germany)
- Vessel "MS BINGEN" performed 8 shaped trajectory passing under the bridges Equipment of vessel:
 - 3x GNSS antennas, update rate 1 Hz
 - 1x inertial sensors: gyroscope and accelerometer , update rate 200 Hz

Moselle River Scenario




DLR

P. 15/**23**

Robust Method Comparison

Discussion on Robust Estimation

Statistics on the Robust Methods performance

Method	Mean [m]	RMS [m]	Max [m]
SPP	2.9	4.5	50.7
S	2.4	3.4	34.0
LMS	2.4	3.4	34.9
RAIM	2.3	3.0	45.4

- Robust techniques perform better than regular Single Point Positioning (SPP)
- The mean error is reduced and the maximum error is 15 m smaller

- LMS and S estimator have a similar performance but...
 - LMS requires higher computation
 - LMS has a low Gaussian efficiency

UKF Performance

• Comparison of the different UKF designs:

Tightly Coupled UKF

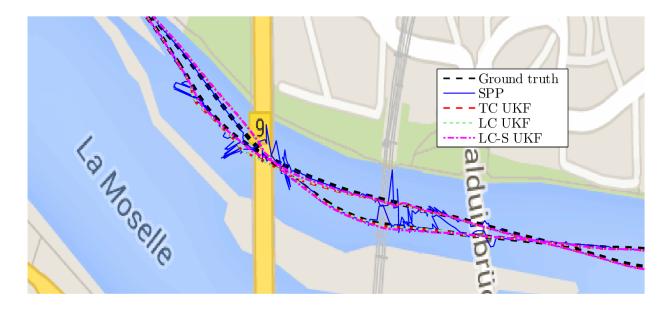
State	Covariance	Variable	Symbol	Coordinate System
1:4	1:3	Attitude Quaternion	q	From B-frame to ECEF
5:7	4:6	Velocity	v	ECEF
8:10	7:9	Position	p	ECEF
11:13	10:12	Gyroscope Offset	b_ω	B-frame
14:16	13:15	Accelerometer Offset	b_a	B-frame
17	16	Clock offset	$c\delta t$	-
18	17	Clock rate	$c\dot{\delta}t$	-

State for the Tightly Coupled Architecture UKF

Loosely Coupled UKF + a) classical LS b) robust scheme

State for the Loosely Coupled Architecture UKF

State	Covariance	Variable	Symbol	Coordinate System
1:4	1:3	Attitude Quaternion	q	From B-frame to ECEF
5:7	4:6	Velocity	v	ECEF
8:10	7:9	Position	p	ECEF
11:13	10:12	Gyroscope Offset	b_ω	B-frame
14:16	13:15	Accelerometer Offset	b_a	B-frame



UKF Performance Discussion

Statistics on the KF performance

Method	Mean [m]	RMS [m]	Max [m]
SPP	2.9	4.5	50.7
TC UKF	3.0	3.8	18.3
LC UKF	3.0	3.70	17.0
LC-S UKF	2.3	2.6	9.1

- ✓ Kalman filtering provides a smooth position solution → largest errors are eliminated
- ✓ The inclusion of robust estimator → significant improvement in the position error

\diamond Introduction

- Motivation
- Objectives

♦ Methods

- Robust Estimation
- Sensor Fusion
- ♦ Tests and Results
- Summary and Outlook

source: www.waterways-forward.eu

Conclusions

- Review on the techniques for GNSS fault mitigation
- Integrated navigation fusing IMU+GNSS sensors using UKF
- Evaluation of the algorithms using real data
 - Promising performance improvement vs. classical LS
 - Great benefits of the use of robust schemes + KF

Future Work

- Extension to Multi antenna, Multi constellation, Multi frequency (MMM)
- Robust schemes lack any kind of integrity monitoring → user gets warned if position estimation is not reliable
- Implementation of the robust estimation in the tightly coupled UKF

Thanks for your Attention

More information: daniel.ariasmedina@dlr.de

