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Evaluation of Kinematic Precise Point Positioning

Convergence with an Incremental Graph Optimizer
Ryan M. Watson and Jason N. Gross , West Virginia University

Abstract—Estimation techniques to precisely localize a kine-
matic platform with GNSS observables can be broadly parti-
tioned into two categories: differential, or undifferenced. The
differential techniques (e.g., real-time kinematic (RTK)) have sev-
eral attractive properties, such as correlated error mitigation and
fast convergence; however, to support a differential processing
scheme, an infrastructure of reference stations within a proximity
of the platform must be in place to construct observation
corrections. This infrastructure requirement makes differential
processing techniques infeasible in many locations. To mitigate
the need for additional receivers within proximity of the platform,
the precise point positioning (PPP) method utilizes accurate orbit
and clock models to localize the platform. The autonomy of PPP
from local reference stations make it an attractive processing
scheme for several applications; however, a current disadvantage
of PPP is the slow positioning convergence when compared to
differential techniques. In this paper, we evaluate the convergence
properties of PPP with an incremental graph optimization scheme
(Incremental Smoothing and Mapping (iSAM2)), which allows for
real-time filtering and smoothing. The characterization is first
conducted through a Monte Carlo analysis within a simulation
environment, which allows for the variations of parameters, such
as atmospheric conditions, satellite geometry, and intensity of
multipath. Then, an example collected data set is utilized to
validate the trends presented in the simulation study.

I. INTRODUCTION

The ability to precisely localize a platform is of paramount

importance to a myriad of fields (e.g., augmented reality [1],

autonomous navigation [2], and natural hazard monitoring [3]).

To facilitate the precise localization of the platform, several

navigation aids can be utilized (e.g., vision [4], lidar [5],

inertial [6]). One navigation aid that is commonly utilized

for terrestrial applications is a global navigation satellite

system (GNSS) receiver. The signals propagated by a GNSS

satellite provides the algorithm with information that allows

for accurate, global localization of the platform.

One commonly used methodology for processing GNSS

signals is the Precise Point Positioning (PPP) approach [7].

The PPP algorithm utilizes the dual-frequency undifferenced

GNSS observables, which allows the technique to operate

without the need of external reference stations. The undif-

ferenced observations are use along with precise GNSS orbit

and clock bias products to mitigate the errors removed through

observation differencing [8]. The orbit and clock products that

enable the PPP method to achieve decimeter level positioning

can be broadcast to an end-user in real-time (e.g., L-band [9]

and Iridium modem link [10]).

Real-time kinematic-PPP (kPPP) provides similar position-

ing performance when compared to traditional differential GPS

(DGPS) (i.e., Real Time Kinematic) for dynamic platforms

[11]. The comparable positioning accuracy without the need

for a nearby static GPS reference station makes it an attractive

processing formulation. However, it has been noted in several

studies that the PPP formulation has a longer convergence

period than comparable differential techniques [12], [13].

In an attempt to decrease the initial convergence period,

there has been a plethora of research into augmenting the

PPP approach with additional information sources. One of the

most commonly utilized augmentation sources for traditional

single constellation PPP is additional GNSS observables. One

example of this type of augmentation is the incorporation of

multiple constellation observations [14], [15]. Another exam-

ple of this type of augmentation is the PPP-RTK formulation

[16] which provides faster convergence by enabling integer

ambiguity resolution [17]. Another well studied form of PPP

augmentation is the tightly coupled PPP inertial navigation

(INS) formulation [18], which has also been shown to decrease

the initial convergence period of PPP [19]. However, all PPP

augmented methods require additional infrastructure (e.g., a

network of reference stations, or additional sensors on-board),

which can be prohibitive for many applications.

Another method to decrease the convergence period of PPP

is to utilize a novel optimization framework. This has the po-

tential to provide a benefit over the previously discussed PPP

methods because all the previously provided methods utilizing

the same underlying optimization framework (i.e., a variant of

the Kalman filter [20]–[22]). Where this framework estimates

the desired states by marginalizing all prior information and

propagating with dynamic models to the next time step. For

PPP, where a subset of the desired states are not observable

over a single epoch (i.e., the carrier-phase ambiguity states),

this may not be the best framework.

In this paper we evaluate the convergence properties of

PPP utilizing an incremental graph optimization framework

that allows for real-time smoothing. This work relies upon

advances made within the robotics community on efficient,

real-time smoothing. Where research into smoothing, within

the robotics community, has been dominated by graph based

methodologies since the seminal paper on the subject was

published in 1997 [23]. When [23] was published, graph-

based smoothing was not widely utilized due to computa-

tion complexity of solving the initial formulation. However,

quickly thereafter, methods were proposed to greatly reduce

complexity through the utilization of factor graphs [24]. The√
SAM formulation as presented in [25] was particularly

influential as it provided connections between the factor graph

formulation and sparse linear algebra. The idea of batch

factor graph optimization was later extended to an incremental
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inference framework in [26], [27]. The work presented in [27]

provides a frame-work to conduct real-time [28], non-linear

graph based filter and smoothing.

The rest of this paper is organized in the following manner.

First, the technical approach will be discussed. The technical

discussion will provide an overview of factor graph optimiza-

tion for GNSS optimization, and the ability to incrementally

updating using the Bayes tree data structure. Next the discus-

sion will shift to the evaluation of the algorithm with both

simulated and collected datasets. Finally, some concluding

remarks and future work will be discussed.

II. TECHNICAL APPROACH

A. Factor Graphs

The ability to conduct accurate and efficient inference is at

the center of all navigation algorithms. One way to represent

the inference problem is with a probabilistic graphical model

[29], which can take several forms. One convenient graphical

model for conducting state estimation is the factor graph [24].

At a fundamental level, the factor graph provides a convenient

framework for factorizing a function of several variables

into smaller subsets. More explicitly, this model provides a

useful framework for factorizing the posterior distribution,

which allows for efficient calculation of the state vector that

maximizes the a posteriori distribution. The factorization is

represents as a bipartite graph, G = (F ,X , E), where there are

two types of vertices: the states to be estimated, X , and the

probabilistic constraints applied to those states, F . An edge E
only exists between a state vertex and a factor vertex if that

factor is a constraint applied on that time-step. An example

factor graph is depicted in Fig.1, where Xn represents the

states to be estimate at time-step n, ψp,n−1 represents prior

information about the estimated states at time-step n−1, ψb,n

represents the motion model of the platform from time-step

n−1 to n, and ψl represents the constraint applied to the state

by a measurement (e.g., a GNSS pseudorange observable).

Xn−1 Xn

ψ1
p,n−1

ψ1
l,n−1

ψ2
l,n−1 ψm−1

l,n−1

ψm
l,n−1

ψ1
b,n

ψ1
l,n

ψ2
l,n ψm−1

l,n

ψm
l,n

Fig. 1: Example factor graph

As previously mentioned, the factor graph provides a factor-

ization over the posterior distribution, p(X |Z). Thus, we can

easily calculate the state vector that maximizes the posterior

(MAP) by finding the state vector that maximizes the product

of factors, as depicted in Eq. 1.

X̂ = argmax
x

{
I
∏

i=1

ψp,i

J
∏

j=1

ψb,j

K
∏

k=1

ψl,k} (1)

For a through discussion on factor graph based state estimation

the reader is refered to [30].

The optimization problem presented in Eq. 1 can be reduced

to non-linear least-squares formulation if Gaussian noise is

assumed, as provided in Eq. 2.

X̂ = argmin
x

[ I
∑

i=1

||xo − xi||2Σ

+

J
∑

j=1

||xj − f(xj−1)||2Λ

+

K
∑

k=1

||zk − hk(xk)||2Ξ
]

(2)

Now that a general discussion of the factor graph framework

has been provided, we can proceed by constructing GNSS

specific factors. For this work, we will detail the construction

of two factors: the GNSS observation factor, and the carrier-

phase bias factor.

B. Constructing the GNSS Observation Factor

To allow autonomy of the PPP approach from local refer-

ence stations, the undifferenced dual-frequency GNSS observ-

ables are utilized. Due to the undifferenced nature of the obser-

vations, the PPP processing technique must incorporate GNSS

error mitigation models — these models provide corrects

for the corrupting sources that would be mitigated through

observation differencing — to provide an accurate positioning

solution. The sources that corrupt a GNSS observation can

be segregated into three partitions: the error contributed by

the propagation medium, the error contributed by the control

segment, and the error contributed by the user.

To begin constructing our measurement model, the method

implemented to mitigate the propagation medium errors are

discussed. The error attributed to the propagation medium is

composed of delay due to the ionosphere and the delay due to

the troposphere. To mitigate the ionospheric delay, we leverage

the dispersive nature of the medium, and a linear combination

of the GPS L1 and L2 frequencies (1575.42 MHz and 1227.60

MHz, respectively) is formed to produce ionospheric-free (IF)

pseudorange and carrier phase measurements [8]. The IF

combination of an observable, Oj , can be seen in Eq. 3.

O
j
IF = O

j
L1

[

f2
1

f2
1
− f2

2

]

−O
j
L2

[

f2
2

f2
1
− f2

2

]

(3)

To mitigate the error attributed to the troposphere, both

the wet and the dry component of the troposphere must be

modeled, as shown in Eq. 4. For this study, the Hopfield model

[31] is used to model the dry component of the troposphere.

To compensate for the wet delay — the wet component only

accounts for approximately 10% of the total troposphere error

— and the residual error of the dry delay model, a stochastic

random variable is added to the state vector.
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T (el) = Tz,dMd(el) + Tz,wMw(el) (4)

To mitigate the error attributed to the control segment, the

PPP approach utilizes orbit and clock corrections. These global

corrections are generated through a network of reference

stations.

Finally, a discussion on the user error segment is provided.

The user error segment is composed of two sources: multi-

path error, and receiver thermal noise error. For this study,

no methods were implemented to explicitly model the user

segment error; however, as noted in [32], the magnitude or

the user error is proportional to the elevation angle between

the platform and the satellite so, within this evaluation, the

uncertainty in the observation is scaled by the elevation angle.

It should be noted that PPP observational models for moving

platforms typically include corrections for relativistic effects

(i.e. from the GPS broadcast correction), receiver and satellite

antenna phase center variation, and carrier-phase wind-up;

however, these effects were neglected within this simulation

study. Additionally, dynamic platform generally couple inertial

information with the GNSS observables to mitigate uncertainty

in the platforms dynamic model [19].

Utilizing the provided error mitigation techniques, the PPP

observation model can be constructed. The pseudorange and

carrier-phase measurements are modeled as shown in Eq. 5 and

Eq. 6, respectively: where, Rj = ||xs − xu|| is the geometric

range between the platform and the jth satellite, δtu is the

receiver’s clock bias, δts is the satellite’s clock bias, Tz is the

tropospheric delay in the zenith direction, Md(el
j) is a user to

satellite elevation angle dependent mapping function, δRel. is

the correction attributed to relativistic effect [33], δP.C. is the

correction attributed to the offset between the satellite’s center

of mass and the phase center of the antenna [34], δD.C.B is the

differential code bias correction [31], δW.U. is the correction

attributed to the windup effect on the phase observables [35],

λIF is the wavelength corresponding to the IF combination,

and NIF is phase ambiguity. In Eqs. 5 and 6 the remaining

unmodelled error sources are indicated with ǫ. To implement

the provided observation model in software, the open-source

library GPSTk [36] is utilized.

ρ
j
IF =Rj + c(δtu − δts) + Tz,dMd(el

j)

+ δRel. + δP.C. + δD.C.B + ǫjρ
(5)

φ
j
IF =Rj + c(δtu − δts) + Tz,dMd(el

j)

+ δRel. + δP.C. + δW.U. + λIFN
j
IF + ǫ

j
φ

(6)

Using the PPP observation model, we can construct a GNSS

constraint for the factor graph [37]. To begin, we note that the

GNSS observations are providing a set of likelihood constraint,

L(O|X), on the optimization process. If the assumption

is made that the state and measurement noise models are

Gaussian, then this constraint can be incorporated into factor

graph through the mahalanobis distance, as provided in Eq.

7, where z is the observed measurement, ẑ is the estimated

measurement — calculated using Eq’s 5 and 6 — and Σ is

the uncertainty in the observation.

ψl = (z − ẑ)TΣ−1(z − ẑ) (7)

C. Incorporating the Carrier-Phase Ambiguity States

There are several way in which the carrier-phase ambiguity

states can be incorporated into the factor graph. One such

way is to incorporate a new carrier-phase ambiguity state for

each epoch. Consecutive carrier-phase ambiguity states can

be constrained by a process noise update. The measurement

Jacobian associated with this graph construction is represented

in Fig. 2.A. From Fig 2.A, we can see a measurement Jacobian

that is more densely populated than desired.

To construct less densly populated measurement Jacobian

(i.e., a more efficient optimization scheme), we can leverage

the knowledge that the true carrier-phase ambiguity value for

a given satellite within a continually tracked phase-arc is a

constant value. Due to this property of the true ambiguity

value, the carrier-phase ambiguity factor can be represented

as a random constant variable. Where, initially, a single factor

is added for each satellite, and a new factor is added only

if the there is a cycle-slip or if a new satellite is tracked.

By treating the carrier-phase bias factor in this manner (i.e.,

like a “landmark” variable in traditional pose-graph SLAM

[38]), and utilizing the Bayes tree based optimizer, an efficient

real-time smoothing formulation for GNSS signal processing

is presented. The measurement Jacobian associated with this

graph construction is represented in Fig. 2.B. From Fig. 2.B,

we see a less densely populated measurement Jacobian, as

desired.

N.Z. = 216273

(A)

N.Z. = 176940

(B)

Fig. 2: Sparse measurement Jacobian for the PPP processing

strategy. Figure (A) shows the measurement Jacobian when a

new carrier-phase ambiguity state is added for each epoch.

Figure (B) shows the measurement Jacobian when a new

carrier-phase ambiguity is added only when a new satellite

is tracked or if a carrier-phase cycle-slip occurs.

D. Incremental Factor Graph Inference

The formulation presented in the previous sections provides

an efficient estimation of XMAP when all of the information

is provided a priori. However, it is generally the case that

information is arriving sequentially, and it is desired to in-

crementally provide state estimates. The ability to provide an

incremental estimator lies in the capability of the optimizer to
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reuse prior computations. A well studied technique of compu-

tation reuse, for state estimation, is to employ QR-factorization

to update the previous matrix factorization [22], [26]; however,

this technique only works for linearized systems.

To overcome this limitation, the Incremental Smoothing

and Mapping (iSAM2) formulation was developed [27]. The

iSAM2 formulation allows for incremental inference over

linear or non-linear objective functions through the utilization

of a novel graphical model, the Bayes tree [39]. To provide

insight into this formulation, specifically for GNSS applica-

tions, a simple GNSS example will be presented. Where it

will be shown how to convert the GNSS factor graph into a

Bayes tree. Additionally, a discussion will be provided on how

the Bayes tree graphical models allows for efficient inference.

To begin our discussion, a factor graph that represents the

GNSS inference problem is presented in Fig. 3. With this

factor graph, it is desired to estimate the states {X,B}. In

this formulation, X represents the position, troposphere, and

receiver clock bias states, as provided in Eq. 8. Additionally,

the vertices B represents the carrier-phase bias states.

X =





δP

Tz,w
Cb



 (8)

X1

B1

X2 X3

B2

Prior Factors

Between Factors

Pseudorange Factors

Carrier Phase Factors

Fig. 3: GNSS factor graph construction.

Utilizing the factor graph presented in Fig. 3, we can begin

the process of converting a factor graph into a Bayes tree. To

do this, we must take an intermediate step and construct a

Bayes net. The Bayes net can be constructed from the factor

graph using a variable elimination game [40]. For our specific

example, the Bayes net is provided in Fig. 4, if the bias states

are eliminated first then the positing states (i.e., the variable

elimination is B1, B2, X1, X2, X3 ). It should be noted that if

the elimination ordering is varied, the resultant Bayes net will

change and this can have a substantial impact on the run-time

of the optimizer [41].

Utilizing the previously constructed Bayes net, we can now

construct the Bayes tree. The Bayes tree is constructed to take

advantage of the clique structure within the Bayes net. That

is, by re-writing the Bayes net we are left with a directed tree

structure, where the vertices in the graph represent cliques in

the original Bayes net. For our GNSS example, the constructed

Bayes tree is provided in Fig. 5.

The tree structure present in the Bayes tree plays a pivotal

role in the ability of the data structure to provide an efficient

X1

B1

X2 X3

B2

Fig. 4: Generating a Bayes Net from the original factor graph

using the elimination ordering, {B1, B2, X1, X2, X3}

X2, X3

X1, B1; X2 B2; X3

Fig. 5: Generating the Bayes tree from cliques in the chordal

Bayes net

incremental inference engine. The primary advantage of the

tree structure is in the idea that only local sections (i.e., a

branch in the Bayes tree structure) of the data structure needs

to be re-linearized when new constraints are added to the

graph. Where re-linearization can be conducted by converting

a subset of the Bayes tree back into a factor graph adding the

new constraint [30].

III. EXPERIMENTAL SETUP

To conduct an analysis of PPP convergence, a simulation

environment was constructed. For synthetic observations gen-

eration, the SatNav-3.04 Toolbox [42] is utilized, which

provides a Matlab environment for generating dual-frequency

pseudorange and carrier-phase observations for a specified

trajectory. For this evaluation, four trajectories of varying dy-

namic were created — an example flight trajectory is provided

in Fig. 6. To tailor the toolbox for an evaluation of kinematic

PPP airborne positioning, several minor modifications were

made, as discussed in [43]. For example, toolbox was modified

to include attitude dependent satellite masking and carrier-

phase breaks. That is, when a satellite is obscured or nearly

obscured due to a change in platform attitude, it is masked

from view and the the potential of a carrier-phase breaks is

increased. Additionally, for a PPP analysis, a methodology of

constructing an orbit and clock model is required. This error

model is constructed by differing JPL’s International GNSS

Service (IGS) submission with European Center for Orbit



5

Determination (CODE) submission. For a more detailed dis-

cussion on the simulation environment, the reader is directed

to [43].
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Fig. 6: Example flight trajectory utilized for simulated GNSS

observation generation.

To evaluate the positioning performance of the PPP in-

cremental graph optimizer, a Monte Carlo style experiment

was implemented. Specifically, one hundred datasets were

generated where several parameters, which are known to

adversely affect GNSS positioning performance, were ran-

domly initialized for each flight — see Table I for additional

information on varied parameters.

TABLE I: Description of randomly initialized parameters

within the Monte-Carlo evaluation.

Varied parameters Parameter description

Thermal noise σρ = 0.32m , σ
φ
= 0.16λ

Multipath σ = 0.4m, τ = 15sec

Tropospheric delay Modified Hopfield with linear scale

Ionospheric delay OIF used to mitigate error to 1st order

Receiver clock bias σ = 30ns, δτ
b
= 100ns

Phase ambiguity Random initialization with attitude dependent phase breaks

Orbits Orbits σ = 5cm with linear scale

To provide a reference positioning solution, a traditional

extended Kalman filter (EKF) was utilized, where the specific

EKF formulation details are provided in [43]. To provide a fair

comparison, the same stochastic models were implemented for

both estimators. The specific stochastic models utilized for the

comparison are provided in Table II.

TABLE II: Stochastic model parameters for estimators.

Parameter a priori σ Process noise Correlation time

Position 1.0 m 5 m
√

s
∞

Trop. wet zenith delay 0.3 m 3e-5 m
√

s
∞

Receiver clock 3e6 m 2000 m
√

s
0

Phase biases 100 m 0 m
√

s
∞

IV. RESULTS

A. Example Simulated Flight Evaluation

To begin an evaluation of the PPP incremental graph

optimizer, a single data set, which is representative of all

datasets simulated for this study, will be analyzed. As a starting

point, the residual sum of squares (RSOS) positioning error

is utilized to evaluated the performance of both estimators,

as shown in Fig. 7. From Fig. 7, it can be readily seen

that the incremental graph optimizer more quickly converges

— when compared to the EKF — to a steady-state value.

Additionally, it should be noted that the both estimators

converge to approximately the same value.

10 20 30 40
Time (Minutes)

0.5

1

1.5

2

2.5

3

3.5

4

R
SO

S 
P

os
it

io
ni

ng
 E

rr
or

 (
m

)

Kalman filter
Incremental graph optimizer

Fig. 7: Example RSOS positioning error profile for a typical

simulated data set

The RSOS positioning error statistics for both estimator are

provided in Table III. From Table III it should be noted that the

incremental graph optimizer outperforms the EKF with respect

to all metrics provided (e.g., the incremental graph optimizer

provides a 25 cm error reduction with respect to the mean

RSOS positioning error).

TABLE III: Positioning statistics for a single flight

Incremental graph Kalman filter

Median (cm) 20.09 21.40

µ (cm) 20.56 45.68

σ (cm) 5.13 72.23

Max. (cm) 126.7 407.26

To continue an analysis of this example data set, it can

be seen in Fig. 7 that the most substantial positioning error

reduction attributed to the incremental graph optimizer occurs

during the first several minutes of the flight (i.e., during

the PPP convergence period). To provide insight into the

accelerated convergence rate of the incremental optimizer,

next, an evaluation of both estimators ability to correctly

resolve the phase bias states is provided in Fig. 8. Where it

can be seen that the incremental graph optimizer provides a

substantial carrier-phase bias estimation error when compared

to the EKF.

B. Positioning Performance Over All Simulated Flights

Now, the evaluation shifts from a single flight to the

performance of both estimators over all simulated data sets. As

with the previous evaluation of a single flight, we will utilize

the RSOS positioning error as the metric of comparison.

To begin our evaluation, the cumulative distribution function

(CDF) of the RSOS positioning error for both estimators is

evaluated, as provided in Fig. 9. From Fig. 9 it can be noted

that there is a considerable shift to the left for the CDF of the

RSOS positioning error of the incremental graph optimizer for
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Fig. 8: Example phase bias convergence rate for a typical

simulated data set

large error values. One possible explanation for this trend —

as indicated by our evaluation of a single flight — is that the

incremental graph optimizer is more quickly converging to a

steady-state value.

0 2 4 6 8 10 12
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Fig. 9: CDF of the RSOS positioning error for all epochs over

the 100 simulated datasets.

TABLE IV: Positioning statistics for all epochs.

Incremental graph Kalman filter

Median (cm) 40.01 39.7

µ (cm) 97.50 256.27

σ (cm) 149.46 641.40

Max. (cm) 2318.43 10,152.28

To confirm that RSOS positioning error seen in Fig. 9 for

the incremental graph optimizer is occurring during the initial

convergence period, a CDF of the RSOS positioning error for

both optimizers during the first 15 minutes of each data set is

provided in Fig. 10. As indicated by the right shift in Fig. 10

of the EKF RSOS positioning error line, the incremental graph

optimizer provides a more accurate positioning solution during

the initial convergence period. The specific RSOS positioning

error reduction during the initial convergence period can be

seen in Table V.

C. Example Evaluation With Collected Data

Finally, to verify the positioning performance benefits noted

in the simulation study, a similar analysis is conducted on

0 2 4 6 8 10 12
RSOS Positioning Error (m)

0
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Kalman Filter
Incremental graph Optimizer

Fig. 10: CDF of the RSOS positioning error for epochs within

the convergence period over the 100 simulated datasets.

TABLE V: Positioning statistics for epochs within the conver-

gence period.

Incremental Graph Kalman filter

Median (cm) 117.76 295.15

µ (cm) 188.79 665.35

σ (cm) 217.16 984.01

Max. (cm) 2,318.43 10,152.28

an example collected dataset. The dataset to be evaluated

was collected on-board a small, fixed-wing Unmanned Aerial

Vehicle (UAV). This UAV testbed (Phastball) — as depicted

in Fig. 11 — was developed at West Virginia University as a

research platform [44].

The Phastball is equipped with a NovAtel OEM-615 dual-

frequency GNSS receiver, which provides 10 Hz GNSS

observables over the duration of the flight. The flight profile

is depicted in Fig. 12. A second OEM-615 NovAtel GNSS

receiver was placed near the runway to allow for a post-

processed RTK solution, where RTKLIB [45] was utilized to

generated the reference solution.

Fig. 11: Phastball research platform [44] in flight over the

West Virginia University Jackson’s Mill airfield.

Utilizing this dataset, the PPP incremental graph optimizer

is evaluated against a Kalman filter based PPP approach,

where both estimators are given the same inital conditions (i.e.,

both estimators are provided the same initial error covariance,

the same measurement noise model, and the same process
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Fig. 12: Flight profile for collected data set.

noise model). In Fig. 13 the 3D RSOS positioning error for

both estimators is provided. The result presented in Fig. 13

follow the trend provided by the simulation study (i.e., the

incremental graph optimizer provides faster positioning error

convergence than that provided by the Kalman filter). This is

further validated by looking at Table VI, where a substantial

median 3D RSOS positioning error reduction is granted by

the PPP incremental graph optimizer when compared to the

Kalman filter.
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Fig. 13: RSOS positioning error comparison for a Kalman

filter and the incremental graph optimizer when a Phastball

collected dataset is utilized.

TABLE VI: Positioning statistics for collected dataset.

Incremental graph Kalman filter

Median (cm) 180.23 373.56

µ (cm) 260.76 349.08

σ (cm) 127.82 84.06

Max. (cm) 508.32 494.07

V. CONCLUSION

The desire to precisely localize a platform is of paramount

importance to a myriad of fields. This desire has lead to a

plethora of research into precise GNSS localization due to its

ability to provide a precise and globally consistent solution.

One of the most commonly utilized GNSS formulations is the

precise point positioning (PPP) technique due to its autonomy

from local reference stations. However, it has been noted in

several studies that PPP has a relatively long initial conver-

gence period when compared to differential techniques.

To reduce the convergence time of PPP, this paper proposes

the use of recent advances in real-time smoothing made

within the robotics community. Specifically, this paper makes

connections between GNSS localization and incremental pose-

graph optimization. The connection between the two fields lies

in the ability to treat phase bias states as “landmark” nodes in

the graph. By treating the phase bias state in this manner, and

utilizing a Bayes tree based optimizer, efficient smoothing of

the position states can be conducted in real-time.

To the quantify the benefit of this formulation, a Monte-

Carlo style experiment was conducted within a simulation

environment. Utilizing the simulated data, the incremental

graph optimization was evaluated along with a traditional

EKF-PPP formulation. Through this evaluation, it was found

that the incremental graph optimization technique provided a

substantial RSOS positioning error reduction during the initial

PPP convergence period when compared to a traditional EKF

formulation. This finding was also validated with an evaluation

of a short duration dataset collected with a fixed-wing UAV.

Finally, to allow for external validation and collaboration,

all software developed for this evaluation has been released

publicly at github.com/wvu-navLab. Included with the source

code are several example datasets.

VI. FUTURE WORK

In this evaluation, the only comparison solution was gen-

erated by a traditional EKF-PPP formulation where phase

biases are estimated as floating parameters. However, there

are several additional formulation that are known to provide

faster convergence rates (e.g., integer ambiguity enabled PPP).

With that in mind, there is a need to evaluate the incremental

graph optimizer against other state of the art formulations, and

to leverage these techniques within the graph.
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