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Abstract—Standalone Global Navigation Satellite Systems
(GNSS) are known to provide a positioning accuracy of a
few meters in open sky conditions. This accuracy can drop
significantly when the line-of-sight (LOS) paths to some GNSS
satellites are obstructed, e.g., in urban canyons or underground
tunnels. To overcome this issue, the general approach is usually to
augment GNSS systems with other dedicated subsystems to help
cover the gaps arising from obscured LOS. Positioning in 5G has
attracted some attention lately, mainly due to the possibility to
provide cm-level accuracy using 5G signals and infrastructure,
effectively imposing no additional cost. In this paper, we study the
hybridization of GNSS and 5G positioning in terms of achievable
position and velocity error bounds. We focus on scenarios where
satellite visibility is constrained by the environment geometry,
and where the GNSS and 5G positioning systems fail to perform
individually or provide prohibitively large error.

I. INTRODUCTION

Standalone code-driven Global Navigation Satellite Systems
(GNSS) positioning methods provide an accuracy of a few
meters. When augmented with complementary systems that
provide carrier-phase reference signals such as Real-Time
Kinematic (RTK) and Precise Point Positioning (PPP), po-
sition accuracy goes down to cm-level [1]. However, such
augmentation systems suffer from two main shortcomings [2]
i) The convergence time for a position fix tends to be long,
ii) they are prone to intermittent reception where carrier-
phase information may be lost, warranting a new position fix
calculation. Therefore, we alternatively propose the soon-to-
be ubiquitous 5G millimeter-wave (mmWave) communication
technology [3]–[6] to assist GNSS receivers to cover the
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gaps arising from intermittent GNSS reception and/or provide
backup system that could take over the positioning task in
GNSS-challenged scenarios, such as urban canyons, indoors,
underground tunnels or malicious jamming attacks.

Motivated by the ever-increasing applications requiring
location-awareness, many recent studies investigated 5G posi-
tioning with mmWave transmission [7]–[9]. All these studies
showed that 5G standalone systems can provide cm-level
positioning accuracy. 5G employs antenna arrays at the base
stations and user equipment, and hence, high-accuracy posi-
tioning can be performed with a single base station through the
estimation of the range or pseudorange (PR) and the directions
of arrival and departure (DOA, DOD) [8]–[10]. MmWave
channels are highly sparse and 5G positioning would be viable
in environments with many reflections, in which GNSS would
fail or have a very poor performance. With all the advantages
of 5G, it is highly sensitive to synchronization accuracy and
may not be fully available in non-urban areas. Moreover,
GNSS may still be the favorable method of positioning in some
scenarios, especially in open areas and highways. Therefore,
positioning based on synergies of GNSS and 5G helps solve
the shortcomings of the individual systems, while retaining and
improving the strengths of each. As a use case, we propose
this hybridization for systems of autonomous vehicles (AVs),
which will be equipped with 5G transceivers, in any case,
making integrating 5G with GNSS a natural solution.

In this paper, we focus on scenarios where the AV is
exposed to line-of-sight (LOS) GNSS signals for a short
duration, such as those in urban streets. We also consider
scenarios where GNSS satellites are ill-positioned causing
poor geometric dilution of precision (GDOP). In these cases,
non-GNSS methods are more suited and 5G is considered in
this paper based on the advantages discussed above. Fig. 1
illustrates the concept of hybrid positioning using GNSS and
5G signals. We conduct a feasibility study on hybrid 5G-GNSS

© 2020 IEEE
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Fig. 1. A diagram illustrating the concept of hybrid positioning using GNSS
and 5G mmWave signals.

positioning systems through the derivation of position (PEB)
and velocity error bounds (VEB).

Towards that, we consider 5G mmWave transceivers with
OFDM signaling. The 5G signal received at the AV is param-
eterized by the DOA, DOD, PR and Doppler shifts, while the
signals received from GNSS satellites are parameterized by the
PR and Doppler shifts. After deriving the Fisher information
of the two sets of parameters, we obtain the Fisher information
of position and velocity as a transformation of parameters
based on geometrical relationships [11]. We then provide an
analysis of when and how 5G can support GNSS, and what the
parameters that govern the positioning performance are. We
also provide insights and guidelines on how to design these
parameters. Finally, We present a numerical investigation of
the 5G performance in urban streets when GNSS has poor
GDOP. Concretely, we set up a scenario comprising 5G base
stations (gNBs) and GNSS satellites with a poor geometry
due to the visibility constraints of the scenario. Ultimately, we
show by simulation that the introduction of 5G positioning will
boost the positioning availability and accuracy by a significant
margin.

II. SYSTEM MODEL

Consider an AV receiving downlink signals from G gNBs
located at pg = [pg,x, pg,y, pg,z]

T, 1 ≤ g ≤ G, and S GNSS
satellites located at an initial position ps = [ps,x, ps,y, ps,z]

T,
and moving with velocities vs = [vs,x, vs,y, vs,z]

T, 1 ≤ s ≤
S. The gNBs are assumed to be synchronized with the GNSS
system but not with the AV, whose bias bu is unknown.
We assume that ps and vs are assumed fixed during the
observation time. Denote the AV’s initial position, velocity and
azimuth rotation angle by p = [px, py, pz]

T,v = [vx, vy, vz]
T

and φ0, respectively. Without loss of generality, we take the
position of the first gNB as the origin of the coordinate system.
We consider a short observation window, over which the
velocities of the AV and satellites are assumed to be constant.
This is a reasonable assumption since vehicles generally move
in speeds of up to 50 or 60 km/h (≈ 13.9–16.6 m/s) in the
considered scenario of urban streets.

A. 5G mmWave LOS OFDM Signal Model
Consider M OFDM symbols with duration T0, including

a cyclic prefix (CP) of duration Tcp, sequentially transmitted
over Nb beams with a carrier frequency fg and a subcarrier
spacing ∆f . The signal corresponding to the m-th OFDM
symbol, 1 ≤ m ≤ M , received over the k-th subcarrier,
−K/2 ≤ k ≤ K/2, at the output of the receive beamforming
is given in the frequency domain by

yk,m =

G∑
g=1

W
(g)H

k,m H
(g)
k,mF

(g)
k,mz

(g)
k,m

+ W
(g)H

k,m n
(g)
k,m ∈ CNs , (1)

where H
(g)
k,m ∈ CNu×Ng is the channel matrix, F

(g)
k,m =

F
(g)
RFF

(g)
Dk,m

∈ CNg×Ns , is the transmit beamforming matrix

such that ‖F(g)
k,m‖F = 1,F

(g)
RF ∈ CNg×Nb and FDk,m ∈

CNb×Ns are the analog and digital transmit beamforming
matrices, respectively. z(g)

k,m ∈ CNs is the vector of transmitted
symbols, while Nu is the number of antennas at the AV, Ng
is the number of antennas at the g-th gNB, Nb is the number
of transmitted beams, and Ns is the number of transmitted
symbols. The matrix W

(g)
k,m = W

(g)
RFW

(g)
Dk,m

∈ CNu×Ns , such

that ‖W(g)
k,m‖F = 1,W

(g)
RF ∈ CNu×Nb and W

(g)
Dk,m

∈ CNb×Ns

are the analog and digital receive beamforming matrices,
respectively. The additive white Gaussian noise is denoted by
n

(g)
k,m ∼ CN (0, N0) ∈ CNu , N0 is the noise PSD.

Remark To simplify the notation, we drop the superscript
(g) from the model in (1). The signal corresponding to a
specific gNB can be therefore obtained using the parameters
related to that gNB. The subscript g is used to distinguish the
parameters related to gNBs from those related to the AV or
GNSS satellites. This is similar to consider only one gNB, and
treating different gNBs independently.

Based on this remark, the definition of the notation in (1)
is now explained. The channel matrix is given by

Hk,m = κk,mau,k(θu, φu)aH
g,k(θg, φg), (2)

where

κk,m ,
√
PgNgNue−j2πk∆fτbg ej2πfdgT0m, (3)

such that |κk,m|2 = PgNgNu, and Pg is the average received
power from the gNB. The complex channel gain is assumed
to have been compensated for. τbg

and fdg
are biased TOA 1

and Doppler frequency. All the OFDM symbols are assumed
to be delayed by the same TOA. (θu, φu) and (θg, φg) are
the DOA and DOD, respectively. au,k(θu, φu) is the array
response vectors of the AV defined by

au,k(θu, φu) =
1√
Nu

e
−j 2π

λk
Luu(θu,φu)

. (4)

1Consider a transmitted signal g(t), where t is taken with reference to
the gNB’s clock. The signal is received as g(t − τ + vt/c) where τ is the
propagation delay and v is the relative speed of motion. To write the received
signal with reference to the AV’s clock that is biased by bu with respect to the
gNB, replace t by t−bu and usefdg/fg = v/c to obtain g((1+fdg/fg)(t−
bu)− τ). That is, the biased TOA τbg = (1 + fdg/fg)bu + τ ≈ bu + τ .



Lu ∈ RNu×3 is the antenna location matrix in half-wavelength,
λk = c

fg+k∆f and u(θ, φ) = [cosφ sin θ, sinφ sin θ, cos θ]T is
a unit vector pointing towards an azimuth angle φ and an
elevation angle θ. ag,k(θg, φg) can be defined similarly. Note
that in this model, the complex channel gain assumed to be
estimated a priori.

Finally, note that Doppler shift introduces a frequency error
that may cause loss of sub-carrier orthogonality. Therefore,
zk,m ∈ CNs is the signal transmitted on the k-th subcarrier
including the interference from adjacent subcarriers and is
modeled by [12]

zk,m = xk,m +
∑
k′ 6=k

xk′,mck−k′(fdg
Ts) = Xmck, (5)

where Xm , [x−K2 ,m, · · · ,xK
2 ,m

] such that xk,m ,

[X
(1)
k,m, · · · , X

(Ns)
k,m ]T is the vector of Ns transmitted symbols,

with a duration Ts, and ck is the (k + 1 + K/2)-th column
of the circulant matrix C = j2πfdgTsD

HQD + IK , where
Q = diag(−K/2,−K/2 + 1, · · · ,K/2) and D is the DFT
matrix [12].

B. GNSS Satellite Signals

Assuming that the Doppler frequency is much less than the
carrier frequency2, the signal received from the s-th GNSS
satellite, 1 ≤ s ≤ S, can be written as

ys(t) =
√
Psxs(t− τbs)ej2πfds t + ns(t), (6)

where Ps, fds , τbs and ϕs are the received power, Doppler
frequency and biased TOA and phase delay, respectively. xs(t)
is the reference signal transmitted from the s-th satellite and
modeled as

xs(t) =

Nso−1∑
`=0

cs`r (t− `Tc) , (7)

where cs` is the `-th PN-code chip with duration Tc, r(t) is the
pulse-shaping filter and Nso is the total number of transmitted
chips.

III. PEB AND VEB DERIVATION

A. Derivation of GNSS and 5G FIMs

The vectors of unknowns associated with the g-th gNB
signal and the s-th satellite can be written as

ηg , [θg, φg, θu, φu, τbg , fdg ]T ∈ R6, (8)

ηs , [τbs
, fds

]T ∈ R2. (9)

From (1), defining µk,m , WH
k,mHk,mFk,mzk,m, then Jg ∈

R6×6, the Fisher information matrix of ηg, can be computed
element-wise using [11]

[Jg]a,b =
1

N0

∑
∀k,m

<

{
∂µH

k,m

∂ηg
a

(WH
k,mWk,m)−1

∂µk,m
∂ηg

b

}
,

(10)
where ηg

a
is the a-th element in ηg, 1 ≤ a, b ≤ 6. The

derivation of the elements of Jg is provided in Appendix A.

2This assumption enables us write the signal using t instead of
(
1 +

fds
fs

)
t

Note how zk,m depends on fdg
, which is accounted for when

the FIM is derived. See (16f).
Similarly, defining µs(t) =

√
Psxs(t − τbs)e

j2πfds t from
(6), then Js ∈ R2×2, the Fisher information matrix of ηs is
given by

[Js]a,b =
1

N0

∫ Tso

0

<

{
∂µ∗s(t)
∂ηs

a

∂µs(t)

∂ηg

b

}
dt, (11)

where Tso = NsoTc is the satellite signal observation time and
1 ≤ a, b ≤ 2. Note that we assume observations from different
satellites to be independent. As shown in Appendix B

Js =
4π2PsTso

N0

[
W 2

eff 0
0 T 2

eff

]
, (12)

where

W 2
eff ,

1

Tc

∫ W/2

−W/2
f2|R(f)|2df,

T 2
eff ,

∫ Tc

0

t̄2|r(t)|2dt,

t̄2 , 1
Nso

∑Nso−1
`=0 (t + `Tc)2 and R(f) is the PSD of r(t),

assumed to be symmetric around f = 0.

B. Position and Velocity Error Bounds

We are interested in the AV position p, velocity v and clock
bias bu, and consequently need to compute the FIM of

η′ , [pT,vT, bu]T ∈ R7 (13)

as a transformation of parameters. Given that Jg and Js

provide independent information, they can be transformed
separately as

Jη′ =

G∑
g=1

TgJgT
T
g︸ ︷︷ ︸

Information from 5G

+

S∑
s=1

TsJsT
T
s︸ ︷︷ ︸

Information from GNSS

∈ R7×7, (14)

where Tg ,
∂ηT

g

∂η′ ∈ R7×6 and Ts , ∂ηT
s

∂η′ ∈ R7×2, obtained
in Appendix C using the following formulas:

θg = cos−1

(
pz − pg,z
‖p− pg‖

)
,

φg = tan−1

(
py − pg,y
px − pg,x

)
,

θu = cos−1

(
−pz + pg,z
‖p− pg‖

)
,

φu = tan−1

(
py − pg,y
px − pg,x

)
− φ0 − π

fdg
=− (v − vg)

T(p− pg)

λg‖p− pg‖
,

τbg
=bu +

‖p− pg‖
c

,

fds =− (v − vs)
T(p− ps)

λs‖p− ps‖
,

τbs =bu +
‖p− ps‖

c
.



where c = fgλg = fsλs is the speed of light. Note that for
each gNB, Jg and Tg in (14) are computed from (10) and
(24), respectively, using the parameters of that gNB.

Finally, we obtain Je
p,v, the EFIM of p and v, by writing

Jη′ in block form as

Jη′ =

[
Jp,v Jpv,bu

JT
pv,bu

Jbu

]
.

Using Schur complement, we can derive

Je
p,v = Jp,v −

1

Jbu
Jpv,buJ

T
pv,bu ∈ R6×6.

Consequently, defining c = diag
{(

Je
p,v

)−1
}

, then

PEB ,
√
c1 + c2 + c3, (15a)

VEB ,
√
c4 + c5 + c6. (15b)

Note that for the position and velocity to be computed with
no ambiguity, Jη′ must be rank 7. Since Jg is rank 6, at
least 2 gNBs are needed to obtain PEB and VEB based on
5G only, when the clock bias is unknown. Similarly, Js is
rank 2, which leads to the widely known fact that at least 4
satellites are needed to compute the position and velocity in
GNSS positioning systems. In principle, hybridization allows
us to use less than this number of satellites and gNBs, as
we can use, for example, 1 gNB and 1 satellite. The satellite
signal can be used to estimate the AV clock bias, while the
gNB signals can be used to estimate the position and velocity.
It is intuitive that incorporating more signals can boost the
performance.

IV. NUMERICAL RESULTS

A. Geometry

Two scenarios related to different satellite arrangements are
presented in this section: an open visibility scenario, and a
constrained visibility scenario:
• Scenario A: Open Visibility This is a reference sce-

nario where the AV receives LOS signals from 4 GNSS
satellites observed at well-spaced locations. These lo-
cations are given in spherical coordinates (See Fig.
1) as ps = (ρ, θ, φ), where ρ = 20.2 × 106 and
(θ, φ) = (35.2◦, 45◦), (35.2◦,−135◦), (57.3◦, 130◦) and
(57.37◦,−39.8◦), respectively.

• Scenario B: Constrained Visibility In this visibility-
constrained scenario, the AV receives LOS signals from
4 GNSS satellites that are almost aligned on an arc,
that is, a narrow azimuth sector. Such a scenario can
arise in central business districts and other suburban
areas where high-rising buildings limit the duration and
the visibility of LOS satellite links, causing positioning
to be challenging. The 4 satellites are assumed to be
located at ps = (ρ, θ, φ), where ρ = 20.2 × 106

and (θ, φ) = (45◦, 0.08◦), (5◦,−0.66◦), (17◦, 0.20◦) and
(25◦,−0.14◦), respectively.

The satellites are assumed to move at a speed of 3.9 km/s
[13], of which a maximum of 1 km/s is in the radial direction.

Sat4

Sat1

Sat2

Sat3

x y

z

gNB1

gNB2

Fig. 2. Scenario A: Four GNSS satellites observed at well-spaced locations.

Sat3

Sat1

Sat2 Sat4

x y

z

gNB1

gNB2

Fig. 3. Scenario B: Four GNSS satellites with poor GDOP, resulting from
the narrow azimuth sector observed.

The tangential direction is chosen arbitrarily in the plane
orthogonal to the radial direction.

In both scenarios, we consider two gNBs, each equipped
with an 12×12 uniform rectangular array, centered at [0, 0, 7]T

m and [20,−6, 5]T m oriented towards the +x-axis and the
+y-axis, respectively. Note that the origin of the coordinate
systems is arbitrarily chosen to be on the ground under the first
gNB. The AV, equipped with an 8 × 8 array oriented toward
the +z-axis, is assumed to be moving along the x-axis with a
speed of 50 km/h and measurements are taken when the AV
is at px = 10 m.

B. Transceiver Parameters

For the OFDM signals, we consider K = 1024 subcarriers
and M = 1000 symbols transmitted over a carrier frequency
38 GHz and bandwidth of 125 MHz. That is, the observation
time is 8.2 ms. The pilot samples are generated randomly as
complex normal vectors such that ‖xm,k‖2 = 1. The non-
orthogonality of the subcarriers occurring due to the Doppler
shift is assumed to affect one adjacent subcarrier on each side.
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Fig. 4. PEB under Scenario A comprising well-spaced GNSS satellites.

That is, the sum in (5) is taken for k′ = k ± 1. Finally,
Pg/N0 = 30 dBHz [14].

We consider L1 GNSS signals with a carrier frequency of
1575.42 MHz and a bandwidth of 1.023 MHz. The signals are
received with a carrier-to-noise ratio of Ps/N0 = 40 dBHz for
a duration of 300 ms. The observation time and bandwidth of
both systems are summarized in Table I.

C. Position Error Bounds

Fig. 4 illustrates the PEB under various cases with well-
positioned satellites as per Scenario A, defined in Section
IV-A. With reference to the discussion below (15a), hybrid
positioning requires at least 1 gNB and 1 satellite, which
is providing a PEB of 1.4 m in the studied scenario. The
standalone GNSS PEB (4.25 m) represents the poorest case
among those studied in Fig. 4, but adding a single gNB brings
PEB down to 75 cm. Adding a second gNB leads to further
performance enhancement with a PEB of 2.5 cm.

The performance under Scenario B, whereby satellite loca-
tions cause poor GDOP is shown in Fig. 5. Not that with
the exception of the standalone GNSS PEB, Fig. 5 shows
that hybrid positioning in Scenario B provides a performance
comparable to that under Scenario A. This implies that the
performance of hybrid positioning is mainly governed by the
abundant resources provided by 5G gNBS, as can be seen in
Table I.

D. Velocity Error Bounds

From Fig. 6, it can be seen that standalone GNSS system
can provides a highly accurate velocity estimate, thanks to the
long observation time and the good geometrical location of
the satellites in Scenario A. However, although 5G provides
a less accurate velocity estimate, it is in the order of a few
centimeters, which is acceptable in systems of AVs.
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Fig. 5. PEB under Scenario B comprising GNSS satellites with poor GDOP.
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Fig. 6. VEB under Scenario A comprising well-spaced GNSS satellites.

Considering Fig. 7, it can be seen that when access to two
gNBs or 4 satellites is not available, hybridization under ill-
arranged satellites can be useful when access to only one
gNB and 2-3 satellites is possible. Under the latter case, it
is possible to obtain a VEB of 1.5–1.8 m/sec.

V. CONCLUSIONS

This paper investigated the benefits of integrating 5G po-
sitioning with GNSS positioning. We presented theoretical
results by deriving the position (PEB) and velocity (VEB)
error bounds, and numerical results focusing on two possible
scenarios whereby the satellites are well- and ill-positioned.
Our numerical results show that hybridization of these two
systems is beneficial when both fail individually. it was also
evident from our numerical results that when simultaneous
access to 2 gNBs is available, precedence should be given



TABLE I
OBSERVATION TIME AND BANDWIDTH OF GNSS AND 5G SYSTEMS.

Observation Time
(ms)

Bandwidth
(MHz)

P/N0

(dBHz)
Total Energy=

Time×Bandwidth×P/N0

GNSS 300 1.023 40 307×107

5G 8.2 125 30 102.5×107
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Fig. 7. VEB under Scenario B comprising GNSS satellites with poor GDOP.

to 5G positioning as it seems to provide satisfactory PEB and
VEB. This can be attributed to the fact that the time-bandwidth
resources available under 5G are more than triple of those
available under GNSS (See Table I).

APPENDIX A
FISHER INFORMATION MATRIX OF 5G PARAMETERS

We drop the angle parameters of au,k and ag,k to simplify
the notation. Then, defining

ȧg,θ,k ,
∂ag,k

∂θg
, ȧg,φ,k ,

∂ag,k

∂φg
,

ȧu,θ,k ,
∂au,k

∂θu
, ȧu,φ,k ,

∂au,k

∂φu
,

and noting that żfdg ,k,m
, ∂zu,k

∂fdg
= Xmċk, where ċk is the

(k + K
2 + 1)-th column of j2πTsDHQD, we derive

∂µk,m
∂θg

=κk,mWH
k,mau,kȧ

H
g,θ,kFk,mzk,m, (16a)

∂µk,m
∂φg

=κk,mWH
k,mau,kȧ

H
g,φ,kFk,mzk,m, (16b)

∂µk,m
∂θu

=κk,mWH
k,mȧu,θ,ka

H
g,kFk,mzk,m, (16c)

∂µk,m
∂φu

=κk,mWH
k,mȧu,φ,ka

H
g,kFk,mzk,m, (16d)

∂µk,m
∂τbg

=(−j2πk∆f)κk,mWH
k,mau,ka

H
g,kFk,mzk,m, (16e)

∂µk,m
∂fdg

=κk,mWH
k,mau,ka

H
g,kFk,m ×(

(j2πT0m)zk,m + żfdg ,k,m

)
. (16f)

For compactness, we also introduce the following notation

γ0 ,
PgNgNu

N0
,

αf , −j2π∆f,

F̆k,m = Fk,mzk,mzH
k,mFH

k,m,

˘̇Fk,m = Fk,mżk,mzH
k,mFH

k,m,

˘̈Fk,m = Fk,mżk,mżH
k,mFH

k,m,

W̆k,m = Wk,m(WH
k,mWk,m)−1WH

k,m,

Ġk,m , j2πT0mF̆k,m + ˘̇Fk,m,

G̈k,m , (2πT0m)2F̆k,m − 4πT0m={ ˘̇Fk,m}+ ˘̈Fk,m.

Next, the elements of (10) can be obtained using (16) as

Jθg =γ0

∑
∀k,m

<
{

(ȧH
g,θ,kF̆k,mȧg,θ,k)(aH

u,kW̆k,mau,k)
}
,

Jθgφg
=γ0

∑
∀k,m

<
{

(ȧH
g,φ,kF̆k,mȧH

g,θ,k)(aH
u,kW̆k,mau,k)

}
,

Jθgθu =γ0

∑
∀k,m

<
{

(aH
g,kF̆k,mȧH

g,θ,k)(aH
u,kW̆k,mȧH

u,θ,k)
}
,

Jθgφu
=γ0

∑
∀k,m

<
{

(aH
g,kF̆k,mȧH

g,θ,k)(aH
u,kW̆k,mȧH

u,φ,k)
}
,

Jθgτbg
=γ0

∑
∀k,m

<
{
αfk(aH

g,kF̆k,mȧH
g,θ,k)(aH

u,kW̆k,mau,k)
}
,

Jθgfdg
=γ0

∑
∀k,m

<
{

(aH
g,kĠk,mȧg,θ,k)(aH

u,kW̆k,mau,k)
}
,

Jφg
=γ0

∑
∀k,m

<
{

(ȧH
g,φ,kF̆k,mȧg,φ,k)(aH

u,kW̆k,mau,k)
}
,

Jφgθu =γ0

∑
∀k,m

<
{

(aH
g,kF̆k,mȧg,φ,k)(aH

u,kW̆k,mȧu,θ,k)
}
,

Jφgφu =γ0

∑
∀k,m

<
{

(aH
g,kF̆k,mȧg,φ,k)(aH

u,kW̆k,mȧu,φ,k)
}
,

Jφgτbg
=γ0

∑
∀k,m

<
{
αfk(aH

g,kF̆k,mȧg,φ,k)(aH
u,kW̆k,mau,k)

}
,

Jφgfdg
=γ0

∑
∀k,m

<
{

(aH
g,kĠk,mȧg,φ,k)(aH

u,kW̆k,mau,k)
}
,

Jθu =γ0

∑
∀k,m

<
{

(aH
g,kF̆k,mag,k)(ȧH

u,θ,kW̆k,mȧu,θ,k)
}
,



Jθuφu
=γ0

∑
∀k,m

<
{

(aH
g,kF̆k,mag,k)(ȧH

u,θ,kW̆k,mȧu,φ,k)
}
,

Jθuτbg
=γ0

∑
∀k,m

<
{
αfk(aH

g,kF̆k,mag,k)(ȧH
u,θ,kW̆k,mau,k)

}
,

Jθufdg
=γ0

∑
∀k,m

<
{

(aH
g,kĠk,mag,k)(ȧH

u,θ,kW̆k,mau,k)
}
,

Jφu
=γ0

∑
∀k,m

<
{

(aH
g,kF̆k,mag,k)(ȧH

u,φ,kW̆k,mȧu,φ,k)
}
,

Jφuτbg
=γ0

∑
∀k,m

<
{
αfk(aH

g,kF̆k,mag,k)(ȧH
u,φ,kW̆k,mau,k)

}
,

Jφufdg
=γ0

∑
∀k,m

<
{

(aH
g,kĠk,mag,k)(ȧH

u,φ,kW̆k,mau,k)
}
,

Jτbg
=γ0|αf |2

∑
∀k,m

<
{
k2(aH

g,kF̆k,mag,k)(aH
u,kW̆k,mau,k)

}
,

Jτbgfdg
=− γ0

∑
∀k,m

<
{
αfk(aH

g,kag,k)(aH
u,kW̆k,mau,k)

}
,

Jfdg
=γ0

∑
∀k,m

<
{

(aH
g,kG̈k,mag,k)(aH

u,kW̆k,mau,k)
}
.

APPENDIX B
FIM OF SATELLITE PARAMETERS

Starting with µs(t) =
√
Psxs(t − τbs)ej2πfds t and noting

that ∂
∂τbs

xs(t− τbs) = −ẋs(t− τbs), then

∂µs(t)

∂τbs
= −

√
Psẋs(t− τbs)ej2πfds t,

∂µs(t)

∂fdbs
= j2πt

√
Psxs(t− τbs)ej2πfds t.

Consequently, from (11),

Jτbs =
Ps

N0

∫ Tso

0

|ẋs(t− τbs)|2dt (18a)

=
Ps

N0

∫ W/2

−W/2
(2πf)2|X(f)|2df, (18b)

=
NsoPs

N0

∫ W/2

−W/2
(2πf)2|R(f)|2df, (18c)

=
4π2PsTso

N0
W 2

eff , (18d)

where

W 2
eff ,

1

Tc

∫ W/2

−W/2
f2|R(f)|2df. (19)

(18b) follows from Parseval’s theorem, while (18c) follows
from (7). For a rectangular pulse shape, it can be shown that
W 2

eff = W 2/(2π2). Similarly,

Jfds =
4π2Ps

N0

∫ Tso

0

t2|xs(t− τbs)|2dt. (20)

By the expansion of the summation in (7), and a change of
variables, it can be shown that

Jfds =
4π2PsTsoT

2
eff

N0
, (21)

where

T 2
eff ,

∫ Tc

0

{
1

Nso

Nso−1∑
`=0

(t+ `Tc)2

}
|r(t)|2dt (22)

For a rectangular pulse, T 2
eff = T 2

so/12.
Note that Jτbsfds = 0, because the integrand below is

imaginary

Jτbsfds =
−2πPs

N0

∫ Tso

0

<
{
jt|xs(t− τbs)|2

}
dt = 0. (23)

APPENDIX C
NON-ZERO ENTRIES OF TRANSFORMATION MATRICES

A. 5G Parameter Transformation Matrix Tg

Defining p̄g , p − pg = [p̄g,x, p̄g,y, p̄g,z]
T and v̄g ,

v − vg = [v̄g,x, v̄g,y, v̄g,z]
T, then the non-zero elements in

the transformation matrix Tg can be shown to be

∂θg

∂p
=

[p̄xp̄z p̄yp̄z − (p̄x + p̄y)2]T

‖p̄g‖2
√
p̄2
x + p̄2

y

, (24a)

∂φg

∂p
=

1

p̄2
x + p̄2

y

[−p̄y p̄x 0]T, (24b)

∂θu

∂p
=− ∂θg

∂p̄g
, (24c)

∂φu

∂p
=
∂φg

∂p̄g
, (24d)

∂fdg

∂p
=

(v̄T
g p̄g)p̄g − ‖p̄g‖2v̄g

λg‖p̄g‖3
, (24e)

∂τbg

∂p
=

p̄g
c‖p‖

+
bu
fg

∂fdg

∂p
(24f)

∂fdg

∂v
=− p̄g

λg‖p‖
, (24g)

∂τbg

∂v
=
bu
fg

∂fdg

∂v
(24h)

∂τbg

∂bu
=1 +

fdg

fg
. (24i)

B. 5G Parameter Transformation Matrix Tg

Defining p̄s , p− ps and v̄s , v− vs, then the non-zero
elements in the transformation matrix Ts can be shown to be

∂fds

∂p
=

(v̄T
s p̄s)p̄s − ‖p̄s‖2v̄s

λs‖p̄s‖3
, (25a)

∂τbs

∂p
=

p̄s
c‖p̄s‖

+
bu
fs

∂fds

∂p
(25b)

∂fds

∂v
=− p̄s

λs‖p̄s‖
, (25c)

∂τbs

∂v
=
bu
fs

∂fds

∂v
(25d)

∂τbs

∂bu
=1 +

fds

fs
. (25e)
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