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Abstract— Camera-based visual navigation techniques can
provide six degrees-of-freedom estimates of position and ori-
entation (or pose), and can be implemented at low cost in
applications including autonomous driving, indoor positioning,
and drone landing. However, feature matching errors may
occur when associating measured features in camera images
with mapped features in a landmark database, especially
when repetitive patterns are in view. A typical example of
repetitive patterns is that of regularly spaced windows on
building walls. Quantifying the data association risk and its
impact on navigation system integrity is essential in safety
critical applications. But, literature on vision-based navigation
integrity is sparse. This work aims at quantifying and bounding
the integrity risk caused by incorrect associations in visual
navigation using extended Kalman filters.

I. INTRODUCTION

Cameras have successfully been used in a variety of
navigation applications including visual odometry for tra-
jectory estimation of the Mars rover [1] [2] and vision-
based positioning for unmanned aerial vehicle (UAV) landing
[3] [4]. In safety critical applications such as autonomous
driving, vision can potentially be used, not only for situ-
ational awareness, but also for landmark-based navigation
[5]. Cameras can be incorporated in a navigation system
as additional sensors to improve navigation performance in
terms of accuracy, availability, continuity and integrity [6]
[7] [8]. However, there is no widely implemented method to
quantify integrity in vision-based navigation.

A crucial error source in visual positioning is feature
matching error in data association. The probability of oc-
currence of incorrect associations can be high in urban envi-
ronments, especially when multiple similar-looking objects
are observed in a same image. Examples of difficult to
distinguish features include series of windows on building
walls, parked cars, traffic signs, etc. In this work, in order to
evaluate the integrity risk in visual positioning, we propose
an analytical framework to upper bound the probability of
hazardous misleading information (HMI) while considering
all possible incorrect feature associations. Based on prior
work on laser-based navigation [9][10], we develop a method
to quantify the probability of the correct association that uses
the innovation vector from the extended Kalman filter (EKF).

The paper is organized as follows. First, we define the
camera measurement equation and the EKF-based posi-
tioning algorithm. Second, we develop a separation metric

Fig. 1: System model of a pinhole camera

for extracted landmarks, and describe the data association
criterion. Third, we derive an integrity risk bound as a
function of the EKF innovation vector considering data
association errors. Simulation and experimental results are
then provided, analyzed and conclusions are drawn.

II. MEASUREMENT MODEL OF CAMERA-BASED
POSITIONING

In the remainder of this paper, a superscript with paren-
theses (·) is used to denote the reference frame in which the
vector is represented. Vectors and matrices are denoted with
bold symbols while scalars are not. Vectors such as ~X(W )

j ∈
R3 with geometric meanings are written with an arrow. The
homogeneous coordinates in the extended Euclidean plane
are written as ũ ∈ P2. [A;B] denotes vertical concatenation
of two matrices.

In this work, a state-of-the-art pinhole model with cor-
rected radial lens distortion is used as the sensor model of
the camera. Fig. 1 illustrates the system model of a pinhole
camera.

The projection of a point with coordinates ~X(W )
j ∈ R3 to

the camera is described as

ũ j = KRT
(C→W )(

~X(W )
j −~X(W )

C ), (1)

where ~X(W )
C is the camera position in a global reference

frame (W ), and R(C→W ) ∈ SO(3) is the rotation matrix
between the camera body frame (C) and frame (W ). The
matrix K is called camera intrinsic matrix, the parameters
of which are only dependent on the camera and the lens.
ũ j = d[ux,uy,1]T is the location of the point j on the image
plane in homogeneous coordinates, where d is the depth of



the point, i.e., the distance of the point to the image plane.
The depth can be expressed as

d = [0,0,1]RT
(C→W )(

~X(W )
j −~X(W )

C ). (2)

In Euclidean space, the 2D coordinates of a projected point
in the image plane is related to the camera pose and the 3D
location of the feature point as described in the following
equation

u j =

[
ux
uy

]
=

1
d

[
1 0 0
0 1 0

]
ũ j. (3)

We parameterize the camera attitude using Rodrigues
parameters r = [r1,r2,r3]

T = θe, which can be related to the
rotation matrix by Rodrigues rotation formula as [11]

R(C→W ) = I3 cos(θ)+ bec× sin(θ)+(1− cos(θ))eeT , (4)

where I3 is a 3-dimensional identity matrix, and bec× is
the skew symmetric matrix using the normalized unit vector
e = r/‖r‖ ∈ R3 as none-zero entries. The operator b·c× is
defined as

bec× =

 0 −e3 e2
e3 0 −e1
−e2 e1 0

 . (5)

It should be mentioned that the three Roderigues parameters
are corresponding to the coefficients of the Lie algebra of the
SO(3) group [12]. The rotation can equivalently represented
as

R(C→W ) = exp(brc×), (6)

where exp(·) is matrix exponential operator. Such minimal
parameterization of attitude is convenient for operations on
manifold. It is mathematically elegant, and is capable of
avoiding the Gimbal lock problem of Euler angle param-
eterization [11].

Consequently, we can parameterize the camera pose with
a 6 degrees-of-freedom (DoF) vector

x =

[
~X(W )

C
r

]
∈ R6. (7)

In order to simplify the notation, a function π j(·) : R6→
R2 is defined to project the 3D point ~X(W )

j to the 2D
coordinates on the image plane of a camera with 6DoF
pose parameterized as x. The projection can be explicitly
expressed as

u j = π j(x) =

[
1 0 0
0 1 0

]
KRT

(C→W )(
~X(W )

j −~X(W )
C )[

0 0 1
]

KRT
(C→W )

(~X(W )
j −~X(W )

C )
. (8)

Consequently, for a feature point j extracted from the mea-
surement image, the noisy measurement equation can be
expressed as

µµµ j = u j +n j = π j(x)+n j, (9)

where n j is zero-mean Gaussian noise with covariance matrix
ΣΣΣn j, which can be conservatively modelled using the method
in [13].

Given a known landmark M consisting of mF feature
points in the map (requiring mF ≥ 4 in general), the position
and orientation of the camera can be estimated using corre-
sponding 2D measurements { j = 1, ...,mF |µ j} by iteratively
solving the following nonlinear optimization problem

x̂ = argmin
x
‖µµµ−π(x)‖2

ΣΣΣ
−1
nnn
, (10)

where

µµµ =

 µµµ1
...

µµµmF

 ,π(x) =
 π1(x)

...
πmF (x)

 ,n =

 n1
...

nmF

 . (11)

ΣΣΣnnn is the covariance matrix of noise vector n. The initial
estimation for the linearization point can be obtained using
the direct PnP methods such as in [14].

III. SYSTEM MODEL

Let us assume that there are NL repetitive landmarks
with known poses in the map, and each landmark consists
of mF feature points with known geometric arrangements.
Such situation is rather common in real-life scenarios, e.g.,
identical windows on the street. Fig. 2 demonstrates an
instance of typical scenarios that may cause data association
error in visual navigation. In this synthetic example, there
are three identical chessboards landmarks lying next to each
other, i.e., NL = 3. A camera moves in a trajectory consisting

Fig. 2: A moving camera and visible identical landmarks in
the map database.

of Nk keyframes as sampling epochs. The poses of the camera
in the global reference frame (W ) are denoted as {k =
1, ...,Nk|xk}, and are measured at keyframes. The motion of
the camera can be modelled as

xk = ΦΦΦk−1xk−1 +wk−1, (12)

where ΦΦΦk−1 is the linear transition matrix at time k− 1,
and wk−1 is the process noise which follows a Gaussian
distribution wk−1 ∼N (0,Wk−1). We assume that the visible
landmarks can be detected from the measurement images.
The detection can be based on models for designed pattern,
or based on advanced machine learning methods for specific
class of landmarks [15]. Fig. 3 demonstrates an example



of a detected checkerboard landmark and the correspond-
ing feature points extracted from the measurement image.
Given a conservative feature error model such as CCGEM
proposed in [13], the correctness of the landmark extraction
can be tested by exploiting the feature arrangement of the
known landmark. The error in landmark detection is not the
main topic of this paper. Instead, in this work we focus
on quantifying the feature association error for identical
landmarks that have been successfully detected using the
aforementioned methods. For landmark i consisting of mF

Fig. 3: An example of correctly detected feature points on a
landmark pad.

feature points with 3D location { j = 1, ...,mF |~X(W )
j }, the

corresponding projected 2D features in the image of camera
at pose x are written as

zi =

 u1
...

umF

=

 π1(x)
...

πmF (x)

 . (13)

Exploiting the feature points of the visible landmarks, the
camera can estimate its 6DoF pose using an extended
Kalman filter (EKF). The least squares optimization intro-
duced in the last section can be applied to initialize the EKF.
In this recursive process, given a posterior pose estimate x̂k−1
with covariance P̂k−1 at time instant k−1, the pose at time
k as well as its covariance can be predicted using the motion
model in Eqn. (12) as

x̄k = ΦΦΦk−1x̂k−1, P̄k = ΦΦΦk−1P̂k−1ΦΦΦ
T
k−1 +Wk−1. (14)

The measurements at time k including all the visible land-
marks are written as

ẑk =

 ẑ1
...

ẑNL

=

 h1(xk)
...

hNL(xk)

+vk = h(xk)+vk, (15)

where vk ∼N (0,Vk) is the measurement noise, and hi(xk) is
the measurement equation of landmark i. The measurement
function can be linearized at the predicted value x̄k as

hi(x̄k) =

 πi,1(x̄k)
...

πi,mF (x̄k)

≈ hi(xk)+Hi,k(x̄k−xk), (16)

where
Hi,k =

∂hi(x)
∂x

∣∣∣
x=x̄k

. (17)

The innovation vector can be defined as the difference
between the measurements and the prediction as

γγγk = ẑk−h(x̄k). (18)

The posterior estimate at time k can be updated using the
following equations

x̂k = x̄k +Gkγγγk, P̂k = (I−GkHk)P̄k, (19)

in which Hk is the linearized matrix concatenated over all the
landmarks i= 1, ...,NL, and Gk is the Kalman gain calculated
using the equation

Gk = P̄kHT
k (HkP̄kHT

k +Vk)
−1. (20)

IV. IDENTICAL LANDMARK ASSOCIATION CRITERION

Since the landmarks are identical, the association between
different detected 2D features and the 3D point locations
in the map is only dependent on the geometry between the
landmark location and the camera pose. For NL identical
landmarks, there are NL! number of permutations of the fea-
tures, one of which corresponds to the correct association. As
a result, NL! permutation matrices {i = 0,1, ...,NL!− 1|Ai}
can be created to mathematically express all the landmark
association options. For example, in the scenario of Fig. 2,
there are three landmarks, i.e., NL = 3. The 2D features can
be matched to the three landmarks in the map with 6 different
orders. As an illustrative example, under the hypothesis of the
association order [ẑ2; ẑ3; ẑ1], the corresponding permutation
matrix is constructed as

A =

 0 I2mF 0
0 0 I2mF

I2mF 0 0

 . (21)

As a result, the measurement equation under such hypothesis
of association is

ẑk,A = Ah(xk)+vk,A. (22)

For landmark association hypothesis represented by Ai, the
innovation vector of the EKF at time k is [9]

γγγk,i = ẑk−Aih(x̄k)

≈ h(xk)+vk−Ai (h(xk)+Hk(x̄k−xk))

= (I−Ai)h(xk)−AiHk(x̄k−xk)+vk

= (I−Ai)h(xk)−AiHkε̄εεk +vk. (23)

It can be seen from Eqn. (23) that both ε̄εεk ∈ R6 and vk ∈
R2mF NL are zero- mean Gaussian variables. The innovation
vector γγγk,i is unbiased if and only if i = 0 for A0 = I. For
other i 6= 0, there exists a bias term

bi = (I−Ai)h(xk). (24)

Therefore, we can exploit the innovation vectors to find the
most likely landmark matching from all possible association
hypotheses.



For the correct association, γγγk,0 ∼ N (0,ΣΣΣ0) is a zero-
mean Gaussian random variable with

ΣΣΣ0 = Vk +HkP̄kHT
k . (25)

However, for other hypotheses, the innovative vector γγγk,i ∼
N (bi,ΣΣΣi) with

ΣΣΣi = Vk +AiHkP̄kHT
k AT

i . (26)

In EKF based sequential estimation problems, we do not
explicitly know which association is correct, so we calculate
the squared L2-norm of the innovation vectors weighted by
their covariance matrices for all hypotheses. The results are
realizations of NL! different Chi-squared distributions with
the same degrees of freedom, among which only one is
central Chi-squared distribution. In our implementation, the
variables are expressed as

Γi = ‖γγγk,i‖2
ΣΣΣ
−1
i
∼ χ

2(2mF NL +6). (27)

Therefore, we choose the permutation with minimum
weighted norm of the innovation as the feature association
criteria, i.e.,

î = arg min
i=0,1,...,NL

Γi. (28)

V. INTEGRITY RISK FROM INCORRECT LANDMARK
ASSOCIATION

Following the outline of fault analysis for data association
error in the work by Joerger and Pervan [9], we also
express the hazardous misleading information (HMI) for
visual navigation at time epoch Nk as

P(HMINk) =P(HMINk ,CA1...Nk)+P(HMINk , IA1...Nk)

=P(HMINk |CA1...Nk)P(CA1...Nk)

+P(HMINk |IA1...Nk)
(
1−P(CA1...Nk)

)
, (29)

where CA1...Nk is the event that all the data associations are
correct from time 1 till time Nk, while IA1...Nk is the com-
plement event that there can exist an incorrect association
at any time between time 1 and time k. We can overbound
the integrity risk by conservatively assuming that incorrect
association events always cause hazardous misleading infor-
mation, i.e., P(HMINk |IA1...Nk) = 1. Consequently, Eqn. (29)
becomes an inequality that can be written as

P(HMINk)≤ 1−
(
1−P(HMINk |CA1...Nk)

)
P(CA1...Nk). (30)

The probability P(HMINk |CA1...Nk) is obtained by consider-
ing other types of errors in visual positioning, e.g., the nomi-
nal case error by applying the methods in [13] and [16]. The
most significant task of quantifying the data association error
is to calculate the correct association probability P(CA1...Nk).
The joint distribution of correct association over all the time
can be factorized as

P(CA1...Nk) = P(CA1)
Nk

∏
k=2

P(CAk|CAk−1). (31)

As a result, we can obtain an analytical upper bound for
the integrity risk caused by data association if the correct
association probability can be sequentially calculated.

Exploiting the criteria in Eqn. (28) to associate the de-
tected landmarks to those in the map, the correct association
probability can be calculated using the following expression

P(CAk|CAk−1) = P
(

Γ0 < min
i=1,...,NL−1

{Γi}
)
. (32)

The probability of correct association depends on the feature
separation between the different ordering of landmarks. It has
been proved in [9] that

P
(

Γ0 < min
i=1,...,NL−1

{Γi}
)
≥P

(
Γ0 < min

i=1,...,NL−1

{
bT

i ΣΣΣ
−1
i bi

4

})
,

(33)
where bi and Σi are defined in Eqn. (24) and Eqn. (26).

Consequently, we obtain an analytical lower bound for the
probability of correct association. By substituting Eqn. (33)
into Eqn. (31) and Eqn. (30), an upper bound for the risk
of HMI can be obtained, which accounts for the landmark
association error.

VI. SIMULATION RESULTS

Fig. 4 illustrates a test scenario that we used to analyze
the impact of the identical landmarks on data association.
A camera moving in a line while there are three identical
landmarks distributed on one side of the route. The camera
moves towards the features. This can be a realistic scenario
for a camera mounted on a moving car, while identical
windows are on the side of the street. In this simulation,
the three landmarks are 7x5 chessboards, but only four
outer corners are used as extracted feature points for each
landmark, i.e., NL = 3,mF = 4 in this case. The choice of the
4 corners are as shown in Fig. 5. The standard deviation for
measurement noise is set to 1 [pixel], and the process noise
standard deviation is 0.5 [m] for translation and 0.1 [rad] for
rotation.

Fig. 4: Simulation scenario for repetitive patterns at one side.

Applying the method introduced in the earlier sections,
the landmarks in the images can be associated with the ones
in the map, and the probability of the correct association
P(CAk|CAk−1) can be calculated. The result is shown in
Fig. 6. It can be seen that as the camera moves closer to the
landmarks, the separability of the features increases, so the
probability of correct association also increases.

In order to investigate the impact of the complexity of
the landmarks on the integrity risk due to association error,
we simulate the same aforementioned scenario by using all



Fig. 5: Choice of the 4 specified corners.

Fig. 6: Probability of correct association.

the corner points of the checkerboards. A demonstration is
shown in Fig. 7. In such case, mF = 35. The probability

Fig. 7: Simulation scenario for repetitive patterns at one side.

of correct association by using all the 35 corners for each
landmark is illustrated in Fig. 8, including the comparison
with the 4 corner case. It can be concluded from the curves
that the more known feature points each individual landmark
contains, the smaller the probability of incorrect association
between different landmarks. For better illustration, Fig. 9
shows the probability of incorrect association in logarithm
scale. It can be seen that by using landmarks with only
4 features each, the probability of incorrect association is
smaller than 10−7 if the camera moves as close to the
features as k= 10, while the landmarks with 35 feature points

Fig. 8: Probability of correct association for different number
of features per landmark.

has reached P(IAk|CAk−1) < 10−7 from k ≥ 5. Such data
provide us information that from which distance on the visual
navigation system starts to lose integrity due to incorrect
association risks.

Fig. 9: Probability of incorrect association.

There is also accuracy gain by using more complex
landmarks. Fig. 10 shows the position error of the EKF esti-
mation. The error is demonstrated using root-mean-squared
error (RMSE) from 100 runs of Monte-Carlo simulation. In
our simulation, the standard deviation of measurement noise
is set to 1 [pixel], and the process noise standard deviation is
0.5 [m] for translation. The upper figure shows the estimation
error for mF = 4, and the lower plot demonstrates the RMSE
when using all the features, i.e., mF = 35. The standard
deviation of the estimated position is plotted using dashed
line for the three dimensions respectively. It can be seen that
the estimation exploiting all the features in the landmarks has
better performance than utilizing a subset of them. However,
the computational load also increases with the features per
landmark.



(a) mF = 4

(b) mF = 35
Fig. 10: Performance of EKF-based visual navigation

VII. CONCLUSIONS

In this work we propose a method to evaluate an analytical
bound for HMI probability in camera-based positioning
while accounting for features association error. To the best
of our knowledge, it is the first analytical description of the
feature association error in visual navigation.
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