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Abstract—Time-based ranging accuracy is inversely propor-
tional to the signal bandwidth. A larger the signal bandwidth
leads to a higher accuracy of time delay estimation, but more
complex hardware is needed. Alternatively, we explore the idea
of using multiple narrow signal bands (e.g., 10 MHz of each)
to create a large virtual signal bandwidth, which maintains the
spectral efficiency but largely improves the ranging accuracy.
Considering the impact of multipath, the propagation delay of
the LoS path is computed from the estimated channel impulse
response (CIR). In this paper, we propose an approach to
sparsely select signal bands for ranging and positioning based
on convex optimization. The Cramér-Rao lower bound (CRLB)
for the propagation delay and gain estimators, as a performance
criterion, is employed in the constraint of the optimization. The
CRLB is derived in a two-path channel, so that the accuracy
and the correlation between the LoS path and the reflection are
taken into account. Experiments are conducted in a laboratory
environment to illustrate the proposed signal design methodology
dedicated for ranging with a sub-decimeter accuracy.

Index Terms—time delay estimation, ranging, OFDM, convex
optimization, Cramér-Rao lower bound, multipath channel

I. INTRODUCTION

In a ranging system for positioning and navigation, the

propagation time delay is the most straightforward measure-

ment to retrieve geometric information. The accuracy of delay

estimation is inversely proportional to the signal bandwidth.

In GNSS, because of its relatively narrow signal bandwidth, it

becomes difficult to distinguish the direct line-of-sight (LoS)

path from close-in reflections. Thus, multipath is a significant

error source in high precision GNSS applications [1]. Given a

fixed and relatively narrow signal bandwidth, the maximization

of the Gabor bandwidth is proven to be effective in providing

robustness against multipath [2]. Alternatively, in a terrestrial

positioning system, we can potentially occupy a large signal

bandwidth for time-based ranging. For example, the signals

transmitted in the ISM bands (e.g., 2400-2500, 5875-5925

MHz), ultra-wide band (UWB) signals, and other opportunistic

signals that can be modified for ranging and positioning.

However, using a very large signal bandwidth for ranging

requires an analog-to-digital converter (ADC) with a very high

sample rate, and is also not efficient in terms of spectrum us-

age. In addition, to estimate the propagation delay from a large

amount of samples also requires substantial processing power.

This research is supported by the Netherlands Organization for Scientific
Research (NWO) through the project SuperGPS under Grant 13970.

Instead of occupying the entire available signal bandwidth,

in [3] we explored the idea of using multiple signal bands

that are sparsely located within the available signal spectrum,

to create a large virtual signal bandwidth, which has been

referred to as a sparse multiband signal. As a follow-up, in this

paper, we focus on the signal design, specifically on how to

sparsely select multiple signal bands from the available signal

spectrum, such that we occupy little total spectrum bandwidth,

and can still achieve a favorable ranging accuracy.

In a time-based ranging system, we are most interested in

the propagation delay of the direct LoS path, which can in

principle be derived from the channel impulse response (CIR).

To obtain the CIR, the propagation delay and the gain should

be estimated for each path. Although we only use time delay

estimates for ranging, the estimates of the gain are also useful

in a multipath channel as they may be indicative for a direct

LoS path, a blocked path, or a reflection. Thus, we derive the

Cramér-Rao lower bound (CRLB) for the propagation delay

and gain estimators in a two-path channel, as a performance

criterion to design the signal. The CRLB derived for a two path

channel considers the covariance of the estimators between

the LoS path and a reflection [4]. That is why we need to

consider a channel with at least two paths. When the estimators

of the LoS path are highly correlated with the estimators

of a reflection, we may not be able to distinguish the LoS

component from the reflection. Consequently, the LoS time

delay estimate can be largely affected by multipath.

In this paper, the baseband signal in each signal band, as an

example, is modulated in orthogonal frequency division multi-

plexing (OFDM). Then, we aim to select optimal and possibly

sparse OFDM signal bands for ranging and positioning, which

can meet the desired ranging accuracy and with a capability

to distinguish certain reflections.

The rest of the paper is organized as follows. Section II

presents the CRLB of the propagation delay and gain in a two

path channel. A convex optimization problem is formulated for

signal bands selection in section III. Then, section IV presents

a sparsity-prompt time delay estimation method. Simulation

and experimental results are shown in section V. Lastly, the

conclusion is drawn in section VI.

Notation: E{·} denotes the expectation operation. R (C) is

used to indicate a real (complex) variable. (·) denotes a random



variable. (̂·) denotes an estimate. (·)T, (·)∗ and (·)H denote

transposition, conjugate and Hermitian operation, respectively.

Upper boldface letters (e.g., F ) are used for matrices, and [·]ij
denotes the element in the i-th row and the j-th column of a

matrix. Lower boldface letters (e.g., r) are used for column

vectors. A normal lower letter or [·]i is used to denote an

element in a column vector. IN is the identity matrix of size

N . 1N denotes a N × 1 vector of one. �{·} and �{·} denote

the real part and imaginary part of a complex value. ‖x‖2 =
(xTx)1/2 denotes the Euclidean norm (i.e., l2 norm). ‖x‖1 =
|x1|+. . .+|x2| denotes the sum-absolute-value (i.e., l1 norm).

II. CRAMÉR-RAO LOWER BOUND FOR TWO PATH

CHANNEL

Assuming that the received OFDM signal, which contains

N subcarriers, is only perturbed by complex Gaussian noise.

Thus, there are N samples taken from one OFDM symbol.

The distribution of the observation is defined as follows,

r[θ] ∼ CN (μr(θ),Cr(θ)) , Cr(θ) = Cr = σ2IN , (1)

where θ denotes unknown parameters, μr(θ) = E(r[θ]), and

Cr(θ) denotes the variance matrix of the observations.

In practice, the signal is always received in a multipath

channel. For the purpose of ranging and positioning, although

we are only interested in the propagation delay of the LoS

path, the gain of each path is also useful to help to select the

LoS path in a multipath channel. Therefore, we estimate the

delay and the gain not only for the LoS path, but also for the

reflection and the estimators can be assumed to be unbiased

in an actual multipath channel. The CRLB of any unbiased

estimator is given by [5]

CRLB(θ̂) = F−1(θ), (2)

where F (θ) denotes the Fisher information matrix (FIM),

given by

[F (θ)]ij =tr

[
C−1

r (θ)
∂Cr(θ)

∂θi
C−1

r (θ)
∂Cr(θ)

∂θj

]

+ 2�
[
∂μH

r (θ)

∂θi
C−1

r (θ)
∂μr(θ)

∂θj

]
,

(3)

For simplicity in the following derivation, we consider a

two path channel as an example, but this can be expanded to

multiple reflections. Hence, the set of unknown parameters is

defined by θ,

θ =
[
τ1 τ2 α1 α2

]T
=

[
τ

α

]
(4)

where τ1, α1 and τ2, α2 denote the delay and gain of the LoS

path and the reflection, respectively.

Now, we consider that M OFDM signal bands are available

for time delay estimation, as shown in Fig.1.

Fig. 1. The spectrum of the multiband OFDM signal for a time-based ranging
system, consisting of M bands.

First, we derive the CRLB based on a single band OFDM

signal rm[n;θ] (e.g., obtained from the m-th band), which is

written by

rm[n;θ] =
α1√
N

N/2−1∑
i=−N/2

ci exp

(
j2π

i

N
n

)

· exp (−j2π(fm + fi)τ1)

+
α2√
N

N/2−1∑
i=−N/2

ci exp

(
j2π

i

N
n

)

· exp (−j2π(fm + fi)τ2) + em[n]

n = 0, 1, . . . , N − 1; m = 1, 2, . . . , M,

(5)

where n denotes the sample index, i and N respectively

denote the index of the subcarrier and the total number of

subcarriers in each band, ci denotes the data modulated on

the i-th subcarrier, fm denotes the central carrier frequency

of the m-th band (see Fig.1). In addition, M denotes the total

number of signal bands available in the signal spectrum, e

denotes the complex additive white Gaussian noise (AWGN).

Usually, the carrier phase is not taken into consideration

when we estimate the propagation delay from a received

baseband signal. However, given multiple signal bands that

are modulated on different carrier frequencies, the received

baseband signals from the different bands contain different

phase rotations by the same propagation delay. In order to

benefit from its virtual signal bandwidth, we should consider

these phase rotations, so that we can maintain their frequency

relation across multiple signal bands. Thus, the virtual signal

bandwidth is not determined by the actual carrier frequency,

but by the difference between the carrier frequencies. The

carrier frequency fm in the local replica for the m-th band

is offset in the sequel, for instance, by the smallest central

carrier frequency (i.e., fm=1)

f̃m = fm − fm=1, m = 1, 2, . . . , M. (6)

The derivation of the FIM in a two-path channel can be

found in appendix A. To simplify the notation of the FIM,



here we first define

fm =

⎡
⎢⎢⎢⎣

fi=−N/2

fi=−N/2+1

...

fi=N/2−1

⎤
⎥⎥⎥⎦+ f̃m, f2

m = fm � fm,

where the vector fm contains N subcarrier frequencies with

respect to the normalized carrier frequency f̃m, � denotes the

element-wise dot product. In addition, we define

qm(τ) = cos(2πfmτ), pm(τ) = sin(2πfmτ)

Then, letting the relative delay as Δτ = τ2 − τ1, the FIM

based on a single band OFDM signal in a two-path channel

be derived by

Fm(θ) =
2

σ2

[
Am Bm

Cm Dm

]

[Fm(θ)]ij =�
[
∂μH(θ)

∂θi

∂μ(θ)

∂θj

]
.

(7)

as the first term of (3) vanishes, and

Am = α2
14π

2

[
fT
mfm

α2

α1

qT
m(Δτ)f2

m

α2

α1

qT
m(Δτ)f2

m
α2

2

α2

1

fT
mfm

]
,

Bm = α12π

[
0 pT

m(Δτ)fm

−α2

α1

pT
m(Δτ)fm 0

]
= CT

m,

Dm =

[
N 1

T
Nqm(Δτ)

1
T
Nqm(Δτ) N

]
.

The FIM depends on the relative delay Δτ , but not on the

absolute delay τ1.

Now we consider using multiple signal bands for time delay

estimation. At the receiver, we can receive the signals from

different bands simultaneously and stack them for time delay

estimation. Here for convenience we assume that each band

contains N subcarriers for ranging, thus, there will be N

samples acquired in rm(θ). The expectation of the received

signals from M different bands is now written by

E{r} = E

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣
r1(θ)
r2(θ)

...

rM (θ)

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= μ(θ) ∈ CNM×1. (8)

Here, the noise from different bands is assumed to be inde-

pendent and statistically identical. Then, the FIM based on

multiple signal bands is just the sum of the FIM of each single

band, which is written by

F (θ) =

M∑
m=1

Fm(θ) =
2

σ2

⎡
⎣
∑
m
Am

∑
m
Bm∑

m
Cm

∑
m
Dm

⎤
⎦ , (9)

in which Fm(θ) denotes the FIM from the m-th band in a two-

path channel (see (7)). Eventually, the CRLB of the estimators,

with among them the unknown propagation delay of the LoS

path, can be derived from (2).

The CRLB is a measure for the ranging accuracy and the

capability of distinguishing the LoS path and the reflections,

and will be used to design a sparse multiband signal in the

following section.

III. SIGNAL DESIGN BASED ON CONVEX OPTIMIZATION

Considering spectrum efficiency, it may not be necessary to

occupy an entire wide signal bandwidth for time delay esti-

mation. Thus, similar to [6], we introduce a binary selection

vector for M different OFDM bands,

w =
[
w1 w2 . . . wM

]T ∈ {0, 1}M , (10)

where wm = 1 (0) indicates that the signal from the m-th

OFDM signal band is activated (muted), and used (not used)

for time delay estimation. Rather than (9), the FIM based on

a multiband signal with a selection vector can be obtained by

F (w,θ) =
M∑

m=1

wmFm(θ). (11)

To design the optimal multiband signal for ranging, we use the

CRLB as an inequality constraint in the optimization problem

to meet the desired performance, and try to minimize the

number of activated signal bands.

However, the propagation delay and the gain in θ have

different units. If the uncertainty in one of the estimators is nu-

merically much larger than one of the others, the optimization

will be dominated by the estimators with the larger uncertainty.

Thus, we also introduce a user specified compensation weight

vector γ [7] to balance the estimators,

C̃RLB(θ) = diag{γ}CRLB(θ)diag{γ}. (12)

Then, the modified FIM (MFIM) is defined as

F̃ (θ) =diag−1{γ}F (θ)diag−1{γ}. (13)

Furthermore, for the purpose of ranging and positioning,

we only use the time delay estimates to retrieve the geometric

information. Although the gain of each path is also impor-

tant to help us distinguish whether the propagation channel

contains a direct-LoS path or not, its required accuracy can

be much lower than that of the time delay estimators. Thus,

the different requirements for the time estimators and the gain

estimators should be also taken into account when we design

the compensation vector γ. In our case, γτ 	 γα.

After the compensation, all estimators are expected to have

approximately the same precision. Because of the presence of

multiple unknown parameters, the CRLB is no longer a scalar.

In order to employ the CRLB in an objective function or con-

straint in an optimization problem, the minimum eigenvalue

constraint (i.e., E-optimality) [6], [7] is chosen here. The errors

of the estimators in εθ are assumed to be constrained in an

origin-centered sphere of radius re, with a probability larger

than pe, which can be written by

p(||εθ||2 ≤ re) ≥ pe. (14)



Then the minimum eigenvalue for the MFIM is given in [7]

and also derived in appendix B,

λmin{F̃ (θ)} ≥ λeig =
Nu

r2e

(
1

1− pe

)
, (15)

where Nu denotes the number of unknown parameters in θ.

Since here we are using the MFIM which is the inverse of

the CRLB, the smallest eigenvalue of the MFIM should be

larger than the λeig derived in (15). Thus, considering M

available signal bands for time delay estimation, the inequality

constraint can be written as

M∑
m=1

wmF̃m(θ)− λeigINu
� 0Nu

. (16)

Based on the actual positioning scenario or the user desired

capability of separating certain reflections, a set of U , contain-

ing different potential relative delays and corresponding gains,

is introduced here to compute a numerical value for the MFIM

in the optimization, using (9) and (13).

In order to design a sparse multiband signal for ranging, the

objective function is based on the l1 norm, which can produce

a sparse selection vector. The optimization problem is now

formulated by

argmin
g∈RM

||g||1

s.t.

M∑
m=1

gmF̃m(θ)− λeigINu
� 0Nu

∀θ ∈ U

0 ≤ gm ≤ 1, m = 1, 2, , . . . , M.

(17)

The selection vector w defined in (10) with elements being

either zero or one, is a non-convex function, which is thus

relaxed to inequalities. The value of the elements in a selection

vector g can vary from zero to one. Afterwards, we simply

round the float value in g to the integer number (i.e., 0 or 1)

to obtain w,

wm = round(gm). (18)

We are satisfied by an approximation to the solution found in

(18).

IV. TIME DELAY ESTIMATION

According to the resulting selection vector w, multiple

signal bands, sparsely placed in the available signal spectrum,

are transmitted for time delay estimation and ranging. The

propagation delay can be estimated through the matched filter

method, however, the impact of multipath is not taken into

account and will result in a possibly large bias. In order to

mitigate the error introduced by multipath, we estimate the

CIR by accommodating multiple signal copies.

According to the received signal rm shown in (8), we first

estimate the channel frequency response for each subcarrier

based on the known data ci. The channel frequency response

for the m-th band is denoted by hm.

Since we only use a few signal bands that are sparsely

placed in the spectrum, we can not simply use the ordinary

inverse Fourier transform to estimate the CIR. Thus, in order

to estimate the channel profile (i.e., delay and gain) from

the channel frequency response, we can create a dictionary

of phasors which have a constant amplitude but different

propagation delays. Based on the dictionary, we can estimate

the channel profile and further obtain the propagation delay of

the direct-LoS path.

For example, considering a search span vector s given by

s =
[
0 Δs . . . (Ns − 1)Δs

]
,

where Δs denotes the time resolution of the dictionary, and

Ns denotes the number of delays in the dictionary.

Based on the search span vector s, the dictionary A is

formulated into a MN -by-Ns matrix, the l-th column of the

dictionary (l = 1, . . ., Ns) is given by

[A]l =

⎡
⎢⎢⎢⎣
exp (−j2πfm=1(l − 1)Δs)
exp (−j2πfm=2(l − 1)Δs)

...

exp (−j2πfm=M (l − 1)Δs)

⎤
⎥⎥⎥⎦ . (19)

The unknown parameters now are the gains for all possible

paths with respect to the delays in the search span vector s,

which is defined by an Ns-vector x.

Generally, the number of possible delays in s (i.e., column

span of A) is much larger than the number of observations,

Ns 	 MN.

When the actual number of paths Np in a multipath channel

is much smaller than Ns, the estimates in x should be sparse.

Thus, an l1 norm is used as a penalty for x to produce a sparse

solution. Then, the problem becomes to solve the following

optimization problem

argmin
x

‖ h−Ax ‖22 +λ ‖ x ‖1, (20)

where the user specified λ determines the level of sparsity of

the estimation result. If the direct LoS path always exists in

a multipath channel, its propagation delay can be determined

from the path that has the strongest propagation gain.

V. EXPERIMENT RESULTS

In this section, ranging signals are designed for different

scenarios, and experiments are carried out to evaluate the

ranging performance. Here, we assume that all available signal

bands are coherently transmitted and received through a single

RF front-end. The experiments are based on the platform we

recently developed in [8], which is using Ettus X310 US-

RPs (Universal Software Radio Peripherals) with an effective

bandwidth of 160 MHz, and a sampling frequency fs of 200

MSamples/s.

To illustrate the performance of the proposed signal design,

we use the system setups shown in Fig. 2, in which the

transmitter and the receiver are synchronized via an 1 PPS

and a 10 MHz reference signal from the clock distributor. The

central carrier frequency is fixed at 3.5 GHz in the experiments

for this paper, but it can be chosen differently. To emulate a

simple two-path channel, one cable (c.1 in Fig.2(a)) connecting



the transmitter and the receiver is the LoS path, and a dead-end

cable (c.2 in Fig.2(a)) is connected to create a single reflection.

Furthermore, the sparse ranging signals can be also transmitted

and received via antennas as shown in Fig. 2(b), and propagate

through an actual multipath channel over the air.

Fig. 2. Experiment setup (a) in a two path wired channel, which contains a
direct cable connection between transmitter and receiver (c.1), and a dead-end
cable (c.2) causing a reflection; (b) in a multipath radio channel, in which the
signals are transmitted and received through the antennas.

We assume that an 160 MHz signal bandwidth is available

for ranging and positioning, offering 16 signal bands with

a bandwidth of 10 MHz. Considering spectral efficiency, we

wish to use as few signal bands as we can, but still achieve a

favorable ranging accuracy.

A. Two-path channel

First, we consider a simple two-path channel, which con-

tains a LoS path and one reflection. Based on the user specified

requirements on the system performance, the procedure to

formulate a convex optimization problem is presented in this

subsection. Afterwards, the propagation delay is estimated

based on the designed sparse ranging signal acquired from

actual experiments.

The two-path channel is emulated by using the setup shown

in Fig. 2(a). A 5 m cable c.1 is used to produce a direct LoS

path between a transmitter and a receiver. A 1 m cable c.2

is connected to c.1 by a connector for the reflection. Due to

the bidirectional transmission in c.2, the reflected signal has

propagated twice the cable length (i.e., 2 m).

It should be mentioned that the propagation speed through

the coaxial cable is different from the speed of light in

vacuum. An oscilloscope with a 20 GHz bandwidth is used

to measure the propagation time across cable c.2 as a ground

truth value. According to the measurement by the oscilloscope,

the signal is expected to experience about 4 ns of delay within

1 m coaxial cable. Hence, due to the forward and backward

propagation in c.2, the signal should experience about 8 ns of

additional propagation delay.

Alternatively, instead of using the oscilloscope to determine

the propagation delay, we can estimate the propagation delay

based on the ranging signal. To design a sparse multiband

signal, which is able to properly estimate the forward and

backward propagation delay in a 1 m coaxial cable, we

formulate a convex optimization as we proposed in section

III.

As an example, for 70% of the cases (i.e., Pe = 0.7), the

error for the time delay estimator τ is required to be less than

0.04 ns, and the error for the gain estimator α less than 0.05.

Obviously, the delay estimator is numerically much smaller

than the gain estimator. A compensation vector should be

introduced to numerically adjust the required accuracy for the

propagation delay and gain to the same order of magnitude.

First, the unit of the propagation delay is scaled from second to

sample interval, which is the inverse of the sampling frequency

fs. Then, to further balance the performance of delay and gain

estimators, and maintain their error bounds on the same level,

a scalar of 0.3 is introduced for the gain estimate. In such a

condition, the compensation vector is determined as

γ =
[
fs fs 0.3 0.3

]T
, (21)

where fs = 200× 106 Hz in the current experiment setup.

In addition, the ranging signal should be able to distinguish

the LoS path and the reflection with a delay of about 8 ns. To

improve the robustness of the ranging signal, we expect the

signal to be able to distinguish a reflection with a delay of

from 7.9 ns to 8.1 ns.

Here we assume that the signal attenuates 10 dB per 100 m

in the coaxial cable, and the attenuation is proportional with

the distance. Due to the forward and backward propagation in

a 1 m coaxial cable (i.e., c.2), the reflection can experience an

extra -2 dB propagation gain compared with the LoS path (i.e.,

c.1). Thus, the linear relative gain is about 0.63. Therefore, to

compute the numerical value for the FIMs, the set of U in

(17) contains the following sets,

θ =
[
0 τ2,1 1 0.63

]T
, τ2,1 ∈ [7.9, 8.1] ns.

After we determine F̃ (θ) and λeig in (17), the optimization

problem can be solved by the CVX toolbox [9]. Fig. 3 shows

the minimum signal bands we could use for ranging and can

still achieve the required performance. Eventually, 4 bands of

10 MHz each are used, which is able to distinguish a reflection

with a relative delay of about 8 ns, and still achieve a certain

accuracy.

2 4 6 8 10 12 14 16
index of signal bands

0

0.2

0.4

0.6

0.8

1

Fig. 3. The sparse signal bands derived from the convex optimization,
considering a reflection with a delay of about 8 ns.

The sparse multiband signal as shown in Fig. 3 is transmit-

ted and received simultaneously using the setup presented in

Fig. 2(a). Using the time delay estimation method presented



in section IV, the magnitude of the channel impulse response

is shown in Fig. 4 as a function of time in nano-second.

Fig. 4. Magnitude of channel impulse response, which is estimated from the
sparse multiband signal shown in Fig.3. The relative delay forth and back in
the 1 m coaxial cable is determined as 7.9 ns.

To justify the ranging performance of the proposed sparse

multiband signal in a two path channel, we only focus on

the relative delay between the LoS path and the reflection,

instead of the absolute propagation delay. After a time syn-

chronization, an FFT window will be determined to obtain the

channel frequency response. Thus, the delay of the LoS path

shown in Fig. 4 is offset by a fraction of the sample interval.

From this figure, we can also determine that the forward and

backward propagation delay in c.2, which is equivalent to a 2

m coaxial cable, is 7.9 ns, and close to the value measured by

the oscilloscope.

It should be pointed out that the difference between the time

delay measured by the oscilloscope and estimated using the

proposed sparse ranging signal may be caused by different

hardware connections, which introduce small but different

delays. In fact, we may not simply use a dead-end cable

c.2 to emulate a perfect two-path channel; also the reflection

of the reflection will be received, but with a much smaller

propagation gain as shown in Fig. 4.

As a comparison, Fig. 5 (a) shows the estimated CIR based

on only two edge signal bands in Fig. 3 (i.e., the 1-st band and

the 16-th band), which has the same virtual signal bandwidth

as the proposed sparse multiband signal. However, using the

only two edge signal bands, the delay estimator for the LoS

path is largely correlated with the one from the reflection, the

system becomes unstable and sensitive to the noise. As shown

in Fig. 5 (a), the reflection cannot be properly separated from

the LoS path, and the relative delay between the LoS path

and the reflection is estimated as 15.75 ns. On the contrary,

we also occupy all available 16 signal bands to estimate the

channel impulse response of the given experiment setup. As

shown in Fig. 5(b), the estimated relative delay is 7.875 ns

and almost the same as the one computed based the designed

sparse ranging signal.

(a)

(b)

Fig. 5. Magnitude of the channel impulse response, (a) based on the two
edge signal bands shown in Fig.3 (i.e., the 1-st band and the 16-th band). The
forward and backward propagation delay in an 1 m coaxial cable is incorrectly

determined as 15.75 ns; (b) based of all 16 available signal bands. The relative
delay is estimated to be 7.875 ns.

B. Multipath channel

In the previous subsection, only a single reflection is con-

sidered in the ranging signal design. In practice, there are

generally many reflections in an actual multipath channel.

Similarly, to define the required performance, for 70% of the

cases, the error of the delay estimator τ should be less than

0.33 ns, which is equivalent to 10 cm in distance. The error of

the gain estimator α is required to be less than 0.3. Since the

value of the time estimators is numerically much smaller than

the one of the gain estimators, a similar compensation vector

shown in (21) is applied here to adjust the accuracy of the

propagation delay and gain to the same order of magnitude.

In a multipath channel, the ranging signal is expected to

distinguish the reflections which are from 1 m to 10 m away

from the LoS path. In addition, the gain of those reflections are

required to compute numerical values for the FIMs in (17). The

received signal power from different paths, for example with

different geometric distance (i.e., d1 and d2), can be computed

using a free-space path loss model [10],

Pr1 = Pt

[
λ
√
Gl

4πd1

]2
, Pr2 = Pt

[
λ
√
Gl

4πd2

]2
, (22)



where λ denotes the wavelength of the central carrier,
√
Gl

denotes the product of the antenna gain. Then, when d1 is

assumed to be the distance of the LoS path and d2 the distance

travelled by the reflection, the relative attenuation is derived

as follows

α2,1 =
α2

α1

=

√
Pr2

Pr1

=
d1

d2
. (23)

Here, the distance of the LoS path d1 is assumed to be 0.3 m,

and the relative distance d2 − d1 is expected to be from 1 m

to 10 m. Afterwards, the set of U in (17) should contain the

following sets,

θ =
[
0 τ2,1 1 α2,1

]T
, τ2,1 =

d2 − d1

c
, α2,1 =

d1

d2
.

By solving the convex optimization formulated in (17),

Fig. 6 shows the sparse multiband signal which are able to

distinguish the reflection with a relative distance from 1 m to

10 m.

0 2 4 6 8 10 12 14 16
index of signal bands
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0.6
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Fig. 6. The sparse multiband signal derived by the convex optimization
considering a multipath channel.

To evaluate the ranging performance of the proposed sparse

ranging signal shown in Fig. 6, the setup presented in Fig. 2(b)

is used. Since the hardware delay has not yet been accurately

calibrated, we only estimate the displacement of the receiver

(i.e., track the change in distance) at different locations. Thus,

the initial location of the receiver antenna is chosen as a

reference point. In addition, a professional laser distometer

is used to measure the ground truth value as shown in Fig.

7, which is the actual experiment setup in the Lab. The laser

distometer, transmitter antenna and receiver antenna are placed

on a straight line.

Similarly, the channel impulse responses at different loca-

tions are estimated based on the method presented in section

IV. Fig. 8, as an example, shows the estimated channel impulse

response in the lab. The most dominant relative delays between

the LoS path and the reflections are generally less than 30 ns,

which is equivalent to about 9 m in distance, and is also in

line with the user specified capability of distinguishing certain

reflections.

Since it is assumed that the direct LoS path always presents

in a multipath channel, the time of arrival is determined from

Fig. 7. Experimental setup in the lab. The ground truth values are measured
by the laser distometer. The Rx antenna can be slide in a rail along a straight
line.

Fig. 8. Magnitude of the channel impulse response at one of the receiver
locations shown in Fig. 7 in the lab.

the path that has the strongest propagation gain. By tracking

the displacement of the receiver, Fig. 9 shows the ranging

performance of using the designed sparse multiband signal.

The ground-truth values are measured by the laser distometer,

for which the typical measuring accuracy is specified to be

a few millimeters. There are 42 receiver locations between

the laser distometer and the transmit antenna shown in Fig.

7 that are recorded for the performance analysis. Comparing

the propagation delay estimated from the sparse signal and

the one retrieved from the laser distometer measurements, the

root-mean-square error (RMSE) of the receiver displacement

is 7.01 cm, and satisfies the user specified ranging performance

(i.e., 10 cm).

VI. CONCLUSION

In this paper, we proposed a sparse signal bands selection

methodology for a time-based ranging and positioning system.

The CRLB has been derived in a two-path channel and is

used as a metric to formulate a convex optimization problem,

which considers the correlation between the LoS path and

the reflection. To improve the efficiency of spectrum usage

and relax the requirement on computation power, we only

select a few signal bands from the available signal spectrum

for ranging, but still meet the desired accuracy and have

the capability to distinguish certain reflections. The actual
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Fig. 9. The ranging performance of using the sparse multiband signal shown
in Fig.6, where the horizontal axis stands for the displacements measured by
the laser distometer and assumed to be ground truth values for this experiment.

experiments in a two path channel and a multipath channel

are conducted to demonstrate the ranging performance of

the proposed sparse ranging signals. A sub-decimeter ranging

accuracy is achieved by using a sparse multiband signal with

a virtual signal bandwidth of 160 MHz with a spectrum use of

25%-40% in an indoor laboratory environment. It is expected

that with larger virtual signal bandwidth, the relative spectrum

use can be be reduced even further.

APPENDIX A

FIM OF SINGLE BAND SIGNAL IN A TWO-PATH CHANNEL

In this appendix, we derive the elements of the FIM consid-

ering a multiband signal in a two-path channel. For the ease

of derivation, the modulation on each subcarrier is assumed to

be BPSK (i.e., |ci|2 = 1).

The first derivatives of mean μr(θ) with respect to the

unknown parameters are given by

∂μm(θ)

∂τ1
=− j

2πα1√
N

N/2−1∑
i=−N/2

ci exp

(
j2π

in

N

)
(f̃m + fi)

exp
(
−j2π(f̃m + fi)τ1

)
∂μm(θ)

∂τ2
=− j

2πα2√
N

N/2−1∑
i=−N/2

ci exp

(
j2π

in

N

)
(f̃m + fi)

exp
(
−j2π(f̃m + fi)τ2

)
∂μm(θ)

∂α1

=
1√
N

N/2−1∑
i=−N/2

ci exp

(
j2π

in

N

)

exp
(
−j2π(f̃m + fi)τ1

)
∂μm(θ)

∂α2

=
1√
N

N/2−1∑
i=−N/2

ci exp

(
j2π

in

N

)

exp
(
−j2π(f̃m + fi)τ2

)

where f̃m is the normalized central carrier frequency defined

in (6).

Considering a single band OFDM signal in a two-path

channel, the elements of the FIM can be derived as follows.

∂μH
m(θ)

∂τ1

∂μm(θ)

∂τ1
=α2

14π
2

N/2−1∑
i=−N/2

(fi + f̃m)2

∂μH
m(θ)

∂τ1

∂μm(θ)

∂τ2
=α1α24π

2

N/2−1∑
i=−N/2

(fi + f̃m)2

exp
(
−j2π(fi + f̃m)(τ1 − τ2)

)
∂μH

m(θ)

∂τ1

∂μm(θ)

∂α1

=− jα12π

N/2−1∑
i=−N/2

(fi + f̃m)

∂μH
m(θ)

∂τ1

∂μm(θ)

∂α2

=− jα12π

N/2−1∑
i=−N/2

(fi + f̃m)

exp(−j2π(fi + f̃m)(τ1 − τ2))

∂μH
m(θ)

∂τ2

∂μm(θ)

∂τ2
=α2

24π
2

N/2−1∑
i=−N/2

(fi + f̃m)2

∂μH
m(θ)

∂τ2

∂μm(θ)

∂α1

=jα22π

N/2−1∑
i=−N/2

(fi + f̃m)

exp(−j2π(fi + f̃m)(τ1 − τ2))

∂μH
m(θ)

∂τ2

∂μm(θ)

∂α2

=− jα22π

N/2−1∑
i=−N/2

(fi + f̃m)

∂μH
m(θ)

∂α1

∂μm(θ)

∂α1

=
∂μH

m(θ)

∂α2

∂μm(θ)

∂α2

= N

∂μH
m(θ)

∂α1

∂μm(θ)

∂α2

=

N/2−1∑
i=−N/2

exp(−j2π(fi + f̃m)(τ1 − τ2))

APPENDIX B

MINIMUM EIGENVALUE

Considering the following random n dimensional vector x

x ∼ N (
x̄ ∈ Rn,Qxx ∈ Rn×n

)
(24)

we can have the following inequality (i.e., Chebyshev’s in-

equality) [11]

P
(||x− x̄||22 ≥ ε2

) ≤ trace(Qxx)

ε2
, (25)

and

P
(||x− x̄||22 ≤ ε2

) ≥ 1− trace(Qxx)

ε2
. (26)

Now, the estimators are assumed to be constrained in an

origin-centered circle of radius ε, with a probability larger than

Pε. Hence, we have

Pε ≥ 1− trace(Qxx)

ε2
, (27)



and

trace(Qxx) ≤ (1− Pε)ε
2. (28)

Here, if the variance matrix Qxx is the CRLB, we can derive

the following inequality

trace(Qxx) ≤ n

λmin{FIM} ≤ (1− Pe)ε
2, (29)

where λmin{FIM} denotes the minimum eigenvalue of the

FIM. Now, we can derive the lower bound for the minimum

eigenvalue of the FIM, which is given by

λmin{FIM} ≥ n

(1− Pe)ε2
. (30)
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