Moving Towards Industrial Software Ecosystems:
Are Our Software Architectures Fit for the Future?

Klaus-Benedikt Schultis
Siemens Corporate Technology
Erlangen, Germany
klaus-benedikt.schultis.ext@siemens.com

Abstract—The development of large-scale software product-
lines within large enterprises commonly involves various in-
ternal business units. Although within the same enterprise,
each business unit has individual motivations and participation
interests. For coordinating development, the emerging discipline
of software ecosystems intents to explicitly discover and analyze
the different players’ interests, and manage them, often by
means of a suitable software architecture. Already within a single
enterprise, this discipline can be of high value. Instead of detailed
managerial orders to coordinate internal interactions, an analysis
of the players, their interests, and a suitable software architecture
may slacken organizational structures and simplify processes.

We have started to analyze the ecosystems of several Siemens
internal product-lines in order to determine the different players
and their interests, and to derive suitable software architectural
requirements from this setting. This will enable us to compare
these requirements to the actual architecture, for identifying
reusable pain points and best practices of the existing system.
However, there is no systematic (A) approach to model and
analyze the collaboration among the participants from a technical
perspective, as well as (B) to derive reusable architectural design-
patterns and anti-patterns from such software ecosystems. By
illustrating these problems using an existing software product-
line that moves towards a software ecosystem, we are looking
for answers to the two questions above to evaluate whether our
product-lines are fit for a future as internal software ecosystems.

I. INTRODUCTION

In the last years, more and more software product-line
businesses leverage the advantages of opening up their techno-
logical base outside their organizational boundary to involve
external business units. For this effect, the term software
ecosystem (SECO) [1] has been coined. There are many
reasons to adapt SECO-like characteristics: reduction of costs
involved in software development and innovation by larger-
scale reuse, improvement of R&D efficiency, as well as the
chance to address more customer needs for reaching a broader
customer base [1]. Adapted from the definition of Jansen [2],
a SECO consists of a set of co-acting business units together
with the relationships among them, a shared market for soft-
ware and services, a common technological base comprising
a reference architecture, core assets or standards and operates
through the exchange of information, resources and artifacts.

Up to now, SECOs are mainly considered as a set of co-
acting companies where a company itself is regarded as some
kind of black box [1], [2], [3], [4], [5]. Nevertheless, we have
observed that large-scale development of software product-

978-1-4673-6449-2/13 © 2013 IEEE

Christoph Elsner
Siemens Corporate Technology
Erlangen, Germany
christoph.elsner @siemens.com

9

Daniel Lohmann
Friedrich-Alexander University
Erlangen-Nuremberg, Germany

lohmann@cs.fau.de

lines within large enterprises also involves a set of co-acting
business units with dedicated interests, consequently adopting
SECO-like characteristics. To account for this, we introduce
the term industrial software ecosystem (ISECO). We define an
industrial software ecosystem as a software ecosystem where
the focus is on one key company maintaining large software
projects, involving mainly internal business units with partially
different motivations and interests. Thus, the view on the
organizational structure moves from strict hierarchies towards
more decentralized topologies.

Compared to classical software product-line architectures,
the software architecture of an ISECO also explicitly shall
achieve the coordination among the involved business units
[4]. Explicitly considering this effect, as a consequence, in-
troduces a set of additional software architectural challenges.
Although they have received attention in literature [4], [2], [5],
[6], [7], the identified challenges are derived from informal
experiences or abstract considerations. They are not put into
a context and backed up by more explicit empirical evidence.
As a consequence, they are too generic to identify concrete
architectural pain points and best practices for the different
kinds of relationships existing between the players of our
ISECOs. To improve on this situation, we started to analyze
several of our ISECOs to derive suitable architectural require-
ments for their particular ecosystem settings. This will enable
us to compare these requirements to the actual architectures
to identify the actual pain points and best practices within
the individual ISECOs. To achieve traceable results, we want
to set our extraction method on a solid base, using a more
reproducible, systematic and methodical procedure. In this
paper we motivate the problem of a currently missing method
to extract reusable architectural pain points and best practices
from existing ISECOs. In our opinion such a method comprise

e an approach to model and analyze the collaboration
among the participants from a technical perspective and

e an approach to derive reusable architectural design-
patterns and anti-patterns for ISECOs from the analysis
results.

We look for answers to the questions that arise from the two
points in order to make our software product-lines fit for a
future in which software architecture plays a more crucial role
to coordinate internal software development.

PLEASE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



The remainder of this paper is structured as follows: We first
motivate the problem by describing the ISECO of an existing
software product-line within our company. We then point out
the two challenges of extracting reusable architectural pain
points and best practices from ISECOs in detail, providing in
each case a formulation of the problem and open questions. We
discuss related work, conclude the paper with an outlook on
future work, and indicate when the problem can be considered
as resolved.

II. INDUSTRIAL SOFTWARE ECOSYSTEMS

The ISECO we have started to analyze' offers a set of
software products allowing to assemble and configure hard-
ware devices and their topologies, in various domains, such
as building, energy and industry. On the Siemens site, the
ISECO comprises a keystone business unit that provides a
software product-line platform as technological base, as well
as business units from three divisions that develop the engi-
neering software for the hardware devices of their respective
domains upon that platform. Several other Siemens-internal
business units provide various further plug-ins to represent
the hardware devices to be available within the software
platform. Moreover, the ISECO contains few external business
units providing software components and infrastructure for the
product-line platform, as well as external hardware vendors
that also provide plug-ins for their hardware devices.

The relationships between most business units differ
strongly, what results in different interaction patterns. For
example, some business units work on the same source-code
management system as the keystone business unit and have
the same release schedule — whereas other business units
are completely decoupled. Next, some business units develop
.NET-based engineering software upon the platform — whereas
other business units develop software representations of their
hardware devices using an ISECO-specific scripting language.
There are many further differences, like level of platform
access, kind of contribution, integration or composition mech-
anisms, binding time, and so on. In the following we provide a
simplified excerpt that describes the collaboration among two
business units in more detail.

Scenario 1: The keystone business unit delivers a compiled
version of its software product-line platform as well as the
rights to exchange components using XML descriptor files to
the business unit B. Then, B develops its products upon their
own platform instance in a relative decoupled fashion. When
the keystone player releases a new platform version, B has
principally the free choice whether to retain the old version
or adapt their product to the new version to leverage the new
functionality.

Compared to SECOs, like the Apple i0S, ISECOs often
comprise only a relative small number of business units.
Besides, we have noticed a relative equable distribution of

'To maintain confidentiality, our ISECO example needed to be anonymized.
Still, the illustrated settings all stem from a real, existing ISECO within
Siemens that we are analyzing at the moment.

influence, power and control between most internal busi-
ness units, so we have not such a strong and dominant
player like Apple in the iOS SECO. This implies the need
for consensus rather than normative approaches to achieve
the coordination among the participants. Furthermore, most
ISECOs were initially not designed as ISECO; rather they
have gradually adapted ISECO-specific characteristics. As a
result, the software architecture also explicitly shall manage
the different players. Since the interaction patterns among most
business units of our ISECOs differ strongly, so do the arising
architectural pain points and best practices. Being not able to
identify, understand and prioritize those pain points and best
practices in detail hampers the possibility to counter or apply
them in an adequate manner. This highlights the importance
of a method for extracting reusable architectural pain points
and best practices from existing ISECOs.

Our first observations base on several interviews with in-
volved, well experienced software architects from Siemens
Corporate Technology.

III. EXTRACT PAIN POINTS AND BEST PRACTICES

A method to extract reusable architectural pain points and
best practices should comprise (A) an approach to model
and analyze the collaboration among the participants from a
technical perspective as well as (B) an approach to derive
reusable architectural design-patterns and anti-patterns for
ISECOs from the analysis results. In the following, we discuss
the two points in detail, providing in each case a formulation
of the problem, first results, and open questions. In order to
make our software product-line architectures fit for the future,
we look for answers to the highlighted questions that arise
from the two approaches.

A. Model and Analyze the Collaboration Among Participants

To extract architectural pain points and best practices it is
necessary to analyze their main source, which is the collabo-
ration with and the collaboration among the involved business
units. Thus, in our opinion a sound method for extracting
pain points and best practices from existing ISECOs should
base on a detailed modeling and analysis of the collaboration
among the participants. Since the relationships between most
business units differ strongly, resulting in different collab-
oration models, the emerging architectural pain points and
best practices depend on the involved business units and their
concrete interaction patterns. For this reason, the modeling
and analysis approach should consider the properties of each
single relationship.

ISECO participants gain intrinsic value when they con-
tribute in the form of new products, providing or leveraging
the technological base [3]. So the collaboration among the par-
ticipants is strongly driven by their organizational motivations,
in fact by the offer resulting from the joint ecosystem initia-
tive. For this reason, it is important to understand the value
proposition of the ISECO as a whole as well as the respective
business goals of the participants [3]. By the discovery and
analysis of the players’ relationships that are relevant to fulfill

10



their objectives, the modeling and analysis approach should
deliver a technical view on the participating business units,
the relationships among them and their contributions. Thereby,
based on the definition of ISECOs, the collaboration among
the participants should be modeled through the exchange of
information, resources and artifacts [8].

By the leverage of those data, we want to analyze each
intermediate step of the collaboration among the participants
from a technical perspective. In fact, we want to derive suitable
architectural requirements for the respective relationship (as
in the example below, the requirement to reflect critical usage
restrictions to architectural guidelines), and in addition, we
want to derive architectural pain points and best practices
through the comparison of these requirements with the actual
existing architecture. Based on our current experiences during
analysis of the ISECO, a suitable approach should be able
to model the following three characteristics in order to guide
the analysis process: pure technical characteristics (like level
of platform access, integration or composition mechanism,
development environment, etc.), collaborative characteristics
(like coupling of release schedules and development processes,
communication, etc.), and business-driven characteristics, such
as possible conflicts of aims. Analyzing each intermediate
step of the collaboration under consideration of those char-
acteristics might be an appealing approach for identifying
architectural pain points and best practices for individual
ISECOs, tackling the problems at its source and considering
the individual problems and pitfalls of each single relationship.

For example, we analyzed Scenario I with respect to the
collaborative characteristic communication. Due to the low
coupling of the business units and the resulting insufficiencies
in direct communication, the architecture should compensate
for this. Thus, a suitable architectural requirement should
demand to reflect the architects intentions and critical us-
age restrictions to architectural guidelines. Furthermore, those
guidelines should be spread in an easy accessible manner to
the developers. Comparing this requirement with the actual
situation, there is insufficient use of architectural mechanisms
to compensate for the low coupling among the two players. As
a consequence, the developers used the functionality beyond
the planned and tested scope, which resulted in considerable
performance problems. Regarding this individual relationship,
we have identified as architectural pain point the lack of
communication of critical usage restrictions through the use
of architectural mechanisms.

In a nutshell, the envisaged modeling and analysis approach
should comprise: (1) a detailed model of the collaboration,
(2) technical, collaborative and business-driven characteris-
tics to guide the analysis process, and (3) the derivation
of architectural pain points and best practices through the
comparison of suitable architectural requirements with the
actual architecture, based on the modeled collaboration and
guided by the characteristics. To enhance the traceability and
reproducibility of this approach we look for answers to the
following three open questions.

Al) Besides UML and SysML, what might be adequate
notations to model the collaboration, the characteristics
and the extracted architectural pain points and best
practices, bearing in mind required tool support?

How to link the modeled collaboration, the characteris-
tics and the architectural pain points and best practices?
What are further technical, collaborative and business-
driven characteristics to guide the analysis process, or
are there further types of characteristics valuable to
explore?

A2)

A3)

B. Derive Reusable Architectural Design-Patterns for ISECOs

Our objective is the creation of a solid knowledge base as
enabler for managing the architecture of our ISECOs. Thereby,
the planed usage of the knowledge base is twofold. First, our
existing software product-line architectures should be adjusted
according to the paint points and best practices that stem
from the individual transitions to ISECOs. Second, the derived
pain points and best practices should be reused for our future
ISECOs in order to design high-quality software architectures
that explicitly manage the coordination among the involved
business units. For achieving the second purpose, we must
derive reusable architectural design-patterns and anti-patterns
from the extracted best practices and architectural pain points.

As described in the section before, architectural pain points
and best practices are extracted from single relationships
of individual ISECOs; based on the modeled collaboration
and guided by technical, collaborative and business-driven
characteristics. Through the analysis of multiple ISECOs, we
will get a pool of (relationship, pain point) and (relationship,
best practice) tuples. By leveraging this pool, we want to
derive reusable architectural design-patterns and anti-patterns
for our ISECOs. In our opinion there are two possibilities to
identify patterns. First, there might be recurring best practices
and pain points that stem from several relationships, maybe
from different ISECOs. Those best practices and pain points
might be perfect candidates to carve them out as relationship-
crosscutting architectural design-patterns and anti-patterns.
Second, relationships that reappear in similar ways could be
an indication to carve out the respective best practices and
pain points as architectural design-pattern and anti-pattern for
those kinds of relationships. Nevertheless, this is a challeng-
ing task since the relationships differ strongly, in particular
with regard to the technical, collaborative and business-driven
characteristics. Since we have only little experiences in this
field of research, we are looking for answers to the following
two questions.

B1) How to carve out reusable patterns and anti-patterns
from specific pain points and best practices?

B2) How to document architectural design-pattern and anti-
patterns, bearing in mind the strong influence relation-
ships have on the adequacy of applying the patterns?

IV. RELATED WORK

There are several promising approaches to model SECOs.
Nevertheless, none of them were initially designed for the



special notion of ISECOs, and most of them do not adopt
a technical perspective. Instead, they model SECOs form
a business-driven perspective for purposes such as strategy
assessment [9], industry taxonomy engineering [10], service
systems for collaborative innovation [11] or management
[12]. McGregor developed a method for analyzing software
product-line ecosystems using scenarios [13]. However, also
this method is rather business-driven and does not pursue the
intention to extract architectural pain points and best practices.
A promising approach to model the participating business
units, the relationships among them and their contributions
might be the use of software supply network (SSN) and prod-
uct deployment context (PDC) diagrams [8], [2]. Nevertheless,
the SSN and PDC diagrams we have become aware of neither
deliver a pure technical view on ISECOs nor do they model the
collaboration among the participants in a sufficient manner for
deriving architectural pain points and best practices. Another
approach with good prospects might be the visualization of
SECOs based on the analysis of software repositories [14].
However, the information derived from software repositories
also can only be a first step towards modeling the collaboration
of the players in further detail.

Software architectural challenges that arise through the tran-
sition to SECOs already get attention in the SECO community.
Although the yet discussed challenges are too generic to apply
them directly for our purposes, they deliver an inspiration to
identify the characteristics that guide our extraction process.
As example, Bosch et al. [15] show the need to consider the
release schedules of the participants as well as integration and
composition mechanisms, whereas the research about interface
translucence as enabler for scalable collaboration [6] motivates
the importance of communication issues. Furthermore, the
level of platform access is discussed by the evaluation of the
architectural openness of mobile software platforms [7].

V. CONCLUSION AND FUTURE WORK

We have started to analyze several Siemens-internal soft-
ware product-lines that move towards ISECOs in order to
make them fit for the future, where software architecture plays
a more crucial role to manage the different players. Therefore,
we have envisaged a method to extract reusable architectural
pain points and best practices from our existing ISECOs. To
get more reproducible, traceable and reusable results we have
highlighted arising questions that still need to be answered.

In a long term, we consider the challenge resolved when we
have extracted a set of reusable architectural design-patterns
and anti-patterns that can be applied to design high-quality
software architectures for our prospective ISECOs. In a short
term, our objective is to identify architectural pain points and
best practices from our current software product-lines that
move towards ISECOs in order to adapt their architectures
to the special needs that arise through the transition. By the
use of interviews, we plan to evaluate the success through
the comparison of the extracted results with those pain points
and best practices that are already known by the respective
architects. We want to show that, compared to the available

information, the extracted results are far better documented,
more traceable, and more complete to support architectural
decision making. Finally, we plan to monitor our ISECOs
in order to analyze if their adjusted architectures achieve the
coordination among the players in a more sufficient manner.

ACKNOWLEDGMENT

The authors would like to thank the software architects
from Siemens Corporate Technology for their contributions
and their efforts during the interviews. Their expertise has
positively influenced the quality of this research.

REFERENCES

[1] J. Bosch, “From software product lines to software ecosystems,” in Proc.
of the 13th Int. Software Product Line Conf., ser. SPLC *09. Pittsburgh,
PA, USA: Carnegie Mellon University, 2009, pp. 111-119.

[2] S. Jansen, A. Finkelstein, and S. Brinkkemper, “A sense of community:
A research agenda for software ecosystems,” in Software Engineering -
Companion Volume, 2009. ICSE-Companion 2009. 31st Int. Conf. on,
may 2009, pp. 187 —190.

[3] P.R.J. Campbell and F. Ahmed, “A three-dimensional view of software

ecosystems,” in Proc. of the Fourth European Conf. on Software Archi-

tecture: Companion Volume, ser. ECSA °10. New York, NY, USA:

ACM, 2010, pp. 81-84.

J. Bosch, “Architecture challenges for software ecosystems,” in Proc.

of the Fourth European Conf. on Software Architecture: Companion

Volume, ser. ECSA *10. New York, NY, USA: ACM, 2010, pp. 93-95.

R. Pereira, C. Maria, and L. Werner, “A Proposal for Software Ecosys-

tems Engineering,” in Proc. of the Workshop on Software Ecosystems

2011, 2011, pp. 40-51.

M. Cataldo and J. D. Herbsleb, “Architecting in software ecosystems:

interface translucence as an enabler for scalable collaboration,” in Proc.

of the Fourth European Conf. on Software Architecture: Companion

Volume, ser. ECSA "10. New York, NY, USA: ACM, 2010, pp. 65-72.

[7] M. Anvaari and S. Jansen, “Evaluating architectural openness in mobile

software platforms,” in Proc. of the Fourth European Conf. on Software

Architecture: Companion Volume, ser. ECSA *10. New York, NY, USA:

ACM, 2010, pp. 85-92.

V. Boucharas, S. Jansen, and S. Brinkkemper, “Formalizing software

ecosystem modeling,” in Proc. of the Ist int. workshop on Open

component ecosystems, ser. IWOCE °09. New York, NY, USA: ACM,

2009, pp. 41-50.

I. van den Berk, S. Jansen, and L. Luinenburg, “Software ecosystems: a

software ecosystem strategy assessment model,” in Proc. of the Fourth

European Conf. on Software Architecture: Companion Volume, ser.

ECSA ’10. New York, NY, USA: ACM, 2010, pp. 127-134.

I. Hunink, R. van Erk, S. Jansen, and S. Brinkkemper, “Industry taxon-

omy engineering: the case of the european software ecosystem,” in Proc.

of the Fourth European Conf. on Software Architecture: Companion

Volume, ser. ECSA "10. New York, NY, USA: ACM, 2010, pp. 111-

118.

T. Janner, C. Schroth, and B. Schmid, “Modelling service systems for

collaborative innovation in the enterprise software industry - the st.

gallen media reference model applied,” in Services Computing, 2008.

SCC ’08. IEEE Int. Conf. on, vol. 2, july 2008, pp. 145 —152.

B. Iyer, C. Lee, and N. Venkatraman, “Managing in a small world

ecosystem: Some lessons from the software sector,” California Man-

agement Review, vol. 48, no. 3, pp. 28-47, 2006.

J. D. McGregor, “A method for analyzing software product line ecosys-

tems,” in Proc. of the Fourth European Conf. on Software Architecture:

Companion Volume, ser. ECSA *10. New York, NY, USA: ACM, 2010,

pp. 73-80.

M. Lungu, M. Lanza, T. Girba, and R. Robbes, “The small project

observatory: Visualizing software ecosystems,” Science of Computer

Programming, vol. 75, no. 4, pp. 264 — 275, 2010, experimental Software

and Toolkits (EST 3): A special issue of the Workshop on Academic

Software Development Tools and Techniques (WASDeTT 2008).

J. Bosch and P. Bosch-Sijtsema, “From integration to composition:

On the impact of software product lines, global development and

ecosystems,” J. Syst. Softw., vol. 83, no. 1, pp. 67-76, Jan. 2010.

[4

=

[5

=

[6

=

[8

—_

[9

—

[10]

(1]

[12]

(13]

[14]

[15]

12



