
Automatic Throughput and Critical Path Analysis of
x86 and ARM Assembly Kernels

Jan Laukemann, Julian Hammer, Georg Hager and Gerhard Wellein
{jan.laukemann, julian.hammer, georg.hager, gerhard.wellein}@fau.de

Erlangen Regional Computing Center
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

Abstract—Useful models of loop kernel runtimes on out-of-
order architectures require an analysis of the in-core perfor-
mance behavior of instructions and their dependencies. While
an instruction throughput prediction sets a lower bound to
the kernel runtime, the critical path defines an upper bound.
Such predictions are an essential part of analytic (i.e., white-
box) performance models like the Roofline and Execution-Cache-
Memory (ECM) models. They enable a better understanding of
the performance-relevant interactions between hardware archi-
tecture and loop code.

The Open Source Architecture Code Analyzer (OSACA) is a
static analysis tool for predicting the execution time of sequen-
tial loops. It previously supported only x86 (Intel and AMD)
architectures and simple, optimistic full-throughput execution.
We have heavily extended OSACA to support ARM instructions
and critical path prediction including the detection of loop-
carried dependencies, which turns it into a versatile cross-
architecture modeling tool. We show runtime predictions for
code on Intel Cascade Lake, AMD Zen, and Marvell ThunderX2
micro-architectures based on machine models from available doc-
umentation and semi-automatic benchmarking. The predictions
are compared with actual measurements.

Index Terms—benchmarking, performance modeling, perfor-
mance engineering, architecture analysis, static analysis

I. INTRODUCTION

Analytic performance modeling of compute-intensive appli-
cations during development or optimization can be a powerful
tool and sheds light on how code executes on modern CPU
architectures. Such models are hence not only constructed for
the sake of prediction but also to study relevant bottlenecks
and to assess the compiler’s ability to generate optimal code.
However, they require a deep understanding of the underlying
micro-architecture in order to yield accurate results. Com-
mon (simplified) approaches for numerical kernels are the
Roofline [1] model or the ECM [2] model, whose construction
is supported by the Kerncraft open-source performance mod-
eling tool [3]. For Roofline, the Roofline Model Toolkit [4]
and Intel’s Roofline Advisor1 are also available.

In general, there are two approaches to predict runtime
and performance behavior: simulation and static analysis. Our
work implements the latter. Even though simulators may be
more thorough and accurate if comprehensive implementations
exist, their usage is complicated by obstacles like finding
steady states for throughput analysis and pinpointing the

This work was in part funded by the BMBF project METACCA.
1https://software.intel.com/en-us/advisor-user-guide-roofline-analysis

runtime-defining hardware bottleneck. In addition, their imple-
mentation is much more complex. The analysis and modeling
process is split into in-core execution time and data transfer
time through the memory hierarchy. See [2], [3] for examples
on how this is done. For a long time, the only capable tool
for static in-core code analysis was Intel’s Architecture Code
Analyzer (IACA) [5], which was employed by Kerncraft.
Besides being at end-of-life, there are multiple limitations:
Intel-only architectures, undisclosed model and later versions
restricted to full-throughput assumption. To improve on this,
we develop the Open Source Architecture Code Analyzer
(OSACA) [6], which has, in addition to the features already
known from IACA, extended x86 (Intel Cascade Lake and
AMD) and AArch64 ARM support and supports critical path
(CP) latency analysis and loop-carried dependency detection.
All three predictions can be combined to a more accurate
performance model, including the throughput as a lower bound
and the critical path as an upper bound of the kernel runtime.
Like IACA, OSACA assumes that all data originates from the
first-level cache (i.e., L1 cache).

With OSACA’s semi-automatic benchmarking pipeline,
compilers can benefit from an automated model construc-
tion [3], [4]. The instruction database is dynamically extend-
able, which enables users to adapt the tool to other application
scenarios beyond numerical kernels found in HPC usecases.

This paper is organized as follows: In Section I-A, we cover
related work. Section II details the model assumptions and
construction for the underlying architecture and the general
methodology of the throughput and critical path analysis as
well as the loop-carried dependency detection. In Section III
we describe the benchmarking hardware/software environment
and validate the methodology against actual measurements and
compare with related tools. Section IV summarizes the work
and gives an outlook to future developments.

The OSACA software is available for download under
AGPLv3 [7]. Information about how to reproduce the results
in this paper can be found in the artifact description [8].

A. Related Work

OSACA was inspired by IACA, the Intel Architecture Code
Analyzer [5]. Developed by Israel Hirsh and Gideon S. [sic],
Intel released the tool in 2012 and announced its end-of-
life in April 2019. Therefore, no feature enhancements or
new microarchitecture support can be expected. It is closed

ar
X

iv
:1

91
0.

00
21

4v
2

 [
cs

.P
F]

 2
1

O
ct

 2
01

9

https://software.intel.com/en-us/advisor-user-guide-roofline-analysis

source and the underlying model has neither been published
by the authors, nor peer reviewed. The latest version supports
throughput analysis on Intel micro-architectures up to Skylake
(including AVX-512), but is not capable of critical path
analysis or loop-carried dependency detection.

LLVM Machine Code Analyzer (llvm-mca) [9] is a per-
formance analysis tool based on LLVM’s existing scheduling
models. Currently it lacks support for HPC-relevant ARM
architectures such as the ThunderX2, and some scheduling
models need refinement. Also, llvm-mca cannot analyze CPs,
even though one can manually identify a CP by the pro-
vided latency analysis. LLVM Machine Instruction Benchmark
(llvm-exegesis) [10] is a micro-benchmarking framework for
measuring throughput and latency of instruction forms. It
could thus be used as a data source to feed the OSACA
instruction database. Mendis et al. [11] apply a deep neural
network approach to estimate block throughput on Intel x86
architectures from Ivy Bridge to Skylake. It is able to use
IACA byte markers for indicating the code block to analyze
and is currently not capable of detecting CPs or loop-carried
dependencies. Code Quality Analyzer (CQA) [12] is a static
performance analysis tool focused on single-core performance
of loop-centric x86 code. Unlike OSACA, its goal is not
to predict runtime, but rather give the developer a quality
estimate of the code based on static binary analysis. Uop Flow
Simulation (UFS) [13] extends CQA with a simulator for the
out-of-order execution, modeling aspects OSACA assumes to
be based on fixed (non-optimal) probabilities.

There are a fair number of simulators available: gem5,
developed by Binkert et al. [14], ZSim by Sanches et al. [15]
and MARSSx86 by Patel et al. [16]. While gem5 even supports
various non-x86 instruction set architectures (ARM, Power,
RISC-V among others), all of them are considered as “full-
system” simulators, going above and beyond the scope of this
work. Therefore, they give a coarse overview on complete
(multi- or many-core) systems, rather than detailed insights
pinpointing a bottleneck.

II. METHODOLOGY

When analyzing loop kernels, we assume for each CPU
architecture a corresponding “port model”: Each assembly
instruction is (optionally) split into micro-ops (µ-ops), which
get executed by multiple ports. A particular instruction may
have multiple ports that can execute it (e.g., two integer
ALUs), or – in case of complex instructions – multiple ports
that must execute it (e.g., combined load and floating-point
addition). Shared resources, such as a divider pipeline or a
data load unit, are modelled as additional ports.

Each port receives at most one instruction per cycle and
may be blocked by an instruction for any number of cycles.
To model parallel execution of the same instruction form
on multiple ports, the cycles may be spread among multiple
ports, also allowing the inverse of integers as acceptable cycle
throughput of an instruction per port, but always adding up to
at least one cycle per instruction over all ports.

In-Order
Out-of-Order

Memory Control

Data Caches

Port 0 Port 1 Port N...

Out-of-Order Scheduler

Instruction Cache

Decode & µop Queue

Fig. 1: Assumed generic out-of-order port model. Other shared
resources (e.g., DIV pipeline) are modeled as additional ports.

Both x86 and ARM allow memory references to be used in
combination with arithmetic instructions. This is modelled by
splitting the instruction in the load and the arithmetic part, and
accounting for their respective port pressures and dependencies
separately (see below).

Figure 1 shows a diagram of the generic port model.
Cascade Lake would be modeled with eight ports, plus one
divider pipeline port and two data ports. A floating-point
divide instruction would occupy port 0 for one cycle and
the DIV port (i.e., pipeline) for four cycles, while an add
instruction would use ports 0 and 1 for each half a cycle,
because it may be executed on both.

We repeat here the assumptions behind our prediction
model [6]:

• All data accesses hit the first-level cache. This is where
the boundary between in-core and data transfer analysis
is drawn. If a dataset fits in the first-level cache, no cache
misses occur. Replacement strategies, prefetching, line
buffering, etc., are insignificant on this level. Behavior
beyond L1 can be modeled with Kerncraft [3], which re-
lies on an in-core analysis from OSACA and combines it
with data analysis to arrive at a unified model prediction.

• Multiple available ports per instruction are utilized with
fixed probabilities. If the exact amount of µ-ops per
port per instruction form is unknown, we assume that
all suitable ports for the same instruction are used with
fixed probabilities. E.g., an add instruction that may
use one out of four possible ports and has a maximum
throughput of 1 instr./cy on any unit will be assigned
0.25 cy on each of the four ports. This implies imperfect
scheduling if ports are asymmetric. Asymmetry means
that multiple ports can handle the same instruction, but
other features of those ports differ (e.g., one port supports
add and div, while another supports add and mul).
This may cause load imbalance since, e.g., a code with
only add and mul may be imperfectly scheduled. The
consideration of the full kernel for a more realistic port
pressure model is currently not supported, but is taken

Throughput Analysis

Critical Path Analysis

Loop-carried Dependencies Analysis

* - Instruction not bound to a port
 Port Pressure in cycles
| 0 | 1 | 2 - 2D | 3 - 3D | 4 | 5 | 6 |

| | | | | | | | .L22:
| | | 0.5 0.5 | 0.5 0.5 | | | | vmovapd 0(%r13,%rax),%ymm0
| 0.50 | 0.50 | 0.5 0.5 | 0.5 0.5 | | | | vfmadd213pd (%r14,%rax), \

%ymm1,%ymm0
| | | 0.5 | 0.5 | 1.0 | | | vmovapd %ymm0,(%r12,%rax)
| 0.25 | 0.25 | | | | 0.25 | 0.25 | addq $32,%rax
| 0.25 | 0.25 | | | | 0.25 | 0.25 | cmpq %rax,%r15
| | | | | | | |* jne .L22
1.00 1.00 1.5 1.0 1.5 1.0 1.00 0.50 0.50

180 | 4.0 | | vmovapd 0(%r13,%rax), %ymm0
181 | 4.0 | | vfmadd213pd (%r14,%rax), %ymm1, %ymm0
182 | 5.0 | | vmovapd %ymm0, (%r12,%rax)
 13.0

183 | 1.0 | addq $32, %rax | [183]

M
ac

hi
ne

 F
ile

s/
D

at
ab

as
es

- name: vfmadd213pd
 operands:

 - class: "register"
 name: "ymm"
 source: true
 destination: false
 - class: "register"
 name: "ymm"
 source: true
 destination: true
 throughput: 0.5
 latency: 4 # 0 DV 1 2 D 3 D 4 5 6 7
 port_pressure: [0.5,0,0.5,0.5,0.5,0.5,0.5,0,0,0,0]

speci�c operand
description

mnemonic

generic load

performance
information

load_latency: {gpr: 4, xmm: 4, ymm: 4, zmm: 4}
load_throughput: {port_pressure: [0,0,0,0.5 ... ,0]}

M
ar

ke
d

A
ss

em
bl

y movl $111,%ebx #START MARKER
.byte 100,103,144 #START MARKER
.L22:
vmovapd 0(%r13,%rax),%ymm0
vfmadd213pd (%r14,%rax),%ymm1,%ymm0
vmovapd %ymm0,(%r12,%rax)
addq $32,%rax
cmpq %rax,%r15
jne .L22

 movl $222,%ebx #END MARKER
 .byte 100,103,144 #END MARKER

mov x1, #111 //START
.byte 213,3,32,31 //START
.L18:
ldr q2, [x20, x0]
ldr q1, [x21, x0]
fmla v1.2d, v2.2d, v0.2d
str q1, [x19, x0]
add x0, x0, #16
cmp x22, x0
bne .L18
mov x1, #222 //END
.byte 213,3,32,31 //END

Fig. 2: Structural design of OSACA and its workflow, for
STREAM triad (A(:)=B(:)+s*C(:)) loop.

into account for future versions.

A. Port Model Construction

The overall methodology of OSACA is exemplified using
the STREAM triad A(:)=B(:)+s*C(:) loop in Figure 2.
The x86 or AArch64 ARM assembly is parsed and the kernel
in between the byte markers is extracted. For convenience,
OSACA supports IACA’s byte markers for x86 and uses
the same instruction pattern for ARM assembly. For each
parsed instruction form within the kernel, OSACA obtains
the maximum inverse throughput and latency in cycles and
the ports it can be scheduled to from its instruction database.
Furthermore, it keeps track of source and destination operands
for identifying register dependencies.

Possible sources for OSACA’s database are microbench-
mark databases like uops.info [17], Agner Fog’s “Instruction
Table” [18], or specific microbenchmarks using our own
frameworks asmbench [19] and ibench [20]. For the latter,
OSACA can automatically create benchmark files and import

the output into its database, resulting in a semi-automatic
benchmark pipeline.

B. Instruction Throughput and Latency Analysis

To obtain the latency and throughput of an instruction, we
automatically create assembly benchmarks for use with ibench.
It offers the infrastructure to initialize, run and accurately
measure the desired parameters. It is also intended to support
a python-based approach to micro-benchmarking, using the
asmbench framework, which is not yet implemented at the
time of writing.

Synthetic dependency chain generation within the assembly
kernel allows measurement of throughput and latency of an
instruction form and has been described in our previous
work [6]. As stated in Section II-A, in addition to directly
measuring throughput and latency of instruction forms includ-
ing memory references in combination with register operands,
which currently requires manual effort, OSACA is able to
dynamically calculate the throughput by taking the maximum
of both the load and arithmetic part and the latency by taking
the sum of both parts. The throughput prediction assumes a
fixed and balanced utilization of all suitable ports for any
instruction form and perfect out-of-order scheduling without
loop-carried dependencies. It thus yields a lower bound for
execution time.

C. Critical Path Analysis

The critical path analysis is based on a directed acyclic
graph (DAG) constructed from inter-instruction register de-
pendencies following these rules:

1) A vertex is created for every instruction form in the
marked piece of code.

2) From each instruction form’s destination operands, edges
are drawn to all instruction forms “further down” relying
on these outputs, unless a break of dependency is found
in between (e.g., by zeroing the register).

3) All edges are weighted with their source instruction’s
latency.

4) If a source memory reference has a dependency, an
intermediate load-vertex is added along this edge and the
additional edge weighted with the load latency.

After creating the DAG, the longest path within it is de-
termined by using a weighted topological sort based on the
approach of Manber [21]. The CP is thus an upper bound for
the execution time of a single instance of the loop body.

D. Loop-Carried Dependency Detection

Dependencies in between iterations, i.e., loop-carried de-
pendencies (LCDs), can drastically influence the runtime
prediction of loop kernels: Even with sufficient out-of-order
execution resources, overlap of successive iterations is only
possible up to the limit set by the LCD. The actual runtime
is thus limited from below by the length of the LCD chain.
OSACA can detect LCDs by creating a DAG of a code
comprising two back-to-back copies of the loop body. It can
thus analyze paths from each vertex of the first kernel section

and detect most cyclic LCDs if there exists a dependency chain
observable by register dependencies from one instruction form
to its corresponding duplicate in the next iteration.

III. RESULTS

The CP and LCD detection described in Section II are
included in OSACA’s analysis of loop code and presented
together with the “classic” throughput results. For validation
we will use assembly representations generated by the Intel
Fortran Compiler for x86 and the GNU Fortran Compiler for
ARM, respectively. In case of CLX we also compare to the
IACA and LLVM-MCA predictions for Skylake-X, which does
not differ in terms of the port model. Due to the proprietary
nature of IACA, we cannot use it on any AMD- or ARM-based
system; hence, we compare against LLVM-MCA on AMD
Zen. For lack of other tools, on TX2 OSACA’s prediction can
only be compared to measurements.

A. Example: Gauss-Seidel method on CSX, ZEN and TX2

An interesting floating-point benchmark for comparing pre-
dictions with the measured runtime is a 2D version of the
“Gauss-Seidel” sweep [22]:

do it=1,itmax
do k=1,kmax-1

do i=1,imax-1
phi(i,k,t0) = 0.25 * (
phi(i,k-1,t0) + phi(i+1,k,t0) +
phi(i,k+1,t0) + phi(i-1,k,t0))

enddo
enddo

enddo

It has one multiplication and three additions per iteration.
As the update of the matrix happens in-place, each iteration
is dependent on the previously calculated value of its “left”
(i-1) and “bottom” (k-1) neighbor. This is the basic LCD
that should govern the code’s runtime; the CP may be longer
since it may contain instructions that are not part of the
LCD. If the hardware has sufficient out-of-order capabilities,
it should be able to overlap that “extra” part across successive
loop iterations. And finally, the pure throughput prediction
(TP) should be much too optimistic since it ignores all
dependencies.

Since we have demonstrated OSACA’s TP analysis in previ-
ous work [6], we will focus here on the refinement of runtime
predictions via CP and LCD analysis. The total runtime is
measured and combined with the number of iterations to
get lattice site updates per second [LUP/s] and cycles per
iteration [cy/it] in columns 3–4 of Table I.

Unrolling by the compiler must be considered when inter-
preting OSACA predictions since they strictly pertain to the
assembly level. E.g., if a loop was unrolled four times, as
it is the case for our Gauss-Seidel examples, the prediction
by OSACA will be for four original (high-level) iterations.
This also applies to unrolling for SIMD vectorization, which
is not possible here, however. In this paper, OSACA and IACA
predictions in cycles are given for one assembly code iteration,

whereas the unit “cy/it” always refers to high-level source code
iterations. The total unrolling factor chosen by the compilers
has been 4x for all architectures. Table II shows the condensed
OSACA output for the TX2. Predictions by OSACA, IACA,
and LLVM-MCA can be found in Table I.

The predicted block throughput of all three analysis tools is
far from the measurements, as expected. Even though IACA
is not capable of detecting CPs and analysing the latency of
kernels anymore, its block throughput in the analysis report
states 14 cy/it, contrary to the pure port binding of 2 cy/it.
No explanation for this behavior can be found in the output
although it matches exactly the LCD and the measurement.

Using the additional -timeline flag, LLVM-MCA pro-
vides a timeline view showing for a various number of cycles
or iterations the expected cycle of dispatching, execution and
retirement. Since it models register dependencies, we assume
this to be its CP analysis and expect the time from the
beginning of the first iteration to the retirement of its jump
instruction to be the CP length, while all further executions
have the length of the LCD. Both numbers can be found
in the last column of Tab. I. While we can observe that
LLVM-MCA overestimates the execution on ZEN by almost
50%, it predicts the runtime on CLX nearly exactly. For
the ThunderX2, LLVM-MCA is neither capable of analyzing
throughput nor latency at the time of writing.

OSACA provides a runtime bracket determined by the CP
(upper bound) and the length of the longest cyclic LCD path
(lower bound). The measured execution time should usually lie
between these limits unless bottlenecks apply that are beyond
our model (e.g., instruction cache misses, bank conflicts, etc.).
As seen in column 6 of Table I, the actual measurement lies
within the prediction frame in every analysis case, and the
measurement is very close to the longest LCD path for this
kernel. As expected, the runtime is faster than the pure CP
length, since instructions that are not part of the LCD path
can overlap across iterations.

The detailed OSACA analysis for ThunderX2 can be found
in Table II. The LCD and CP columns show latency values
for instruction forms along the CP and the longest cyclic
LCD path, respectively. Fig. 3 depicts the graph generated
by OSACA from the assembly.

Note that in cases where the LCD is very short or zero,
the throughput prediction applies, and a deviation of the
measurement from this lower limit points to either a shortage
of OoO resources (physical registers, reorder buffer) or an
architectural effect not covered by the machine model.

B. Validation Hardware, Software, and Runtime Environment

OSACA (version 0.3.1.dev0) was run with Python v3.6.8
and benchmarks were compiled using Intel ifort v19.0.2 and
GNU Fortran (ARM-build-8) 8.2.0, respectively. All results
presented were gathered on three machines, with fixed clock
frequency and disabled turbo mode:

Architecture Unroll Measured Prediction [cy/it]
factor OSACA IACA LLVM-MCA

MLUP/s cy/it TP LCD CP TP LCD CP TP LCD CP

Marvel ThunderX2 4x 118.9 18.50 2.46 18.00 25.00 — — — — — —
Intel Cascade Lake X 4x 178.3 14.02 2.19 14.00 18.00 14.00 — — 2.00 14.75 19.00
AMD Zen 4x 194.4 11.83 2.00 11.50 15.00 — — — 3.00 18.00 24.00

TABLE I: Analysis and measurement of the Gauss-Seidel code on three architectures with OSACA, IACA, and LLVM-MCA
predictions. Dashes denote unsupported analysis types or architectures. TP is the throughput prediction, a lower runtime bound.
LCD is the loop carried dependency prediction, an expected runtime. CP is the critical path prediction, an upper runtime bound.

P0 P1 P2 P3 P4 P5 LCD CP LN Assembly Instructions

519 .L20:

0.50 0.50 4.0 520 ldr d31, [x15, x18, lsl 3]

0.50 0.50 521 ldr d0, [x15, 8]

0.50 0.50 522 mov x14, x15

0.33 0.33 0.33 523 add x16, x15, 24

0.50 0.50 524 ldr d2, [x15, x30, lsl 3]

0.33 0.33 0.33 525 add x15, x15, 32

0.50 0.50 6.0 526 fadd d1, d31, d0

0.50 0.50 6.0 6.0 527 fadd d3, d1, d30

0.50 0.50 6.0 6.0 528 fadd d4, d3, d2

0.50 0.50 6.0 6.0 529 fmul d5, d4, d9

0.50 0.50 1.00 4.0 530 str d5, [x14], 8

0.50 0.50 4.0 531 ldr d6, [x14, x18, lsl 3]

0.50 0.50 532 ldr d16, [x14, 8]

0.33 0.33 0.33 533 add x13, x14, 8

0.50 0.50 534 ldr d7, [x14, x30, lsl 3]

0.50 0.50 6.0 535 fadd d17, d6, d16

0.50 0.50 6.0 6.0 536 fadd d18, d17, d5

0.50 0.50 6.0 6.0 537 fadd d19, d18, d7

0.50 0.50 6.0 6.0 538 fmul d20, d19, d9

0.50 0.50 1.00 539 str d20, [x15, -24]

0.50 0.50 540 ldr d21, [x13, x18, lsl 3]

0.50 0.50 541 ldr d23, [x14, 16]

0.50 0.50 542 ldr d22, [x13, x30, lsl 3]

0.50 0.50 543 fadd d24, d21, d23

0.50 0.50 6.0 6.0 544 fadd d25, d24, d20

0.50 0.50 6.0 6.0 545 fadd d26, d25, d22

0.50 0.50 6.0 6.0 546 fmul d27, d26, d9

0.50 0.50 1.00 547 str d27, [x14, 8]

0.50 0.50 548 ldr d30, [x15]

0.50 0.50 549 ldr d28, [x16, x18, lsl 3]

0.50 0.50 550 ldr d29, [x16, x30, lsl 3]

0.50 0.50 551 fadd d31, d28, d30

0.50 0.50 6.0 6.0 552 fadd d2, d31, d27

0.50 0.50 6.0 6.0 553 fadd d0, d2, d29

0.50 0.50 6.0 6.0 554 fmul d30, d0, d9

0.50 0.50 1.00 4.0 555 str d30, [x15, -8]

0.33 0.33 556 cmp x7, x15

557 bne .L20

9.83 9.83 1.33 8.00 8.00 4.00 72.0 100.0 sum (4x unrolled)
2.46 2.46 0.33 2.00 2.00 1.00 18.0 25.0 per high-level iteration

TABLE II: (Condensed) OSACA analysis of Gauss-Seidel
assembly code for ARM-based ThunderX2 architecture. The
LN column are line numbers.

ThunderX2: ARM-based Marvell ThunderX2 9980
with ThunderX2 micro-architecture (formerly known as
Cavium Vulcan) at 2.2 GHz (TX2), gfortran, options
-mcpu=thunderx2t99+simd+fp -fopenmp-simd
-funroll-loops -Ofast

520: ldr
526: fadd

4

521: ldr
4

522: mov

530: str

1

523: add

549: ldr 550: ldr

1

524: ldr

528: fadd

4

525: add

539: str 548: ldr

1

555: str

556: cmp
1

527: fadd

6

6

529: fmul

6

6

536: fadd

6

531: ldr

4

532: ldr

4

533: add

534: ldr

4

541: ldr

547: str

535: fadd

4

4

540: ldr

1

542: ldr

537: fadd

4

6

6

538: fmul

6

6

544: fadd

6

543: fadd

4

4

545: fadd

4

6

6

546: fmul

6

6

552: fadd

6
551: fadd

4

4

553: fadd

4

6
6

554: fmul
66

1

Fig. 3: (Compressed) dependency graph of the Gauss-Seidel
code on TX2, created by OSACA. Orange nodes are on the
longest LCD, including the backedge. Pink dashed lines and
outlined nodes make up the CP. Numbers in nodes are line
numbers, as found in Table II, and weights along the edges
are latency cycles.

Cascade Lake: Intel Xeon Gold 6248 with Cascade
Lake X micro-architecture at 2.5 GHz (CLX), ifort, options
-funroll-loops -xCASCADELAKE -Ofast

Zen: AMD EPYC 7451 with Zen micro-architecture
at 2.3 GHz (ZEN), gfortran, options -funroll-loops
-mavx2 -mfma -Ofast

The process was always bound to a physical core. In effect,
statistical runtime variations were small enough to be ignored.

IV. CONCLUSION

A. Summary

We have shown that automatic extraction, throughput, and
critical path analysis of assembly loop kernels is feasible
using our cross-platform tool OSACA. OSACAs results are
accurate and sometimes even more precise and versatile
than predictions of comparable tools like IACA and LLVM-
MCA. Additionally, direct critical path analysis including
loop-carried dependencies is not supported by any other tool to
date, although it can be inferred manually from LLVM-MCA’s
timeline information.

B. Future Work

In the future we intend to extend OSACA to support hidden
dependencies, i.e., instructions accessing resources not named
specifically in the assembly, such as status flags and load-
after-store dependencies, including stack operations. The LCD
analysis is not perfect and may miss dependencies in some
special cases, which can be improved by taking more than
two iterations into account. Furthermore, we plan to increase
the number of micro-benchmark interfaces and to support the
semi-automatic usage of asmbench in the OSACA toolchain.
Beyond the even distribution of µ-ops across multiple ports,
we want to implement a more realistic scheduling scheme that
takes port utilization into account. Support for new micro-
architectures like AMD’s Zen 2 and eventually IBM’s Power9
is also planned. Another topic is the overlap of latency in
complex instructions, which can change the outcome of the
analysis slightly but may be significant in pathological cases
(e.g., in a = a+ b× c with an FMA instruction, the multipli-
cation may already execute before a becomes available). The
split, as well as the fusion, of µ-ops is currently not considered,
but can be achieved with replacement rules in the architecture
model description.

Accurately modeling the performance characteristics of the
decode, reorder buffer, register allocation/renaming, retirement
and other stages, which all may limit the execution throughput
and impose latency penalties, is currently out of scope for
OSACA.

REFERENCES

[1] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun. ACM,
vol. 52, no. 4, pp. 65–76, 2009.

[2] H. Stengel, J. Treibig, G. Hager, and G. Wellein, “Quantifying Per-
formance Bottlenecks of Stencil Computations Using the Execution-
Cache-Memory Model,” in Proceedings of the 29th ACM International
Conference on Supercomputing, ser. ICS ’15. New York, NY, USA:
ACM, 2015, pp. 207–216, doi: 10.1145/2751205.2751240.

[3] J. Hammer, J. Eitzinger, G. Hager, and G. Wellein, “Kerncraft: A Tool
for Analytic Performance Modeling of Loop Kernels,” in Tools for High
Performance Computing 2016, C. Niethammer, J. Gracia, T. Hilbrich,
A. Knüpfer, M. M. Resch, and W. E. Nagel, Eds. Cham: Springer
International Publishing, 2017, pp. 1–22, doi: 10.1007/978-3-319-56702-
0 1.

[4] Y. Lo, S. Williams, B. Van Straalen, T. J. Ligocki, M. J. Cordery, N. J.
Wright, M. W. Hall, and L. Oliker, “Roofline Model Toolkit: A Practical
Tool for Architectural and Program Analysis,” in High Performance
Computing Systems. Performance Modeling, Benchmarking, and Sim-
ulation, ser. Lecture Notes in Computer Science, S. A. Jarvis, S. A.
Wright, and S. D. Hammond, Eds., vol. 8966. Springer International
Publishing, 2015, pp. 129–148, doi: 10.1007/978-3-319-17248-4 7.

[5] (2017, 11) Intel Architecture Code Analyzer. [Online]. Available:
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer

[6] J. Laukemann, J. Hammer, J. Hofmann, G. Hager, and G. Wellein,
“Automated instruction stream throughput prediction for intel and
amd microarchitectures,” in 2018 IEEE/ACM Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems
(PMBS), Nov 2018, pp. 121–131.

[7] J. Laukemann. (2017, 12) OSACA – Open Source Architecture Code
Analyzer. [Online]. Available: https://github.com/RRZE-HPC/OSACA

[8] “Artifact description: Automatic throughput and critical path analysis
of x86 and arm assembly kernels.” [Online]. Available: https:
//github.com/RRZE-HPC/OSACA-CP-2019

[9] D. Andric. [RFC] llvm-mca: a static performance analysis
tool. [Online]. Available: http://llvm.1065342.n5.nabble.com/
llvm-dev-RFC-llvm-mca-a-static-performance-analysis-tool-td117477.
html

[10] llvm-exegesis – LLVM Machine Instruction Benchmark. [Online].
Available: https://llvm.org/docs/CommandGuide/llvm-exegesis.html

[11] C. Mendis, A. Renda, S. Amarasinghe, and M. Carbin, “Ithemal:
Accurate, portable and fast basic block throughput estimation using
deep neural networks,” in Proceedings of the 36th International
Conference on Machine Learning (ICML), ser. Proceedings of Machine
Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97.
Long Beach, California, USA: PMLR, Jun 2019, pp. 4505–4515.
[Online]. Available: http://proceedings.mlr.press/v97/mendis19a.html

[12] A. S. Charif-Rubial, E. Oseret, J. Noudohouenou, W. Jalby, and G. Lar-
tigue, “CQA: A code quality analyzer tool at binary level,” in 2014 21st
International Conference on High Performance Computing (HiPC), Dec
2014, pp. 1–10, doi: 10.1109/HiPC.2014.7116904.

[13] V. Palomares, D. C. Wong, D. J. Kuck, and W. Jalby, “Evaluating out-
of-order engine limitations using uop flow simulation,” in Tools for High
Performance Computing 2015, A. Knüpfer, T. Hilbrich, C. Niethammer,
J. Gracia, W. E. Nagel, and M. M. Resch, Eds. Cham: Springer
International Publishing, 2016, pp. 161–181, doi: 10.1007/978-3-319-
39589-0 13.

[14] N. Binkert, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M. D. Hill, D. A. Wood, B. Beckmann, G. Black, and et al., “The
gem5 simulator,” ACM SIGARCH Computer Architecture News, vol. 39,
no. 2, p. 1, 8 2011, doi: 10.1145/2024716.2024718. [Online]. Available:
http://dx.doi.org/10.1145/2024716.2024718

[15] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microarchitec-
tural Simulation of Thousand-Core Systems,” Proceedings of the 40th
Annual International Symposium on Computer Architecture - ISCA ’13,
2013. [Online]. Available: http://dx.doi.org/10.1145/2485922.2485963

[16] A. Patel, F. Afram, and K. Ghose, “Marss-x86: A qemu-based micro-
architectural and systems simulator for x86 multicore processors,” in 1st
International Qemu Users’ Forum, 2011, pp. 29–30.

[17] A. Abel and J. Reineke, “uops.info: Characterizing latency, throughput,
and port usage of instructions on intel microarchitectures,” in
Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’19. New York, NY, USA: ACM, 2019, pp. 673–
686. [Online]. Available: http://doi.acm.org/10.1145/3297858.3304062

[18] (2018, 4) Instruction tables. [Online]. Available: http://www.agner.org/
optimize/instruction tables.pdf

[19] J. Hammer, G. Hager, and G. Wellein, “OoO Instruction Benchmarking
Framework on the Back of Dragons,” 2018, SC18 ACM SRC Poster.
[Online]. Available: https://sc18.supercomputing.org/proceedings/src
poster/src poster pages/spost115.html

[20] J. Hofmann. (2018, 1) ibench – Measure Instruction Latency and
Throughput. [Online]. Available: https://github.com/hofm/ibench

[21] U. Manber, “Introduction to algorithms - a creative approach,” 1989.
[22] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,

V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst, Templates for the
Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd
Edition. Philadelphia, PA: SIAM, 1994.

https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
https://github.com/RRZE-HPC/OSACA
https://github.com/RRZE-HPC/OSACA-CP-2019
https://github.com/RRZE-HPC/OSACA-CP-2019
http://llvm.1065342.n5.nabble.com/llvm-dev-RFC-llvm-mca-a-static-performance-analysis-tool-td117477.html
http://llvm.1065342.n5.nabble.com/llvm-dev-RFC-llvm-mca-a-static-performance-analysis-tool-td117477.html
http://llvm.1065342.n5.nabble.com/llvm-dev-RFC-llvm-mca-a-static-performance-analysis-tool-td117477.html
https://llvm.org/docs/CommandGuide/llvm-exegesis.html
http://proceedings.mlr.press/v97/mendis19a.html
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1145/2485922.2485963
http://doi.acm.org/10.1145/3297858.3304062
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
https://sc18.supercomputing.org/proceedings/src_poster/src_poster_pages/spost115.html
https://sc18.supercomputing.org/proceedings/src_poster/src_poster_pages/spost115.html
https://github.com/hofm/ibench

	I Introduction
	I-A Related Work

	II Methodology
	II-A Port Model Construction
	II-B Instruction Throughput and Latency Analysis
	II-C Critical Path Analysis
	II-D Loop-Carried Dependency Detection

	III Results
	III-A Example: Gauss-Seidel method on CSX, ZEN and TX2
	III-B Validation Hardware, Software, and Runtime Environment

	IV Conclusion
	IV-A Summary
	IV-B Future Work

	References

