
Autotuning PolyBench Benchmarks with LLVM Clang/Polly Loop Optimization
Pragmas Using Bayesian Optimization

Xingfu Wu, Michael Kruse, Prasanna Balaprakash, Hal Finkel, Paul Hovland, Valerie Taylor
Argonne National Laboratory, Lemont, IL 60439

Email: {xingfu.wu,michael.kruse,pbalapra,hfinkel,hovland,vtaylor}@anl.gov

Mary Hall
University of Utah, Salt Lake City, UT 84103

Email: mhall@cs.utah.edu

Abstract—An autotuning is an approach that explores a search
space of possible implementations/configurations of a ker-
nel or an application by selecting and evaluating a sub-
set of implementations/configurations on a target platform
and/or use models to identify a high performance implemen-
tation/configuration. In this paper, we develop an autotuning
framework that leverages Bayesian optimization to explore the
parameter space search. We select six of the most complex
benchmarks from the application domains of the PolyBench
benchmarks (syr2k, 3mm, heat-3d, lu, covariance, and Floyd-
Warshall) and apply the newly developed LLVM Clang/Polly
loop optimization pragmas to the benchmarks to optimize
them. We then use the autotuning framework to optimize
the pragma parameters to improve their performance. The
experimental results show that our autotuning approach out-
performs the other compiling methods to provide the smallest
execution time for the benchmarks syr2k, 3mm, heat-3d, lu,
and covariance with two large datasets in 200 code evaluations
for effectively searching the parameter spaces with up to
170,368 different configurations. We compare four different
supervised learning methods within Bayesian optimization and
evaluate their effectiveness. We find that the Floyd-Warshall
benchmark did not benefit from autotuning because Polly uses
heuristics to optimize the benchmark to make it run much
slower. To cope with this issue, we provide some compiler
option solutions to improve the performance.

1. Introduction

As the complexity of high performance computing
(HPC) ecosystems (hardware stacks, software stacks, ap-
plications) continues to rise, achieving optimal perfor-
mance becomes a challenge. The number of tunable pa-
rameters an HPC user can configure has increased, re-
sulting in the overall parameter space growing signifi-
cantly. Exhaustively evaluating all parameter combinations
becomes very time-consuming. Therefore, autotuning for
automatic exploration of parameter space is desirable. An
autotuning is an approach that explores a search space of
possible implementations/configurations of a kernel or an

application by selecting and evaluating a subset of im-
plementations/configurations on a target platform and/or
use models to identify the high performance implemen-
tation/configuration within a given computational budget.
In this work, we develop a machine learning (ML)-based
autotuning framework to reduce the parameter search space
in order to autotune loop optimization pragmas to improve
performance.

A large amount of literature on autotuning exists. Bal-
aprakash et al. [3] surveyed the state of the practice in
incorporating autotuned code into HPC applications; the
authors highlighted insights from prior work and identi-
fied the challenges in advancing autotuning into wider and
long-term use. Traditional autotuning methods are built on
heuristics that derive from experience [6], [9], [25] and
model-based methods [2], [8], [26]. At the compiler level,
machine-learning-based methods are used for automatic tun-
ing of the iterative compilation process [17] and tuning of
compiler-generated code [15], [27]. Some recent work has
used machine learning and sophisticated statistical learning
methods to reduce the overhead of autotuning [14], [19],
[28]. Most recent work on autotuning of OpenMP code has
gone beyond loop schedules to look at parallel tasks and
function inlining [10], [16], [24]. In particular, a lightweight
framework was proposed to enable autotuning of OpenMP
pragmas to ease the performance tuning of OpenMP codes
across platforms [24]; the approach incorporated the Search
using Random Forests (SuRF). SuRF is the earliest ver-
sion of the parameter space search ytopt [31]. Currently,
ytopt leverages Bayesian optimization [4], [22] to explore
the parameter space search and uses different supervised
learning methods within Bayesian optimization such as ran-
dom forests, Gaussian process regression, extra trees, and
gradient boosted regression trees.

Kruse and Finkel [11] implemented a newly proposed
prototype of user-directed loop transformations using Clang
and Polly [18] with additional loop transformation prag-
mas such as loop reversal, loop interchange, tiling, and
array packing in DOE’s Exascale Computing Project (ECP)
SOLLVE [23]. SOLLVE seeks to deliver a high-quality,
robust implementation of OpenMP and project extensions in
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LLVM [12], which is a collection of modular and reusable
compiler and toolchain technologies. Research is needed
to determine how to efficiently combine these loop trans-
formation pragmas to optimize an application. Because of
the large parameter space of these pragmas and related
parameters, autotuning for automatic exploration of the pa-
rameter space is desirable. In our preliminary work with the
Y-TUNE project [30], we worked on integrating the loop
optimization pragmas within the ytopt package to autotune
loop optimization pragmas for optimal performance. In this
paper, we develop an autotuning framework to integrate the
Clang/Polly loop optimization pragmas with the ytopt, and
we apply the loop optimization pragmas to the PolyBench
benchmarks [32] to evaluate the autotuning framework.

PolyBench 4.2 [32] is a benchmark suite of 30 numerical
computations extracted from operations in various applica-
tion domains (linear algebra computations, image process-
ing, physics simulation, and data mining). In this work, we
select six of the most complex benchmarks from the applica-
tion domains of PolyBench benchmarks (syr2k, 3mm, heat-
3d, lu, covariance, and Floyd-Warshall) and apply the newly
developed LLVM Clang/Polly loop optimization pragmas to
these benchmarks to improve their performance.

We evaluate the performance on a machine with 3.1 GHz
Quad-core Intel Core i7 and 16 GB of memory. The exper-
imental results show that the autotuning outperforms the
other compiling methods to provide the smallest execution
time for the benchmarks syr2k, 3mm, heat-3d, lu, and co-
variance with two datasets in 200 evaluations for effectively
searching the parameter spaces with up to 170,368 different
configurations. We compare four different supervised ML
methods within Bayesian optimization and evaluate their
effectiveness. We find that one exception for Polly is the
Floyd-Warshall benchmark because Polly uses heuristics to
optimize the benchmark to make it run much slower. To cope
with this issue, we provide some compiler option solutions
to improve the performance.

This paper makes the following contributions:

• We develop an autotuning framework to leverage
Bayesian optimization to explore the parameter
space search with the newly developed Clang loop
optimization pragmas.

• We apply the loop optimization pragmas to the
PolyBench benchmarks to optimize them.

• We show that the autotuning framework outperforms
other compiling methods to achieve the optimal im-
plementation in 200 code evaluations for effectively
searching the parameter spaces with up to 170,368
different configurations.

• We compare four different supervised learning meth-
ods within Bayesian optimization and evaluate their
effectiveness.

The remainder of this paper is organized as follows.
Section 2 discusses SOLLVE Clang/Polly loop optimization
pragmas and the parameter space search ytopt and then
presents an autotuning framework based on them. Section
3 surveys the PolyBench benchmarks and selects six of the

most complex benchmarks from the application domains.
Section 4 applies the Clang loop optimization pragmas to
these benchmarks to improve them and then use the autotun-
ing framework to autotune the pragma parameters to achieve
the optimal performance. We also compare four different
supervised learning methods within Bayesian optimization
and evaluate their effectiveness. Section 5 summarizes our
conclusions and briefly discusses future work.

2. An Autotuning Framework

In this section, we discuss loop optimization pragmas
implemented in LLVM Clang/Polly and the ytopt parame-
ter search space autotuner. We then present an autotuning
framework based on them.

2.1. Clang/Polly Loop Optimization Pragmas

Compiler directives such as pragmas can help program-
mers to separate an algorithm’s semantics from its opti-
mization. Pragma directives for code transformations are
useful for assisting program optimization and are already
widely used in OpenMP. In [11], a prototype of user-directed
loop transformations using Clang and Polly [18] was imple-
mented for the US DoE’s ECP SOLLVE project [23]. Polly
is LLVM’s polyhedral loop optimizer which makes it easy
to apply specific transformations as directed by pragmas.
We used the SOLLVE project’s development branch for
LLVM located at https://github.com/SOLLVE/llvm-project/
tree/pragma-clang-loop. While the SOLLVE team is work-
ing on integrating the changes into the official LLVM
repository, only few of the changes have been upstreamed
yet. The additional loop transformation directives supported
are loop reversal (inverting the iteration order of a loop),
loop interchange (permuating the order of nested loops),
tiling, unroll(-and-jam), array packing (temporarily copying
the data of a loop’s working set into a new buffer) and
thread parallelization. More importantly, it supports com-
posing multiple loop nest transformation in arbitrary order.
Vectorization is also supported by LLVM’s dedicated loop
vectorizer. These pragmas are intended to make applying
common loop optimization technique much easier and allow
better separation of a code’s semantics and its optimization.
In this paper, we use some of these pragmas to optimize
several PolyBench benchmarks and then propose the frame-
work to autotune them.

2.2. Parameter Space Search

ytopt [31] is a machine-learning-based parameter space
search software package that leverages Bayesian optimiza-
tion [4], [22] to explore the parameter space search and uses
different supervised ML methods within Bayesian optimiza-
tion such as random forests, Gaussian process regression,
extra trees, and gradient boosted regression trees. A high
level overview of the package is shown in Figure 1. The
package takes the user-defined parameter space definition

https://github.com/SOLLVE/llvm-project/tree/pragma-clang-loop
https://github.com/SOLLVE/llvm-project/tree/pragma-clang-loop


Figure 1. Machine-learning-based autotuner ytopt

(bounds and constraints) and the parameter configuration
evaluation interface as input. The initialization phase con-
sists of sampling a small number of input parameter con-
figurations through random sampling or Latin hypercube
sampling and recording the performance to a performance
database (performance output files include the configuration,
runtime, and wall-clock time). The input-output pairs are
used to fit a surrogate model using a ML method. The iter-
ative phase of search consists in sampling an input parameter
configuration for evaluation by progressively leveraging and
refining the surrogate model. At the evaluation stage, check
the performance database to make sure that this chosen
configuration is new. If it was evaluated before, skip the
evaluation. To that end, the search uses Bayesian optimiza-
tion in which uncertainty quantification of the surrogate
model is leveraged to balance exploration of the search space
and identification of more-promising regions using lower
confidence bound acquisition function.

Three of the four ML methods—random forest, Extra
Trees, and gradient boosted regression trees—follow the au-
totuning process based on the performance database shown
in Figure 1. Gaussian process, however, still uses random
or Latin hypercube sampling to generate the parameter
configurations for performance evaluation.

ytopt is a Python package that uses scikit-optimize [20],
autotune [1], and ytopt subpackage [31]. See our initial work
[30] for the detailed installation and download information.
It uses ConfigSpace [7] package to handle the algebraic
constraints on the parameter configuration space.

2.3. Proposed Autotuning Framework

Based on the Clang loop optimization pragmas and the
parameter space search ytopt, we present the general auto-
tuning framework in the following steps shown in Figure
2:

1) Analyze an application code to identify the impor-
tant parameters that we try to focus on.

2) Replace these parameters with symbols such as #P0,
#P1, #P2, ..., #Pm in top-down order to generate
another code with these symbols as a code mold.

Figure 2. Framework for autotuning Clang/Polly Loop pragmas

3) Define the value ranges of these symbols for the
parameter space as an input of the ytopt autotuner
(problem.py).

4) Use the ytopt autotuner to search the parameter
space to assign the values in the allowed ranges
(using random forest as default), and replace these
symbols in the mold code with them to generate a
new code using the function plopper (plopper.py).

5) Use the plopper to compile the code and execute it
to get the execution time (using a Perl script exe.pl).

6) Use the autotuner to write the execution time and
the elapsed time with the parameters’ values to the
performance database (two output files: results.csv
and results.json).

7) Repeat steps 4, 5, and 6 until reaching the maximum
number of code evaluations n (using the option –
max-evals=maximum number n; default: 100).

8) Process the database to find the smallest execution
time and output the optimal configuration for the
execution time (findMin.py)

9) Identify the most important features which impact
the performance for the search improvement.

This autotuning framework requires the following com-
ponents: configspace, scikit-optimize, autotune, ytopt, and
LLVM clang/polly. The framework provides the following
main options:

–max-evals: to set the maximum number of evalua-
tions n
–learner: to set the ML method using random forests
(RF), Extra Trees (ET), gradient Boosted regression
trees (GBRT), or Gaussian processes (GP). The de-
fault is RF.

In this work, we apply the Clang loop optimization
pragmas to the PolyBench benchmarks [32] to evaluate the
autotuning framework using the four different ML methods.

3. PolyBench Benchmarks

PolyBench 4.2 [32] is a benchmark suite of 30 numerical
computations extracted from operations in various appli-
cation domains (19 linear algebra computations, 3 image-
processing applications, 6 physics simulations, and 2 data-
mining applications). The details about the benchmarks are
as follows:



1) Linear Algebra:
BLAS (7): gemm, gemver, gesummv, symm, syr2k,
syrk, trmm
Kernels (6): 2mm, 3mm, atax, bicg, doitgen, mvt
Solvers (6): Cholesky, durbin, gramschmidt, lu, lud-
cmp, trisolv

2) Medley (image processing) (3): deriche, floyd-
warshall, nussinov

3) Physics simulation (stencils) (6): adi, fdtd-2d, heat-
3d, jacobi-1d, jacobi-2d, seidel-2d

4) Data mining (2): correlation, covariance

In this work, we choose the most complex benchmark
with the most levels of nested loops (the red color) from
each group to illustrate how the autotuning framework per-
forms, and we compare their performance.

syr2k is a symmetric rank 2k update from BLAS
and entails the matrix multiplication C = A*alpha*B+
B*alpha*A+belta*C, where A is an NxM matrix, B is an
MxN matrix, and C is an NxN symmetric matrix. We use
the following large datasets: LARGE DATASET (M 1000,
N 1200) and EXTRALARGE DATASET (M 2000, N 2600)
for our case study.

3mm is one of the linear algebra kernels that consists
of three matrix multiplications and entails G=(A*B)*(C*D),
where Ais a PxQ matrix; B is a QxR matrix; C is an RxS
matrix; and D is an SxT matrix. We use the following large
datasets: LARGE DATASET (P 800, Q 900, R 1000, S
1100, T 1200) and EXTRALARGE DATASET (P 1600, Q
1800, R 2000, S 2200, T 2400).

lu is LU decomposition without pivoting in linear alge-
bra solvers and entails A = L*U, where L is an NxN lower
triangular matrix and U is an NxN upper triangular matrix.
We use the following large datasets : LARGE DATASET
(N 2000) and EXTRALARGE DATASET (N 4000).

heat-3d entails a heat equation over 3D space in Stencil.
Stencil computations iteratively update a grid of data using
the same pattern of computation. We use the following large
datasets: LARGE DATASET (TSTEPS 500, N 120) and
EXTRALARGE DATASET (TSTEPS 1000, N 200).

covariance entails computing the covariance, a measure
from statistics that shows how linearly related two variables
are. It takes the data (NxM matrix that represents N data
points, each with M attributes) as input and gives the cov
(symmetric MxM matrix where the i,jth element is the
covariance between i and j) as the output. We use the
following large datasets: LARGE DATASET (M 1200, N
1400) and EXTRALARGE DATASET (M 2600, N 3000).

Floyd-Warshall entails computing the shortest paths be-
tween each pair of nodes in a graph in Medley. The input
is an NxN matrix, where the i,jth entry represents the cost
of taking an edge from i to j. The output is an NxN matrix,
where the i,jth entry represents the shortest path length from
i to j. We use the following datasets: MEDIUM DATASET
(N 500) and LARGE DATASET (N 2800).

4. Autotuning the Benchmarks with Clang
Loop Optimization Pragmas

We apply the Clang loop optimization pragmas [11] to
the chosen PolyBench benchmarks to optimize them. We
define the parameters for these pragmas and then use the
framework to autotune the pragma parameters to achieve the
optimal performance. Based on the performance database,
we write the Python script findMin.py to find the smallest
execution time and output the best configurations. We also
use four different ML methods to investigate how they
impact finding the optimal configuration from the input
parameter search space based on the performance database
and what the optimal loop tiling sizes. We evaluate the
performance on a machine with 3.1 GHz Quad-core Intel
Core i7 and 16 GB of memory and 1 TB SSD; gcc 7.2 and
clang 10.0 are installed on the machine.

4.1. Case Study: syr2k with multiple loop transfor-
mations (loop tiling, interchange, and array pack-
ing)

We apply multiple loop transformations such as tiling,
interchange, and array packing pragmas to the benchmark
syr2k for this case study. We assume that the loop tiling
(#pragma clang loop(i,j,k) tile sizes( )) is already applied to
syr2k. We define the following parameters:
#P0
#P1
#P2
#pragma clang loop(i,j,k) tile sizes(#P3,#P4,#P5)

floor_ids(i1,j1,k1) tile_ids(i2,j2,k2)
#pragma clang loop id(i)
for (i = 0; i < _PB_N; i++) {
#pragma clang loop id(j)
for (j = 0; j < _PB_M; j++) {
#pragma clang loop id(k)

for (k = 0; k <= i; k++)
{
C[i][k] += A[k][j]*alpha*B[i][j]
+ B[k][j]*alpha*A[i][j];

}
}

}

Based on these parameters, we create a code mold. For
this case, we have to make sure that there is no dependence
among P0, P1, P2, P3, P4, and P5. Based on the defined
six parameters, we have the following parameter space
input space using ConfigSpace:
cs CS.ConfigurationSpace(seed=1234)
P0=CSH.CategoricalHyperparameter(name=’P0’,
choices=["#pragma clang loop(j2) pack array(A)
allocate(malloc)", " "], default_value=’ ’)
P1=CSH.CategoricalHyperparameter(name=’P1’,
choices=["#pragma clang loop(i1) pack array(B)
allocate(malloc)", " "], default_value=’ ’)
P2=CSH.CategoricalHyperparameter(name=’P2’,
choices=["#pragma clang loop(i1,j1,k1,i2,j2)
interchange permutation(j1,k1,i1,j2,i2)", " "], default_value=’ ’)
P3=CSH.OrdinalHyperparameter(name=’P3’,
sequence=[’4’,’8’,’16’,’20’,’32’,’50’,’64’,’80’,’96’,’100’,
’128’], default_value=’96’)
P4=CSH.OrdinalHyperparameter(name=’P4’,
sequence=[’4’,’8’,’16’,’20’,’32’,’50’,’64’,’80’,’100’,’128’,
’2048’], default_value=’2048’)



P5=CSH.OrdinalHyperparameter(name=’P5’,
sequence=[’4’,’8’,’16’,’20’,’32’,’50’,’64’,’80’,’100’,’128’,
’256’], default_value=’256’)
cs.add_hyperparameters([P0, P1, P2, p3, P4, P5])
cond1 = CS.InCondition(P1, P0,
[’#pragma clang loop(j2) pack array(A) allocate(malloc)’])
cs.add_condition(cond1)
input_space = cs

where the parameters P0, P1, and P2 have the choices
of the pragmas or nothing. P0 is the array packing for A
(#pragma clang loop(j2) pack array(A) allocate(malloc)). P2
permutes the order of nested loops and has no dependence
with P0 and P1. For P0 and P1, we add the conditions
(CS.InCondition) so that Packing arrays A and B occurs at
the same time. The parameters P3, P4, and P5 represent the
tile size for each loop. Based on the tile size settings in [5],
[13] related to the cache sizes, we set the default size to 96
for P3, 2048 for P4, and 256 for P5. For simplicity, we set
11 tile sizes for these parameters. The parameter space con-
sists of 2x2x2x11x11x11= 10,648 different configurations.
Then we use our autotuning framework to find out which
configuration results in the smallest execution time.

We use four ML methods—RF, ET, GBRT, and GP—
to investigate which one generates the smallest runtime for
which configuration in 200 evaluations for syr2k with the
large dataset. We then use the best method to autotune the
benchmark with the extra large dataset.

In Figure 3, RF results in the smallest runtime of 0.239s
for the configuration (’#pragma clang loop(j2) pack array(A)
allocate(malloc)’,’#pragma clang loop(i1) pack array(B)
allocate(malloc)’,’#pragma clang loop(i1,j1,k1,i2,j2) inter-
change permutation(j1,k1,i1,j2,i2)’,128,128,100 ) at Evalu-
ation 30 of 200 evaluations. The blue line is for all evalua-
tions; the red line is the best execution time. RF results in
the execution time close to the smallest one with increasing
the number of evaluations.

In Figure 4, GBRT results in the smallest runtime of
0.229s for the configuration (’#pragma clang loop(j2) pack
array(A) allocate(malloc)’,’#pragma clang loop(i1) pack ar-
ray(B) allocate(malloc)’,’#pragma clang loop(i1,j1,k1,i2,j2)
interchange permutation(j1,k1,i1,j2,i2)’,50,128,256) at Eval-
uation 137 of 200 evaluations.

In Figure 5, ET results in the smallest runtime of 0.613s
for the configuration (’ ’, ’ ’, ’ ’ ,100,8,8 ) at Evaluation
109 of 200 evaluations. ET does not show any pragmas in
the best configuration with the only tile size (100, 8, 8).

In Figure 6, GP results in the smallest runtime of 0.236s
for the configuration (’#pragma clang loop(j2) pack array(A)
allocate(malloc)’,’#pragma clang loop(i1) pack array(B)
allocate(malloc)’,’#pragma clang loop(i1,j1,k1,i2,j2) inter-
change permutation(j1,k1,i1,j2,i2)’,80,100,256 ) at Evalua-
tion 44 and finishes only 66 evaluations. As discussed in
Section 2.2, GP does not use the performance database to
assist the parameter space search as designed, and thus it
uses only 66 of the 200 evaluations. The other 134 eval-
uations are skipped because of the replicated evaluations.
The other methods RF, GBRT, and ET use the performance
database to assist the parameter space search, and they finish
all 200 evaluations with different configurations.

Figure 3. Autotuning syr2k using RF in 200 evaluations

Figure 4. Autotuning syr2k using GBRT in 200 evaluations

TABLE 1. PERFORMANCE (IN SECONDS) COMPARISON OF SYR2K
USING DIFFERENT COMPILERS AND AUTOTUNING



Figure 5. Autotuning syr2k using ET in 200 evaluations

Figure 6. Autotuning syr2k using GP in 200 evaluations

Table 1 shows the performance comparison of syr2k
using different compilers and autotuning. For the first three
rows, these compilers and options are applied to the orig-
inal code syr2k (without any loop pragma) to measure the
smallest execution time in 10 runs. The fourth rows are
for the syr2k with the loop tiling and default tile size (96,
2048, 256), interchange, and array packing. The last row is
the results using autotuning. The best configuration in 200
evaluations has the tile size (50 128 256) for the large dataset
and the tile size (64 50 256) for the extra large dataset using
GBRT. We observe that autotuning outperforms the other

Figure 7. Autotuning 3mm using GP in 200 evaluations

TABLE 2. PERFORMANCE (IN SECONDS) COMPARISON OF 3MM USING
DIFFERENT COMPILERS AND AUTOTUNING

compiling methods to provide the smallest execution time
for both datasets.

4.2. Case Study: 3mm with multiple loop transfor-
mations

We apply multiple loop transformations such as tiling,
interchange, and array packing pragmas to the bench-
mark 3mm for this case study. We define 10 pragmas
parameters to autotune the benchmark with the parameter
space of 170,368 different configurations and use four ML
methods—RF, ET, GBRT, and GP—to investigate which one
generates the smallest runtime for which configuration in
200 evaluations for 3mm with the large dataset. We find
that GP results in the smallest runtime of 0.345 s for the
configuration (’ ’, ’ ’, ’ ’, 80, 100, 4, ’ ’, ’ ’, ’ ’ ,’ ’)
at Evaluation 80 and finishes 129 evaluations as shown in
Figure 7. Then we use GP to autotune the benchmark for
the extra large dataset.

Table 2 shows the performance comparison of 3mm
using different compilers and autotuning. For the first three
rows, these compilers and options are applied to the orig-
inal code 3mm (without any loop pragma) to measure the



Figure 8. Autotuning lu using GBRT in 200 evaluations

smallest execution time in 10 same runs. The fourth rows
are for the 3mm with the loop tiling with default tile size
(96, 2048, 256), interchange, and array packing. The last
row is the results using autotuning. The best configuration
in 200 evaluations has the tile size (80 100 4) for the large
dataset and the tile size (80 128 8) for the extra large dataset
using GP. We observe that autotuning outperforms the other
methods to provide the smallest execution time for both
datasets.

4.3. Case Study: lu with multiple loop transforma-
tions

We apply multiple loop transformations such as tiling,
interchange, and array packing pragmas to the benchmark lu
for this case study. We define the five pragma parameters to
autotune the benchmark. We use four ML methods—RF, ET,
GBRT, and GP—to check which one generates the smallest
runtime for which configuration in 200 evaluations for lu
with the large dataset. We find that GBRT has the smallest
runtime of 9.867 s for the configuration (’#pragma clang
loop(i1) pack array(A) allocate(malloc)’, ’ ’, 50, 2048, 8)
at Evaluation 101 of 200 evaluations, as shown in Figure
8. Then we use GBRT to autotune the benchmark with the
extra large dataset.

Table 3 shows the performance comparison of lu using
different compilers and autotuning. We find that the best
configuration in 200 evaluations has the tile size (50 2048
8) for the large dataset and the tile size (50 100 4) for the
extra large dataset using GBRT. We observe that autotun-
ing outperforms the other methods to provide the smallest
execution time for both datasets.

TABLE 3. PERFORMANCE (IN SECONDS) COMPARISON OF LU USING
DIFFERENT COMPILERS AND AUTOTUNING

Figure 9. Autotuning heat-3d using ET in 200 evaluations

4.4. Case Study: heat-3d with multiple loop trans-
formations

We apply multiple loop transformations such as tiling,
interchange, and array packing pragmas to the benchmark
heat-3d for this case study. We define the six pragma param-
eters to autotune the benchmark. We use four ML methods—
RF, ET, GBRT, and GP—to check which one generates the
smallest runtime for which configuration in 200 evaluations
for heat-3d with large dataset. We find that ET has the
smallest runtime of 1.942 s for the configuration (’ ’, ’ ’ ,’ ’,
100, 64, 128) at Evaluation 83 of 200 evaluations, as shown
in Figure 9. We then use ET to autotune the benchmark with
the extra large dataset.

Table 4 shows the performance comparison of heat-3d
using different compilers and autotuning. We find that the
best configuration in 200 evaluations has the tile size (100
64 128) for the large dataset and the tile size (100 100
256) for the extra large dataset using ET. We observe that
autotuning outperforms the other methods to provide the
smallest execution time for both datasets.



TABLE 4. PERFORMANCE (IN SECONDS) COMPARISON OF HEAT-3D
USING DIFFERENT COMPILERS AND AUTOTUNING

Figure 10. Autotuning covariance using RF in 200 evaluations

4.5. Case Study: covariance with multiple loop
transformations

We apply multiple loop transformations such as tiling,
interchange, and array packing pragmas to the benchmark
covariance for this case study. We define the five pragma
parameters to autotune the benchmark. We use four ML
methods—RF, ET, GBRT, and GP—to check which one gen-
erates the smallest runtime for which configuration in 200
evaluations for covariance with large dataset. We find that
RF has the smallest runtime of 0.188s for the configuration
(’ ’ ,’ ’, 96, 100, 8 ) at Evaluation 56 of 200 evaluations,
as shown in Figure 10. We then use RF to autotune the
benchmark with the extra large dataset.

Table 5 shows the performance comparison of covari-
ance using different compilers and autotuning. We find that
the best configuration in 200 evaluations has the tile size
(96 100 8) for the large dataset and the tile size (80 100
8) for the extra large dataset using RF. We observe that
autotuning outperforms the other methods to provide the
smallest execution time for both datasets.

TABLE 5. PERFORMANCE (SECONDS) COMPARISON OF COVARIANCE
USING DIFFERENT COMPILERS AND AUTOTUNING

TABLE 6. PERFORMANCE COMPARISON OF FLOYD-WARSHALL USING
DIFFERENT COMPILERS AND OPTIONS

4.6. Case Study: Floyd-Warshall with multiple loop
transformations

We apply multiple loop transformations such as tiling,
interchange, and array packing pragmas to the benchmark
Floyd-Warshall for this case study. We find that when we
compiled the code, the following warning occurred: ”floyd-
warshall.c:89:5: warning: loop(s) not tiled: transformation
would violate dependencies [-Wpass-failed=polly-opt-isl].”
That is, the pragmas were ineffective, and Polly applied its
default transformation. When we ran the benchmark with
the large dataset, it takes more than 135 s shown in Table 6.
We note that Clang with Polly causes the benchmark to run
very slowly (almost 9 times slower). We investigate what
happened as follows.

In the PolyBench Floyd-Warshall code, the main kernel
looks like the following.
for (k = 0; k < _PB_N; k++)
for(i = 0; i < _PB_N; i++)
for (j = 0; j < _PB_N; j++)
path[i][j] = (path[i][j] < path[i][k] + path[k][j])

? path[i][j]
: (path[i][k] + path[k][j]);

Most accesses need to have the innermost subscript de-
pendent on the fastest iterating induction variable j, meaning
consecutive memory accesses in the innermost loop (i.e.,
spatial locality) enable effective use of cache lines and
prefetching by the CPU.

Using Polly’s default loop optimization heuristic imple-
mented by ISL (Integer Set Library), the following schedule
is applied.
for (c0 = 0; c0 <= 2799; ++c0)
for (c1 = 0; c1 <= 5598; ++c1)
for (c2 = max(0, c1 - 2799); c2 <= min(2799, c1); ++c2)
Stmt_for_body6_i(c0, c2, c1 - c2);

This corresponds to something like the following loop.
for (j = 0; j < _PB_N; j++)
for (k = 0; k < _PB_N; k++)



TABLE 7. PERFORMANCE IMPROVEMENT OF FLOYD-WARSHALL
USING CLANG/POLLY WITH ADDITIONAL OPTIONS AND AUTOTUNING

for(i = _PB_N-1; i >= 0; i--)
path[i][j] = (path[i][j] < path[i][k] + path[k][j])

? path[i][j]
: (path[i][k] + path[k][j]);

In this variant, the fastest-running index i is not the
innermost subscript of any of the array accesses. In other
words, all the accesses are strided in memory and will
access different cache lines from those of the previous
iterations. This is bad for performance. The default loop nest
optimization strategy only considers temporal reuse, but not
spatial reuse. Therefore, it does not prioritize keeping the
j-loop as the innermost loop with the fastest-running index,
making the execution slower than the original loop nest.

To cope with this situation, we updated https://github.
com/SOLLVE/llvm-project/tree/pragma-clang-loop to in-
clude new flags: the flags -mllvm -polly-reschedule=0 -
mllvm -polly-postopts=0. These flags make Polly do noth-
ing if no pragma is applied, instead of using the default
optimizer. Additionally, and the flag -mllvm -polly-pragma-
ignore-depcheck makes Polly apply a transformation even if
it cannot confirm that it is semantically correct. In this case
it is necessary because the ternary operation applies a max-
reduction, which is commutative but the computer cannot
detect. Hence, adding the flag forces Polly to apply tiling
even though the compiler cannot ensure its semantic legality.
We find that RF has the smallest runtime of 15.059 s for
the configuration (’ ’ ,’ ’, 100, 16, 8 ) at Evaluation 68 of
200 evaluations for the large dataset in Figure 11. We then
use RF to autotune the benchmark with the medium dataset.
Compared to Table 6, we observe that the significant per-
formance improvement occurs from around 135s to around
15s in Table 7 with Polly by adding these flags -mllvm -
polly-reschedule=0 -mllvm -polly-postopts=0. Overall, this
benchmark illustrates that a heuristic-based optimization can
also regress a program’s performance due to being unable to
model the entire architecture complexity and unavailability
of dynamic information such as the actual execution time
used by the autotuning approach.

5. Summary and Future Work

We developed a ML-based autotuning framework, and
applied the newly developed Clang loop optimization prag-
mas to six complex PolyBench benchmarks (syr2k, 3mm,
heat-3d, lu, covariance, and floyd-warshall) to optimize
them. We defined the parameters for these pragmas and
then used the autotuning framework to optimize the pragma
parameters to improve their performance. We evaluated the

Figure 11. Autotuning Floyd-Warshall using RF in 200 evaluations

effectiveness of four different supervised ML methods used
as the surrogate model within Bayesian optimization for
each benchmark. The autotuning outperformed the other
compiling methods to provide the smallest execution time
for the benchmarks syr2k, 3mm, heat-3d, lu, and covariance
with both large datasets. An exception is the Floyd-Warshall
benchmark because Polly uses heuristics to optimize the
benchmark to make it run much slower. To cope with
this situation, we provide three compiler option solutions
to improve the performance. This autotuning framework is
open source and is available from the link in [30].

For future work, based on the performance database,
we plan to identify which feature impacts the performance
most to aid in the parameter space search. We will easily
extend the current autotuning framework to support various
HPC applications because of our symbol representations
for the pragmas and related parameters. The current au-
totuning framework focuses on the application execution
time. In [21], autotuning OpenMP codes was investigated
for energy efficient HPC systems. In [29], an end-to-end
autotuning framework in HPC PowerStack was proposed to
tune the power and energy ecosystem. We will extend this
autotuning framework to consider power consumption and
energy consumption shown in Figure 12. For the scripting
language applications such as Python, the framework is
easily extended to support their direct executions. For the
compiler-supported applications such as C, C++, and Fortran
with OpenMP and MPI, the framework is able to compile
and execute them. When we consider power or energy
as the optimal solution, this may change how to do the
parameter space search based on the new metric. These
parameters can be extended to include application param-
eters, system environment parameters such as setting num-
ber of threads, thread scheduling and affinity, JIT-enabled
parameters, power-capping size, and loop transformation

https://github.com/SOLLVE/llvm-project/tree/pragma-clang-loop
https://github.com/SOLLVE/llvm-project/tree/pragma-clang-loop


Figure 12. A general autotuning framework

parameters, and so on. Future work will also focus on loop
autotuning without any human knowledge about the loop
pragmas and related parameters.
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