
8-th Int. Workshop on Petri Nets and Performance Models, Zaragoza, Spain, September 8-10, 1999, pp.92-101.

Copyright c©1999 IEEE (DOI 10.1109/PNPM.1999.796556).

Stepwise Refinements of Net Models

and Their Place Invariants

W.M. Zuberek

Department of Computer Science

Memorial University of Newfoundland

St.John’s, Canada A1B 3X5

Abstract
Schedules for manufacturing cells can be systemati-
cally derived by simple stepwise refinements which, in
consecutive steps, increase the complexity of the cell by
introducing its components one after another. Timed
Petri net models of schedules derived in this way have
some convenient structural properties – net models are
covered by conflict–free subnets, determined by place
invariants of the model. These place invariant im-
plied subnets can be used for evaluation of the basic
performance characteristics of the model. The paper
shows that place invariants of net models of schedules
can be obtained by the same stepwise refinements that
are used for model derivation. Simple examples of per-
formance evaluation are included as an illustration of
the use of place invariants in the analysis of schedules.

1. Introduction

Petri nets [13, 11] have been proposed as a for-
malism for modeling and analysis of discrete–event
systems with asynchronous, interacting components.
This includes modeling, control and analysis of au-
tomated manufacturing systems [1, 4, 5, 6, 15, 16].
Popularity of net models is due to a simple and ‘nat-
ural’ representation of those aspects of systems that
cannot easily be modeled using queueing theory or
other traditional modeling and evaluation techniques;
concurrent and asynchronous events, typical for many
discrete–event dynamical systems, are easily captured
by Petri nets. In addition, a well–developed mathe-
matical foundation exists for describing and analyzing
net models.

In order to study the performance aspects of Petri
net models, the duration of activities must also be
taken into account. Several types of Petri nets ‘with
time’ have been proposed by assigning ‘firing times’
to transitions or ‘enabling times’ to places. In timed
Petri nets [12, 2, 8, 17], the events occur in ‘real time’,
i.e., there is a (deterministic or stochastic) duration
associated with each transition’s firing, and different
(concurrent) firings of transitions correspond to (con-
current) activities in the modeled systems. For timed
Petri nets, the concept of ‘state’ and state transitions

can be formally defined, and used to derive different
performance characteristics of the model [17].

Petri net models have been used for modeling
manufacturing systems and studying their scheduling
problems [3, 7]. Scheduling can be dynamic, in which
case the decisions about the ordering of operations
(which may be in conflict, for example, because of
shared resources) are performed ‘on line’, just before
the execution of the operations, or static, in which
case the decisions are made during a pre–execution
stage, and are represented by a (usually cyclic) fixed
sequence of operations that attempts to optimize the
performance of the system. Only static scheduling is
considered in this paper.

Manufacturing systems are often composed of clus-
ters of machines connected by a transportation system
that moves the parts between the clusters of machines
and between the machines and storage facilities. Each
cluster of machines can be organized in a manufac-
turing cell (or a robotic cell) [14] in which a robot
transports the parts from one machine to another and
also from the input conveyor to the first machine, and
from the last machine to the output conveyor. The
sequence of operations performed (cyclically) by the
robot is called the schedule for a cell. The performance
of the cell is determined by the ordering of robot’s op-
erations, i.e., by the schedule.

It can be shown [19] that schedules for manufac-
turing cells can be systematically derived by stepwise
refinements applied to single elements of net models
(transition refinements). It is also known that, for
some classes of nets, basic performance characteristics
(such as throughput or cycle time) can be determined
from structural properties of nets. More specifically,
if a net is covered by a family of conflict–free cyclic
subnets, determined by basic place invariants of the
net, the cycle time of the net is equal to the maxi-
mum cycle time of the invariant–implied subnet. The
evaluation of performance can thus be based on the
set of basic place invariants of the net model.

This paper describes an approach to deriving place
invariants of net models by stepwise refinements. The
approach is used for performance analysis of schedules
for manufacturing cells. Since the analyzed schedules
are also derived by stepwise refinements, a combined



Stepwise Refinements of Net Models and Their Place Invariants 93

approach is proposed in which both the model and
its performance are derived by a sequence of transi-
tion refinements, starting from a trivial initial model.
The refinements preserve the boundedness, liveness,
absence of deadlocks, and many other structural prop-
erties of the model.

Section 2 recalls some basic concepts related to
manufacturing cells and their schedules. Fundamen-
tal elements of Petri nets and timed nets, their place
invariants, transition refinements and (structural) per-
formance analysis are overviewed in Section 3. Section
4 describes the systematic derivation of place invari-
ants by net refinements. Application of the proposed
approach to analysis of manufacturing cell schedules
is presented in Section 5. Section 6 contains some
concluding remarks.

2. Schedules for manufacturing cells

A simple manufacturing cell with three machines,
M1, M2 and M3, an input conveyor In, an output
conveyor Out, and a robot, is outlined in Fig.2.1.

M1

M2

In Out

Robot

M3

Fig.2.1. Layout of a 3–machine cell.

Sequences of operations executed for consecutive
parts (transported to the cell by the input conveyor)
are called schedules. These schedules can be described
by sequences of ‘move’ operations (performed by the
robot) such as picking a part from the input con-
veyor, transporting it to a machine and loading it,
then (when the machine’s operation is finished) un-
loading, transporting to another machine, and so on.
It is known [14] that for a cell with m machines, there
are m! different schedules. The optimal schedule is
usually the one which maximizes the throughput of
the cell (or minimizes its cycle time).

Assuming (for simplicity) that all parts follow the
same path through the cell, and that this path is from
the input conveyor to the first machine, then from
the first machine to the second, and so on, the six 3–
machine schedules, denoted here A, B, ..., F, are as
follows (in the schedules, element ‘01’ denotes the op-
eration of picking a new part from the input conveyor
(‘0’), moving it to the first machine (‘1’) and loading
the part; similarly, element ‘12’ denotes unloading the
first machine, transporting the unloaded part to the

second machine and loading the part, and element ‘30’
– unloading the third machine, moving to the output
conveyor and depositing the part there):

A: 01 – 12 – 23 – 30
B: 01 – 12 – 30 – 23
C: 01 – 23 – 12 – 30
D: 01 – 23 – 30 – 12
E: 01 – 30 – 12 – 23
F: 01 – 30 – 23 – 12

Since all schedules are cyclic, it is (arbitrarily) as-
sumed that a uniform ‘beginning’ of all schedules is
the operation of picking a new part from the input,
transporting it and loading on the first machine of the
cell (step ‘01’).

It has been shown [19] that the schedules for a 3–
machine cell can conveniently be derived from the two
schedules for a 2–machine cell:

01 – 12 – 20
01 – 20 – 12

by first replacing steps ‘20’ by ‘23’ (which is due to the
additional machine in the cell), and then inserting the
new step ‘30’ in all three possible positions of each 2–
machine schedule, i.e., after the third entry, between
the second and the third entries, and between the first
and the second entries (the first step remains ‘01’ as
the ‘standard beginning’).

In the same way, the 3–machine schedules can be
expanded into 4–machine ones (there are 24 such
schedules), and the 2–machine schedules can be de-
rived from the single 1–machine schedule:

01 – 10 .

This single schedule can be used as the ‘standard’
initial schedule for a hierarchical derivation of sched-
ules for any other cell [19].

Each of these schedules can easily be transformed
into a complete sequence of robot’s operations [18] by
adding all those robot’s moves which are necessary to
perform the required transport functions. For exam-
ple, the 3–machine schedule D, ‘01 – 23 – 30 – 12’,
requires that the robot, after loading the new part on
machine M1 (element ‘01’), moves to machine M2 to
unload it, transport the unloaded part to machineM3
and load the part (step ‘23’); then the robot waits until
theM3’s operation is finished, unloads the part, trans-
ports is to the output conveyor and drops it there (step
‘30’), after which it moves to machineM1 to unload it
and transport the unloaded part to machineM2 (step
‘12’), and finally moves to the input conveyor to start
another cycle. Such a detailed schedule of the robot is
a sequence of steps in which the robot carries a part
from one component of the cell to another (such steps
are denoted by ⇒), or performs ‘empty’ moves, with-
out carrying a part (such steps are denoted by →).



Stepwise Refinements of Net Models and Their Place Invariants 94

The discussed schedule D is a (cyclic) sequence of the
following steps:

In⇒M1 →M2 ⇒M3 ⇒ Out→M1 ⇒M2 → In.

3. Nets, invariants and refinements

This section recalls basic concepts of timed Petri
nets, net invariants and net refinements. A more de-
tailed discussion can be found in [11, 13, 17, 18].

A place/transition (ordinary, i.e., with no arc
weights) net N is a triple N = (P, T,A) where P is a
finite, nonempty set of places, T is a finite, nonempty
set of transitions, A is a set of directed arcs, and
A ⊆ P ×T ∪T ×P , such that for each transition there
exists at least one place connected with it. For each
place p (and each transition t) the input set, Inp(p)
(or Inp(t)), is the set of transitions (or places) con-
nected by directed arcs to p (or t). The output sets,
Out(p) and Out(t), are defined similarly.

A marked Petri netM is a pairM = (N,m0) where
N is a Petri net, N = (P, T,A), and m0 is an initial
marking function, m0 : P → {0, 1, ...} which assigns a
(nonnegative) integer number of tokens to each place
of the net.

Let any function m : P → {0, 1, ...} be called a
marking in a net N = (P, T,A).

A transition t is enabled by a marking m iff every
input place of this transition contains at least one to-
ken. Every transition enabled by a marking m can
fire. When a transition fires, a token is removed from
each of its input places and a token is added to each
of its output places. This determines a new marking
in a net, a new set of enabled transitions, and so on.
The set of all markings that can be derived from the
initial marking is called the set of reachable markings.
If this set if finite, the net is bounded.

A place p is shared iff it is an input place for more
than one transition. A net is (structurally or stati-
cally) conflict–free if it does not contain shared places.
A marked net is (dynamically) conflict–free if for any
marking in the set of reachable markings, and for any
shared place, at most one of transitions sharing the
place is enabled. Only bounded conflict–free nets are
considered in this paper.

Each place/transition net N = (P, T,A) can conve-
niently be represented by a connectivity (or incidence)
matrix C : P×T → {−1, 0,+1} in which places corre-
spond to rows, transitions to columns, and the entries
are defined as:

∀ p ∈ P ∀ t ∈ T : C[p, t] =

{

−1, if t ∈ Out(p)− Inp(t),
+1, if t ∈ Inp(p)−Out(p),
0, otherwise.

If a marking mj is obtained from another marking
mi by firing a transition tk then (in vector notation)
mj = mi +C[k], where C[k] denotes the k-th column
of C, i.e., the column representing tk.

Connectivity matrices disregard ‘selfloops’, that is,
pairs of arcs (p, t) and (t, p); any firing of a transition
t cannot change the marking of p in such a selfloop,
so selfloops are neutral with respect to token count of
a net. A pure net is defined as a net without selfloops
[13].

A P–invariant (place invariant) of a net N is any
nonnegative, nonzero integer (column) vector I which
is a solution of the matrix equation

C
T × I = 0,

where C
T denotes the transpose of matrix C. It fol-

lows immediately from this definition that if I1 and I2
are P–invariants of N, then also any linear (positive)
combination of I1 and I2 is a P–invariant of N.

A basic P–invariant of a net is defined as a P–
invariant which does not contain simpler invariants.
All basic P–invariants I of ordinary nets are binary
vectors [13], I : P → {0, 1}.

A net Ni = (Pi, Ti, Ai) is a Pi-implied subnet of a
net N = (P, T,A), Pi ⊂ P , iff:

(1) Ti = {t ∈ T | ∃ p ∈ Pi : (p, t) ∈ A∨ (t, p) ∈ A},

(2) Ai = A ∩ (Pi × T ∪ T × Pi).

It should be observed that in a (pure) net N, each
P–invariant I of N determines a PI -implied (invari-
ant) subnet of N, where PI = {p ∈ P | I(p) > 0};
PI is sometimes called the support of the invariant I;
all nonzero elements of I select rows of C, and each
selected row i corresponds to a place pi with all its
input (+1) and all output (–1) arcs associated with it.

For the Petri net shown in Fig.3.1.a, the connectiv-
ity matrix is:

C t1 t2 t3 t4
p1 −1 +1 0 0
p2 +1 0 −1 0
p3 0 +1 −1 0
p4 0 −1 0 +1
p5 0 0 +1 −1

and there are two basic invariants, I1 = [1, 1, 0, 1, 1],
i.e., {p1, p2, p4, p5}, and I2 = [0, 0, 1, 1, 1], i.e.,
{p3, p4, p5}. It can be observed that the basic invari-
ants correspond to the smallest subsets of rows of the
connectivity matrix for which the (component–wise)
sums are equal to (vector) zero.

The PI–implied subnets are simple cycles, (p1, t1,
p2, t3, p5, t4, p4, t2) and (p3, t3, p5, t4, p4, t2).

Finding basic invariants is a ‘classical’ problem of
linear algebra, and there are known algorithms to solve
this problem efficiently [9, 10].



Stepwise Refinements of Net Models and Their Place Invariants 95

(a)

t1

t2 t3

t4

p1 p2

p3

p4 p5

t1’

(b)

p1’ p2’

t2’ t3’p3’

Fig.3.1. Petri net M0 (a) and its refinement M1 (b).

Refinements in Petri nets can be defined in several
ways; a convenient approach, proposed in [19], refines
a net by replacing a single element (a transition or a
place) by a subnet connected to the input and output
sets of the replaced element.

More formally, a refinement system R is defined as
a 5–tuple, R = (M0,M, ρ, φ, ψ), where:

M0 is a marked (initial) place/transition net, M0 =
(P0, T0, A0,m0);

M is a family of (marked) place/transition refine-
ment nets, M = {M1, ...,Mk};

ρ is a (partial) refinement function which associates
elements of P0 (place refinements) and T0 (tran-
sition refinements) with nets from M, ρ : P0 ∪
T0 → {1, ..., k} such that if p ∈ Dom(ρ) and
t ∈ Dom(ρ), then (p, t) /∈ A0 and (t, p) /∈ A0;
each place p ∈ P0 is refined by the net Mρ(p) if
p ∈ Dom(ρ), otherwise p remains a simple place,
and each transition t ∈ T0 is refined by Mρ(t) if
t ∈ Dom(ρ);

φ and ψ are (input and output) interface functions
which define the interconnections between the in-
put and output sets of a place (or transition) and
its refinement determined by ρ; for each p ∈ P0,
if p ∈ Dom(ρ), then φ(p) : T0 → 2Pρ(p) and
ψ(p) : T0 → 2Pρ(p) such that φ(p)(t) is undefined if
(t, p) /∈ A0 and ψ(p)(t) is undefined if (p, t) /∈ A0;
similarly, for each t ∈ T0, if t ∈ Dom(ρ), then
φ(t) : P0 → 2Tρ(t) and ψ(t) : P0 → 2Tρ(t) such
that φ(t)(p) is undefined if (p, t) /∈ A0 and ψ(t)(p)
is undefined if (t, p) /∈ A0.

It should be noted that a single refinement can re-
place several (nonadjacent) elements of a net M0, but
only refinements of single elements are used in this
paper.

For example, Fig.3.1.a shows a net that can be re-
fined by using the net shown in Fig.3.1.b as a replace-
ment of transition t3; i.e., first t3 and all arcs incident

with it are removed from the net in Fig.3.1.a, and then
the remaining net is connected to the net in Fig.3.1.b
by new arcs: from p2 to t′2, from p3 to t′2, and from t′3
to p5. The resulting net is shown in Fig.3.2.

t1 t1’p1’ p2’

p3’t2’ t3’

p1 p2

p3t2

p4 t4 p5

Fig.3.2. Refined net.

For this example, M0 is the net from Fig.3.1.a,
M = {M1}, where M1 is the net shown in Fig.3.1.b,
and the partial functions ρ, φ and ψ are as follows:

∀ x ∈ P0 ∪ T0 : ρ(x) =

{

1, if x = t3;
undefined otherwise;

∀ p ∈ P0 : φ(t3)(p) =

{

{t′2}, if p ∈ {p2, p3};
undefined otherwise;

∀ p ∈ P0 : ψ(t3)(p) =

{

{t′3}, if p = p5;
undefined otherwise.

It should be observed that a net isomorphic to the
one shown in Fig.3.2 can be obtained by refining t2 in
Fig.3.1.a with the same net M1 shown in Fig.3.1.b. In
this case, the partial functions ρ, φ and ψ are:

∀ x ∈ P0 ∪ T0 : ρ(x) =

{

1, if x = t2;
undefined otherwise;

∀ p ∈ P0 : φ(t2)(p) =

{

{t′2}, if p = p4;
undefined otherwise;

∀ p ∈ P0 : ψ(t2)(p) =

{

{t′3}, if p ∈ {p1, p3};
undefined otherwise.

In timed Petri nets each transition takes a ‘real
time’ to fire, i.e., there is a ‘firing time’ associated with
each transition of a net which determines the duration
of transition’s firings.

A conflict–free timed Petri net T is a pair T =
(M, f) where:

M is a conflict–free marked Petri net, M = (N,m0),
N = (P, T,A),

f is a firing time function which assigns the nonneg-
ative (average) firing time f(t) to each transition
t of the net, f : T → R

⊕, and R
⊕ denotes the set

of nonnegative real numbers.

The behavior of a timed Petri net can be repre-
sented by a sequence of ‘states’ and state transitions
where each ‘state’ describes the distribution of tokens
in places as well as firing transitions of the net; de-
tailed definitions of states and state transitions are



Stepwise Refinements of Net Models and Their Place Invariants 96

given in [17]. The states and state transitions can be
combined into a graph of reachable states; this graph
is a semi–Markov process defined by the timed net T.
For cyclic conflict–free timed nets, such state graphs
are simple cycles which represent the cyclic behavior
of such nets. Each such timed Petri net contains a ba-
sic invariant subnet with the cycle time equal to the
cycle time of the whole net. All other subnets, with
smaller cycle times, will be subjected to some synchro-
nization delays, imposed by the ‘slowest’ subnet that
determines the cycle time of the whole net. The cycle
time of the net is thus equal to the maximum cycle
time if its basic invariant subnets.

For example, the net shown in Fig.3.2 has four basic
P–invariants and four cyclic subnets implied by these
P–invariants; these subnets contain the following tran-
sitions:

subnet transitions

1 t2, t
′
2, t

′
3, t4

2 t2, t1, t
′
2, t

′
3, t4

3 t2, t
′
2, t

′
1, t

′
3, t4

4 t2, t1, t
′
2, t

′
1, t

′
3, t4

The cycle time τ0 of this net is determined by the
last subnet as the sets of transitions of all other sub-
nets are subsets of the last one’s (so the cycle times of
these other subnets are smaller than the last one’s):

τ0 = f(t1) + f(t′1) + f(t2) + f(t′2) + f(t′3) + f(t4).

4. Refinements of place invariants

It can be observed that a transition refinement is a
transformation of the connectivity matrix in which a
single column (the refined transition) is replaced by a
set of new columns (the transitions of the refining net)
and possibly a set of new rows (places of the refining
net). If the refined transition is represented by the
last colum of the connectivity matrix, the structure of
the connectivity matrix after refinement is

A’

B’ B”

A”

where A’ is the section of the original connectivity
matrix which is not related to the refined transition,
B’ and B” are the rows corresponding to places con-
necting the ‘old’ net with the ‘new’ one, and A” is
the part of the refining net that is not affected by the
refinement. The two ‘blank’ submatrices contain only
zeroes.

The basic P–invariants of the refined matrix can be
divided into three types:

• ‘old’ P–invariants which are entirely within the
original net and are not affected by the refine-
ment; they correspond to such subsets of rows
of the original connectivity matrix which, in the
column of the refined transition, have only zero
entries; all these invariants are invariants of the
submatrix A’;

• ‘new’ P–invariants which are entirely within the
refining net and are ‘brought into’ the refined net
by the refinement; they correspond to subsets of
rows of the new submatrix A” of the connectivity
matrix;

• ‘mixed’ P-invariants which, in the original net,
imply the refined transition, so, after the refine-
ment, they include ‘new’ and ‘old’ net elements;
all such invariants can be obtained by ‘combina-
tions’ of the original P–invariants with the invari-
ants of the refining net; submatrices B’ and B”

are involved in all ‘mixed’ invariants.

The total number of P–invariants of a refined net
is thus equal to the sum Nold +Nnew +Nmixed.

The P–invariants of the ‘mixed’ type can be ob-
tained by combining those P–invariants of the orig-
inal net that imply the refined transition, with P–
invariants of the augmented refining net; the aug-
mented net contains one or more additional places (for
transition refinements, or one or more additional tran-
sitions for place refinements) that represent the con-
nections indicated by the interface input and output
functions φ and ψ.

If the original net contains Nr P–invariants that
imply the refined transition t, and if the augmented
refining net contains Na P–invariants which include
the augmenting place(s), the number of the mixed in-
variants in the refined net is:

Nmixed = Nr ∗Na.

For the example discussed in the previous section
(for convenience, the columns corresponding to t3 and
t4 are swapped so the refined transition, t3, is the
rightmost column of the connectivity matrix), the con-
nectivity matrix for the refined net (Fig.3.2) is as fol-
lows:

t1 t2 t4 t′1 t′2 t′3
p1 −1 +1 0 0 0 0
p4 0 −1 +1 0 0 0
p2 +1 0 0 0 −1 0
p3 0 +1 0 0 −1 0
p5 0 0 −1 0 0 +1
p′1 0 0 0 −1 +1 0
p′2 0 0 0 +1 0 −1
p′3 0 0 0 0 +1 −1



Stepwise Refinements of Net Models and Their Place Invariants 97

with separation of the matrix into the six submatrices
discussed earlier.

All invariants of this connectivity matrix are of the
‘mixed’ type (i.e., Nold = Nnew = 0).

Fig.4.1 shows the augmented refining net M1

(Fig.3.1.b); the additional place p0 is an input place
for t′2 because the input interface function φ is defined
only for t′2, and it is an output place for t′3 because
the output interface function ψ is defined only for t′3,
and there is, in the original net M0, a directed path
from p5 (the connection created by ψ) to p2 as well as
to p3 (the connections created by φ).

This augmented net has two P–invariants, one with
the subset of places {p0, p

′
3}, and the other with

{p0, p
′
1, p

′
2}.

p1’
t1’

p2’

t2’ t3’p3’

p0

Fig.4.1. Augmented refining net M1.

Since the original net (Fig.3.1.a) has two P–
invariants which imply transition t3, there are four
P–invariants for the refined net, obtained by combin-
ing each of the two original P–invariants with each of
the two refining ones:

invariant places

1 p1, p2, p4, p5, p
′
3

2 p1, p2, p4, p5, p
′
1, p

′
2

3 p3, p4, p5, p
′
3

4 p3, p4, p5, p
′
1, p

′
2

It can be easily verified that the subnets implied by
these P–invariants contain the following sets of tran-
sitions:

subnet transitions

1 t2, t1, t
′
2, t

′
3, t4

2 t2, t1, t
′
2, t

′
1, t

′
3, t4

3 t2, t
′
2, t

′
3, t4

4 t2, t
′
2, t

′
1, t

′
3, t4

so the cycle time of this model is determined by the
subnet implied by P–invariant (2) (the sets of transi-
tions of all other implied subnets are subsets of (2)).

Fig.4.2 shows a Petri net model of schedule D for a
3–machine cell, as described in Section 2. The three
machines (or rather machine operations) are repre-
sented by transitions t1, t2 and t3, each with its input
place (to represent the condition ‘part is loaded’) and
an output place (to indicate that the ‘machine’s oper-
ation is finished’). The remaining part of the model is
a cyclic representation of the sequence of robot’s steps.

The initial marking function represents the configura-
tion when a ‘finished’ part has been dropped on the
output conveyor.

t1 t2 t3p12 p21 p23 p32 p34

t12 t23 t34t01

p10

p33

p20

t20

p14

p41t41p02 t21

p11 p22

Fig.4.2. Model of schedule D.

The interpretation of robot’s steps is as follows (the
names of transitions are consistent with [18]):

trans. robot operations

t01 pick a part from In, move to M1 and load
t12 unload M1, move to M2 and load
t20 move from M2 to In
t21 move from M1 to M2
t23 unload M2, move to M3 and load
t34 unload M3, move to Out and drop
t41 move from Out to M1

The net shown in Fig.4.2 can be obtained from that
in Fig.3.2 by a refinement of transition t2 using the re-
fining netM2 shown in Fig.4.3.a (it can also be derived
in a different way).

(a)

p1" p2"t1"

t3"

p3"p4" t4"

t5"p5"t2"

(b)

p0

p1" t1" p2"

t3"

p3"t4"

t5"p5"

p4"

t2"

p0’

Fig.4.3. Refining net M2 (a) and its augmented
version (b).

In this case, the (partial) refining functions ρ, φ and
ψ are (assuming that M = {M2}):

∀ x ∈ P0 ∪ T0 : ρ(x) =

{

2, if x = t2;
undefined otherwise;

∀ p ∈ P0 : φ(t2)(p) =

{

{t′′3}, if p = p4;
undefined otherwise;



Stepwise Refinements of Net Models and Their Place Invariants 98

∀ p ∈ P0 : ψ(t2)(p) =







{t′′3}, if p = p1;
{t′′5}, if p = p3;
undefined otherwise.

The augmented refining net contains one ‘mixed’
P–invariant with places p0, p

′′
3 , p

′′
4 and p′′5 , and one ‘lo-

cal’ P–invariant (with places p′′1 , p
′′
2 , p

′′
3 , p

′′
4). The net

from Fig.3.2 has four P–invariants, all of which imply
t2; the total number of P–invariants for the net shown
in Fig.4.2 is thus 5. The self–loop in the augmented
net (in Fig.4.3.b) indicates that, after the refinement,
some ‘mixed’ P–invariants will actually contain only
the elements of the ‘old’ net and interfacing arcs (cre-
ated by functions φ and ψ) but not any elements of
the refining net. The five P–invariants are:

invariant places

1 p′′1 , p
′′
2 , p

′′
3 , p

′′
4

2 p1, p2, p
′
3, p5, p4

3 p1, p2, p
′′
1 , p

′
2, p5, p4

4 p′′3 , p
′′
4 , p

′′
5 , p3, p

′
3, p5, p4

5 p′′3 , p
′′
4 , p

′′
5 , p1, p2, p

′
3, p5, p4

The same invariants are determined directly from
the net model in [18].

5. Evaluation of models

The determination of the cycle time τ0 of the model
(or the throughput of the cell) can be based on P–
invariant–implied subnets. More specifically, for a
timed net model T = (M, f) covered by a family I
of conflict–free P–invariant–implied subnets, the cycle
time is:

τ0 = max
PIi

∈I
(τi)

where the cycle time τi of the PIi–implied conflict–free
subnet Mi = (Ni,mi), Ni = (Pi, Ti, Ai), is [5]:

τi =

∑

t∈Ti
f(t)

∑

p∈Pi
mi(p)

.

For the model shown in Fig.4.2, the firing times
of transitions t1, t2 and t3 characterize the (average)
operation times of machinesM1,M2 andM3, respec-
tively; the firing times of all remaining transitions can
be determined on the basis of actions performed by
the robot:

transition execution time

t01 u+ w + y
t12 v + w + y
t20 2y
t21 y
t23 v + w + y
t34 v + x+ y
t41 2y

where the ‘execution times’ are expressed in terms of
more elementary operations:

u – the (average) pickup time,
v – the (average) unload time,
w – the (average) load time,
x – the (average) drop time and
y – the average ‘travel’ time between two adja-
cent machines (assuming, for simplicity, that
this time is the same for all adjacent machines,
and also the same for M3 to Out, Out to In
and In to M1 moves).

The P–invariant–implied subnets contain the fol-
lowing sets of transitions:

subnet transitions

1 t1, t12, t20, t01
2 t2, t23, t34, t41, t12
3 t2, t23, t3, t34, t41, t12
4 t01, t21, t23, t34, t41, t12, t20
5 t01, t21, t23, t3, t34, t41, t12, t20

Since the set of transitions of subnet (2) is a subset
of (3), and (4) is a subset of (5), the cycle time is:

τ0 = max(τ1, τ3, τ5)

where:

τ1 = o1 + u+ v + 2w + 4y,
τ3 = o2 + o3 + 3v + 2w + x+ 5y,
τ5 = o3 + u+ 3v + 3w + x+ 9y,

and o1 = f(t1), o2 = f(t2), o3 = f(t3).

The same approach can be used for deriving sched-
ules for 4–machine cells from schedules for 3–machine
cells. Fig.5.1 shows a model of one of 24 schedules for
a 4–machine cell:
In⇒M1 →M3 ⇒M4 ⇒ Out→M2 ⇒M3 →

M1 ⇒M2 → In.

and Tab.5.1 – the operations represented by transi-
tions and their execution times (using the same con-
vention as before).

This model can be obtained from the net shown in
Fig.4.2 by introducing a new, additional machine as a
refinement of transition t12; this new machine becomes
machine M2; the previous machine M2 is renamed as
the new M3, and the previous M3 becomes the new
M4.

The refining net M3 is shown in Fig.5.2.a, and the
refining functions are:

∀ x ∈ P0 ∪ T0 : ρ(x) =

{

3, if x = t12;
undefined otherwise;

∀ p ∈ P0 : φ(t12)(p) =







{t′2}, if p = p12;
{t′3}, if p = p14;
undefined otherwise;



Stepwise Refinements of Net Models and Their Place Invariants 99

t1 t2p12 p21 p23

t12 t23t01

p10 t3p32 p34

t34p20

t20p02

p11

p43 t4 p45

t45

p44

p52t52

p25

p31p13

t31

p33
t13

Fig.5.1. Net model of a 4–machine cell’s schedule.

transition robot operations execution times

t01 pick a part from In, move to M1 and load u+ w + y
t12 unload M1, move to M2 and load v + w + y
t13 move from M1 to M3 2y
t20 move from M2 to In 2y
t23 unload M2, move to M3 and load v + w + y
t31 move from M3 to M1 2y
t34 unload M3, move to M4 and load v + w + y
t45 unload M4, move to Out and drop v + x+ y
t52 move from Out to M2 3y

Tab.5.1. Transitions, robot operations and their execution times.

∀ p ∈ P0 : ψ(t12)(p) =







{t′2}, if p = p20;
{t′3}, if p = p32;
undefined otherwise.

(a)

p1’ t1’ p2’

t3’

p3’t4’p4’

t2’

(b)

p1’ t1’ p2’

t3’

p3’t4’p4’

t2’ p0

p0’ p0’’

Fig.5.2. Refining net M3 (a) and its augmented
version (b).

The augmented refining net (Fig.5.2.b) contains one
‘mixed’ P–invariant (with places p0, p

′
3, and p

′
4), and

one ‘local’ P–invariant (with places p′1, p
′
2, p

′
3, p

′
4).

Since all five P–invariants of the net in Fig.4.2 imply
t12, the total number of P–invariants for the refined
net is 6, and the implied subsets of transitions are:

subnet transitions

1 t2, t23, t31, t12
2 t1, t12, t20, t01
3 t3, t34, t45, t52, t23
4 t3, t34, t4, t45, t52, t23
5 t01, t13, t34, t45, t52, t23, t31, t12, t20
6 t01, t13, t34, t4, t45, t52, t23, t31, t12, t20

Since the set (3) is a subset of (4), and (5) is a
subset of (6), the cycle time, τ0, for this model is:

τ0 = max(τ1, τ2, τ4, τ6)

where:

τ1 = o2 + 2v + 2w + 4y,
τ2 = o1 + u+ v + 2w + 4y,
τ4 = o3 + o4 + 3v + 2w + x+ 6y,
τ6 = o4 + u+ 4v + 4w + x+ 14y.

Another schedule for a 4–machine cell:

In⇒M1 →M3 ⇒M4 ⇒ Out→M1 ⇒M2 ⇒
M3 → In

also derived from the model of a 3–machine schedule of
Fig.4.2, is shown in Fig.5.3. In this case the transition
t12 is refined by the net shown in Fig.3.1.b.

It is shown in [19] that, using transition refine-
ments, only a few refining nets are needed to derived
the complete set of schedules for manufacturing cells
with any numbers of machines.



Stepwise Refinements of Net Models and Their Place Invariants 100

t1 t2p12 p21 p23

t12 t23t01

p10 t3p32 p34

t34

t20

p11

p43 t4 p45

t45

p44

p52t52
p31

p33

t13

p22

p25
p03

Fig.5.3. Net model of another 4–machine cell’s schedule.

6. Concluding remarks

An approach to systematic derivation and evalua-
tion of schedules for manufacturing cells is presented in
this paper. The approach uses timed Petri net models
and is based on transition refinements which introduce
the components of the cell one after another, gradually
increasing the complexity of the schedules.

The approach is based on formally defined trans-
formations of net models, in which single transitions
are replaced by subnets that refine the model by pro-
viding more detailed representations of the modeled
activities. It appears that the same refinements which
are used for model development, can also be used for
systematic derivations of the sets of basic places in-
variants for the derived models. Since the models of
schedules for manufacturing cells are conflict–free nets
covered by their place invariant implied subnets, the
derived place invariants can be used very conveniently
for the performance characterization of the derived
models.

Stepwise refinements of transitions must be per-
formed in a ‘consistent’ way in order to preserve the
basic properties of models (such as liveness, bound-
edness, etc.); to be consistent, the refining nets must
satisfy certain conditions (these conditions and the se-
lection of refining nets are not discussed in this paper).
For example, all ‘mixed’ P–invariants must be marked,
as must be all ‘new’ P–invariants of the refining nets
(these requirements can easily be checked in the pre-
vious examples).

The results of stepwise refinements of transitions
can be organized in a hierarchical structure, in which
more complicated models (and their place invariants)
are systematically derived from simpler ones. Quite
often a more complicated model can be derived in
more than one way from simpler models. It should
be observed that some of the discussed refinements
can actually be simplified by using several refinement
steps instead of a single refinement; for example, the
refining net shown in Fig.4.3.a could be replaced by a
simpler net shown in Fig.5.2.a and an additional re-
finement of place p3 in Fig.3.2. All such equivalent
refinements can be captured by the hierarchical struc-
ture of model derivations.

The stepwise refinements of place invariants can be
used for reducing the number of cases that need to

be considered for finding the best schedule. Since the
cycle time of the net is determined by the maximum
cycle time of subnets implied by place invariants, in
the mixed invariants (Section 4) only the ‘maximum’
components (i.e., the components with the maximum
total firing times of transitions) need to be taken into
account. Consequently, instead of Nmixed = Nr ∗ Na

mixed P–invariants, only the maximum mixed P–
invariant is needed. Similarly, only one ‘old’ and one
‘new’ P–invariant needs to be taken into account in
each refinement.

The composition of place invariants can also be
used to reduce the number of schedules that need to
be considered in finding the optimal schedule; the op-
timal schedule in this case is the schedule with the
shortest cycle time. If it can be predicted that the
cycle time of a schedule obtained by transition refine-
ment cannot be shorter than the cycle time of some
other schedule, there is no need to analyze this refine-
ment any further. For example, quite often the same
net can be used as a refinement of several transitions,
generating models of several different more complex
schedules (the net shown in Fig.5.2.a can be used to
refine transition t12 in Fig.4.2, which results in the
model shown in Fig.5.3, but it can also be used to re-
fine transition t23 in Fig.4.2, or transition t34 there,
creating yet other schedules for a 4–machine cell). If
a schedule with the shortest cycle time is sought, only
one of these several possible refinements, the one with
the shortest cycle time, needs to be analyzed further.

Since the results of invariant analysis are obtained
in analytical form, the performance of specific mod-
els can easily be obtained by evaluating the derived
formulas for the sets of model–specific parameters.

Many simplifying assumptions were made in this
paper in order to make the presentation straightfor-
ward to follow. These simplifications can easily be
removed by appropriate generalizations of the model
and its interpretation. For example, more accurate
representations of temporal aspects of robot actions
may result in a more complicated description of the fir-
ing times of transitions (or a more complicated model),
but otherwise will have no significant effect on the pro-
posed approach.

Similarly, if a manufacturing cell uses several iden-
tical machines instead of just one machine, the model
needs only a minor modification to explicitly repre-



Stepwise Refinements of Net Models and Their Place Invariants 101

sent the number of available machines by an addi-
tional place with the corresponding initial marking. It
should be observed that this additional place will in-
crease the number of P–invariants (and their subnets),
but otherwise will not affect the presented approach.

Finally, it is expected that a very similar approach
can be used for derivation and analysis of compos-
ite schedules for manufacturing cells, i.e., schedules in
which more than one part enters the cell and more
than one part leaves the cell in each cycle (although
the parts that enter the cell may not be the same as
that that leave the cell). Composite schedules can
be used for manufacturing cells which process several
different parts ‘simultaneously’. It has been shown
[18] that composite schedules can be decomposed into
combinations of simple schedules, in which one sim-
ple schedule is embedded in another. Net models of
composite schedules are (statically) free-choice nets
but dynamically conflict–free; their analysis requires
an extension of the approach described in this paper.

Acknowledgements

Remarks of four anonymous referees were helpful in
revising and improving this paper.

The Natural Sciences and Engineering Research
Council of Canada partially supported this research
through Research Grant OGP-8222.

References

[1] Banaszak, Z., “Modeling of manufacturing sys-
tems”; in: Modern Manufacturing, pp.253–286,
Springer–Verlag 1994.

[2] Carlier, J., Chretienne, P., Girault, C., “Mod-
elling scheduling problems with timed Petri nets”;
in: Advances in Petri Nets 1984 (Lecture Notes
in Computer Science 188), pp.62-82, Springer–
Verlag 1985.

[3] Cavalieri, S., Mirabella, O., Zingarino, G., “A
Petri net based approach for FMS performance
evaluation”; Proc. 23-rd Int. Conf. on Indus-
trial Electronics, Control, and Instrumentation
(IECON’97), New Orleans, LA, vol.3, pp.1204–
1209, 1997.

[4] Desrochers, A.A., Al-Jaar, R.Y., Applications of
Petri nets in manufacturing systems; IEEE Press
1995.

[5] DiCesare, F., Harhalakis, G., Proth, J.M., Silva,
M., Vernadat, F.B., Practice of Petri nets in
manufacturing; Chapman & Hall 1993.

[6] Ezpeleta, J., Garcia-Valles, F., Colom, J.M., “A
class of well structured Petri nets for flexible man-
ufacturing systems”; in: Application and Theory
of Petri Nets 1998 (Lecture Notes in Computer
Science 1420), pp.64–83, 1998.

[7] Frey, G., Mossig, K., Schnabel, M., “Assembly
line sequencing based on Petri net T-invariants”;
Proc. 9-th IFAC Symp. on Information Con-
trol in Manufacturing (INCOM’98), Nancy-Metz,
France, vol.2, pp.33–38, 1998.

[8] Holliday, M.A., “Deterministic time and analyti-
cal models of parallel architectures”; Ph.D. The-
sis, Computer Science Department, University of
Wisconsin - Madison, Technical Report #652,
1986.

[9] Krueckeberg, F., Jaxy, M., “Mathematical meth-
ods for calculating invariants in Petri nets”; in:
Advances in Petri Nets 1987 (Lecture Notes
in Computer Science 266), G. Rozenberg (ed.),
pp.104-131, Springer–Verlag 1987.

[10] Martinez, J., Silva, M., “Simple and fast algo-
rithm to obtain all invariants of a generalized
Petri net”; in: Applications and Theory of Petri
Nets (Informatik Fachberichte 52); pp.301–310,
Springer–Verlag 1982.

[11] Murata, T., “Petri nets: properties, analysis and
applications”; Proceedings of IEEE, vol.77, no.4,
pp.541–580, 1989.

[12] Ramchandani, C., “Analysis of asynchronous
concurrent systems by timed Petri nets”; Project
MAC Technical Report MAC–TR–120, Mas-
sachusetts Institute of Technology, Cambridge
MA, 1974.

[13] Reisig, W., Petri nets - an introduction (EATCS
Monographs on Theoretical Computer Science 4);
Springer–Verlag 1985.

[14] Sethi, S.P., Sriskandarajah, C., Sorger, G.,
Blazewicz, J., Kubiak, W., “Sequencing of parts
and robot moves in a robotic cell”; Int. Journal
of Flexible Manufacturing Systems, vol.4, pp.331–
358, 1992.

[15] Silva, M., Valette, R., “Petri nets and flexi-
ble manufacturing”; in: Advances in Petri nets
1989 (Lecture Notes in Computer Science 424),
pp.374–417, Springer–Verlag 1989.

[16] Xue, Y., Kieckhafer, R.M., Choobineh, F.F.,
“Automated construction of GSPN models for
flexible manufacturing systems”, Computers in
Industry, vol.37, no.1, pp.17–25, 1998.

[17] Zuberek, W.M., “Timed Petri nets – defini-
tions, properties and applications”; Microelec-
tronics and Reliability (Special Issue on Petri
Nets and Related Graph Models), vol.31, no.4,
pp.627–644, 1991.

[18] Zuberek, W.M., “Application of timed Petri nets
to modeling and analysis of flexible manufac-
turing cells”; Technical Report #9503, Depart-
ment of Computer Science, Memorial University
of Newfoundland, St.John’s, NF, Canada A1B
3X5, 1995 (available through anonymous ftp at
ftp.cs.mun.ca/pub/techreports/tr-9503.ps.Z).

[19] Zuberek, W.M., “Hierarchical derivation of
schedules for manufacturing cells”; Proc. 9-th
Symp. on Information Control in Manufacturing
(INCOM’98), Nancy-Metz, France, pp.423-428,
1998.


