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Abstract

The class of discrete event dynamic systems involving
only synchronization phenomena can be seen as linear
time-invariant systems in a particular algebraic structure
called (min,+) algebra. In the same framework, this
paper deals with linear time-varying systems, that is,
systems whose parameters may change as functions of
time. For example, in a manufacturing system the number
of working machines, or the number of trains running
in a closed network of railway connections, can vary
as functions of time. For such systems, the output track-
ing problem is optimally solved under just-in-time criterion.

1. Introduction

A linear system theory analogous to the conventional theory
has been developed for a particular class of Discrete Event
Dynamic Systems (DEDS) subject to synchronization phe-
nomena. Such systems - usually represented with Timed
Event Graphs (TEG) - can be modeled by (min,+) linear
equations. General concepts such as state space, impulse re-
sponse and transfer function have been introduced [2], [10],
[4]. These systems are seen as linear time-invariant (or sta-
tionary) systems over the (min,+) algebraic structure. An
optimal solution to the output tracking problem under just
in time criterion has also been given [2,x5.6], [7].

In this paper, we generalize the synthesis of this optimal
control to (min,+) lineartime-varyingsystems. We propose
a basic example which aims at illustrating the class of sys-
tems as well as the ’optimal tracking problem’ considered.
We study here the simple manufacturing system of figure
1.a which operates as follows. Parts come into a workshop
and reach a FIFO storage after a travelling time
1 on a first
conveyor. This storage is located upstream a pool of ma-
chines working in parallel. Each part is handled as soon
as possible by some machine, and spendsd units of time
on a machine. The number of machines on running (idle
or busy) is a function of time, due for example to planned

maintenance or manufacturing resource scheduling. Once
processed, parts leave the workshop on a second conveyor
(travelling time
2).

Let us consider the following variables for this system:� u(t): cumulated number of raw parts released on the
first conveyor up to timet,� x1(t): cumulated number of parts having left the stor-
age up to timet,� x2(t): cumulated number of parts loaded on the second
conveyor up to timet,� y(t): cumulated number of finished parts up to timet,� a(t): number of working machine(s) at timet.

Notice thatu, x1, x2, y are non-decreasing functions, usu-
ally calledcounterfunctions [2,x5], whereasa may be not
monotonic.
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Figure 1: A manufacturing system (a), and its Petri net
model (b)

The travelling time
1 on the first conveyor implies that:8t; x1(t) � u(t� 
1) ,

on the other hand, since the processing time of a part is
equal tod units of time, and assuming that a machine can



be shutdown only when it is idle, we have:8t; x1(t) � a(t) + x1(t� d) ,

hence, considering that a part is handled as soon as possible,
we obtain:8t; x1(t) = min [a(t) + x1(t� d) ; u(t� 
1)℄ .

Further, we have that8t,x2(t) = x1(t� d), andy(t) = x2(t� 
2) .

Finally, the manufacturing system obeys the following re-
current equations wheremin and+ are replaced respec-
tively by� and
 (as in (min,+) algebra):8<: x1(t) = a(t)
 x1(t� d)� u(t� 
1)x2(t) = x1(t� d)y(t) = x2(t� 
2) .

The question we shall address in this paper can be formu-
lated as follows. Being given:� the dates of activation and shutdown of the machines

(i.e., a(t) is known8t),� an output trajectory to be tracked, denotedfz(t)gt2Z
(the customer demand),

what are thelatest datesof release of raw parts which al-
low meeting the customer demand? In other words, we will
compute theleast input trajectoryfu(t)gt2Z such that the
output responsefy(t)gt2Z is greaterthan thecustomer de-
mandfz(t)gt2Z.

In figure 1.b, the manufacturing system is modeled by
a Petri net (see among others [8] for an exhaustive presen-
tation of Petri net theory). The workshop, which involves
exclusively synchronization phenomena, is classically mod-
eled by a TEG model (black part of the graph). The varia-
tion of the number of working machines is enabled thanks
to the additional transitions labeledi ando (grey part of the
graph). In [6], we have shown using the general algebraic
model of Petri nets presented in [3] that a subclass of Free
Choice Petri Net, and in particular the graph of fig. 1, can be
modeled after various manipulations by the following stan-
dard linear equations in (min,+) algebra:� x(t) = A(t)
 x(t� 1)�B(t)
 u(t)y(t) = C(t) 
 x(t) : (1)

If d = 1, 
1 = 
2 = 0 unit of time, we have:x(t) = [x1(t) x2(t)℄T , u(t) = [u(t)℄, y(t) = [y(t)℄
and A(t) = � a(t) +10 +1 �

, B(t) = � 0+1 �
,

C(t) = � +1 0 � .

As an illustration, let us explain briefly how to obtain
these evolution equations (see [2],[3] for exhaustive presen-
tations of algebraic modelling of Petri nets). To describe the
behavior of the graph, firings of transitions are counted dur-
ing its evolution. For that, let us define the variablex1(t) to
denote the cumulated number of firings of transition labeledx1 at timet (and identically foru, x01, x2, y, i, o). We have
the obvious inequalities:x1(t) � min �u(t); x01(t)�;x2(t) � x1(t� 1);y(t) � x2(t):
Considering that the Petri net operates as soon as possible,
i.e., a transition is fired as soon as it is enabled, we have
equalities:x1(t) = min �u(t); x01(t)� = u(t)� x01(t);x2(t) = x1(t� 1);y(t) = x2(t):
The equation forx01 requires more attention because the up-
stream place has two output transitions,x01 ando. Such a
structure is referred to as aconflictand exhibits a nondeter-
minism. The classical approach for solving conflicts, called
race policy, comes down to considering that, among the
conflicting transitions, the first one to be ready to fire ”wins
the race” and fires (the other transition ”loses the race”, and
its enabling is preempted by the conflict). Note that in our
Petri net, conflicting transitions have null firing times and
are not synchronized (only one upstream place), so that the
race policy would always result in a tie and could not decide
which one is going to fire. With another approach, called
preselection policy(or routing policy), conflicts are solved
thanks to a protocol, algorithm or mapping which selects
one of the conflicting transitions to fire. We consider here
that conflicts are solved according to the preselection pol-
icy, assuming moreover that variablesi(t) as well aso(t)
are known or measureda priori (as exogenous data). With
this assumption, we can write:x01(t) + o(t) = x2(t) + i(t);
or, x01(t) = a(t) + x2(t) = a(t)
 x2(t);
wherea(t) = i(t)� o(t) is a known parameter.
Finally, we obtain:x1(t) = x01(t)� u(t) = a(t)
 x2(t)� u(t)= a(t)
 x1(t� 1)� u(t);



x2(t) = x1(t� 1);y(t) = x2(t);
which yields to Eqs. (1).
The Eqs. (1) only differ from the standard ones of TEG by
the fact that elements of matricesA(�), B(�) andC(�) are
functions of time.
The outline of the paper is as follows. Inx2, we recall the
elements of (min,+) algebra and residuation which we shall
use throughout the paper. Inx3, we study linear systems
over dioids. In particular, the impulse response of time-
varying systems is expressed from their state model (1). The
optimal control is presented and illustrated through a short
example inx4 andx5.

2. Preliminaries

2.1. Dioid

A dioid is a setD endowed with two inner operations (�,
) such that:� both� and
 are associative and have neutral elements
denoted respectively" ande,� 
 is distributive with respect to�,� " is absorbing for
 (8a 2 D, a
 " = "
 a = "),� � is idempotent (8a 2 D, a� a = a).

If 
 is commutative,D is called acommutativedioid.
In any dioid, a naturalorder is defined by:a � b, a� b = b .

(D;�) is acomplete dioid if each subsetA of D admits a
least upper bound denotedMx2Ax = supx2Ax;
and if
 distributes with respect to infinite sums. In partic-
ular, T =Mx2D x = supx2D x;
is the greatest element ofD.
In a complete dioid, the greatest lower bound, noted^, al-
ways exists; a ^ b = Mx�a;x�bx:
Example 1 LetZmin be the setZ[ f�1g endowed with
min as� and usual addition as
. It is a complete com-
mutative dioid with neutral elements" = +1 ande = 0

(T = �1). Note that order (�) in Zmin is just reversed
with respect to the usual order (�).

Example 2 In this paper, we consider counter functions,
i.e., non-decreasing functions:Z ! Zmin. This set, de-
noted�, can be endowed with� pointwisemin as�(u� v)(t) = u(t)� v(t) = min(u(t); v(t));� the sup-convolution as multiplication, noted�(u�v)(t) =Ms2Z[u(t�s)
v(s)℄ = mins2Z[u(t�s)+v(s)℄:
(�, �, �) is a complete dioid with neutral elements defined
by"(t) = +1, 8t 2 Z, ande(t) = � 0 ; t � 0+1 ; t > 0 .

The natural order over this dioid is defined by:u � v , u(t) � v(t); 8t 2 Z:
Theorem 1 (see [2,x4.5.3]) In a complete dioid, the par-
ticular implicit equationx = a
 x� b
admitsa�b as least solution, witha� =Mi�0 ai and a0 = e:
Example 3 Starting from a ”scalar” dioidD, let us considerp � p matrices with entries inD. The sum and product
of matrices are defined conventionally from the sum and
product of scalars. This set of matrices endowed with these
two operations is also a dioid denotedDp�p. Note thatn-
dimensional row or column vector problems can be handled
by embedding such vectors in square matrices withn � 1
additional arbitrary (identically equal to") rows or columns.

2.2. Residuation

Residuation is a general notion in lattice theory which
allows defining ’pseudo-inverses’ of some isotone maps (f
is isotone ifa � b) f(a) � f(b)).
Laws � and
 of a dioid are not invertible in general.
Residuation is hence used to ’solve’ equations of the typea
 x = b, x 
 a = b. We will use residuation here to find
’greatest subsolutions’ of such equations.



Definition 1 An isotone mapf : C ! D, whereC andD are ordered sets, is said to beresiduated if it exists an
isotone maph : D ! C such thatf Æ h � IdD , and h Æ f � IdC :IdC andIdD are identity maps ofC andD respectively.h
is unique and is denotedf ℄. It is calledthe residual of f .

If f is residuated then8y 2 D, the least upper bound of
subsetfx 2 Cjf(x) � yg exists and belongs to this subset.
This greatest subsolution is equal tof ℄(y).
Property 1 (see [2,x4.4]) Let C a complete dioid, the
isotone mapLa : x ! a 
 x defined onC is residuated.
The greatest solution of inequationa 
 x � b therefore
exists and is equal toLa℄(b), also denoteda Ænb or ba .
The isotone mapRa : x ! x 
 a is also residuated. The
greatest solution of inequationx 
 a � b will be denotedbÆ=a or ba .
These ’quotients’ satisfy the following formulæa
 (a Ænx) � x (xÆ=a)
 a � x (f:1)a Æn(x^y) = (a Ænx)^(a Æny) (x^y)Æ=a = (xÆ=a)^(yÆ=a) (f:2)(a
 b) Ænx = a Ænxb xÆ=(a
 b) = xÆ=ba (f:3)
Let us note that formulaf:1 is a simple deduction from
definition 1:La Æ La℄ � IdC , �La Æ La℄�(x) = a
 (a Ænx) � x,
and,Ra ÆRa℄ � IdC , �Ra ÆRa℄�(x) = (xÆ=a)
 a � x.

Let us recall a necessary and sufficient condition for a
map defined on complete dioids to be residuated.

Theorem 2 (see [2,x4.4.2, th. 4.50])Let f be an isotone
mapping from a complete dioidC into a complete dioidD.
The mapf is residuated if, and only if,f(") = ", and for
every subsetX of Cf  Mx2X x! = Mx2X f(x) .

3. Linear systems

3.1. Representation of linear systems

A systemS is a mapping from the set of admissible input
signals to the set of admissible output signals. In this paper,
the signals of interest are ’counters’,i.e., non-decreasing
functions:Z ! Zmin. In example 2, we have denoted�
this set of signals. So that it constitutes a set of admissible
signals, this set must be endowed with a kind of vector space
structure by defining the two following operations:

� pointwise minimum (i.e., addition inZmin) of time
functions, which plays the role of inner addition of sig-
nals:8t; (u� v)(t) , u(t)� v(t) = min (u(t); v(t)) ;� addition of (i.e., product inZmin by) a constant, which
plays the role of external product of a signal with a
scalar: 8t; (a � u)(t) , a
 u(t) = a+ u(t):

In [4], [9], a theory for systems defined on these structures
of signals has been developed by analogy with conventional
system theory. In the following, we recall some results fitted
to our framework.

Definition 2 A systemS is called linear overZmin, or
(min,+) linear, ifS(u1 � u2) = S(u1)� S(u2) = min (S(u1);S(u2))
and,8a 2 Z,S(a � u(�)) = a
 S(u(�)) = a+ S(u(�)):
Definition 3 A system is said to becontinuous if, for any
finite or infinite collectionfuigi2I , it satisfiesS  Mi2I ui! =Mi2I S(ui):
Definition 4 A system is said to becausal if 8u1, u2,u1(t) = u2(t) for t < � )[S(u1)℄(t) = [S(u2)℄(t) for t < �:

The notion of impulse responsehas also been intro-
duced in [4, chap. V], [9], [2]. In particular, for systems
defined on�, we have the following characterization [4,
chap. V,x3.2].

Theorem 3 LetS: � ! � be a linear continuous system,
then there exists a unique mappingh : Z2 ! Zmin (called
impulse response) such that

1. 8s 2 Z; t! h(t; s) 2 �
2. 8t 2 Z; s! h(t;�s) 2 �
3. y = S(u) can be obtained byy(t) = Ls2Z[h(t; s) 
u(s)℄, 8t 2 Z.



For systems defined on�, the impulse is the signal de-
notede0 and defined bye0(t) = � e (= 0) ; t � 0" (= +1) ; t > 0 .

When the system is modeled by a Petri net (as in introduc-
tion), such an input comes down to firing the source transi-
tion u an infinity of times after time0 (so that an infinity of
tokens are released).

Corollary 1 A linear continuous systemS over� is causal
if, and only if, its impulse responseh satisfiesh(t; s) = h(t; t), for s > t.
Remark 1 As in conventional linear theory, the impulse
responseh(t; j) of a time-invariant(or stationary) system
only depends upon the differencet� j.

From now on, we will only consider causal continuous
linear systems, and for sake of briefness, we will most of
times only write ’linear systems’.

3.2. Input/output relationship of (min, +) linear
time-varying systems

Starting from the standard state model (1), we will here ex-
plicit the input/output relationship and identify the impulse
response of such (min,+) linear time-varying systems.
The first equation of (1) can also be written,x(t) = �(t; t0)x(t0)� tMj=t0+1�(t; j)B(j)u(j) , t � t0
where thestate-transition matrix�(t; i) is given by�(t; i) = 8<: not defined ; i > tId ; i = tA(t)
A(t� 1)
 � � � 
A(i+ 1) ; i < t
Then we have, fort � t0y(t) = C(t)�(t; t0)x(t0)� tMj=t0+1C(t)�(t; j)B(j)u(j). (2)

Remark 2 The state-transition matrix satisfies the compo-
sition property�(t; i) = �(t; k)
 �(k; i) , wheret � k � i ,

and in particular fort � i+ 1�(t; i) = A(t)�(t � 1; i);= �(t; i+ 1)A(i+ 1):

Proposition 1 The least solution of Eqs. (1) is given by8t 2 Z; y(t) =Mj�t h(t; j)u(j) (3)

with h(t; j) = C(t)�(t; j)B(j), for j � t: (4)

Proof By tendingt0 towards�1 in Eq. (2), it is clear that
any solution is greater thany.
Settingy(t) = C(t)x(t) withx(t) =Mj�t �(t; j)B(j)u(j);
we show thatx satisfies the first equation of (1):x(t) =Lj�t �(t; j)B(j)u(j)=Lj�t�1 �(t; j)B(j)u(j) �B(t)u(t)= A(t) hLj�t�1 �(t� 1; j)B(j)u(j)i�B(t)u(t)(thanks to rem.2)= A(t)x(t� 1)�B(t)u(t) �

The expression of impulse responseh can be extended
in a causal manner (see corollary 1) by settingh(t; j) = C(t)B(t) for j > t,
which yields to:y(t) = Lj�t h(t; j)u(j) = Lj2Zh(t; j)u(j) (3’)

since forj > t, u(j) � u(t), and by isotony of
:h(t; j)u(j) = h(t; t)u(j) � h(t; t)u(t)
Remark 3 For conventional discrete-time linear time-
varying systems [5], [1], the input/output relationship is
given by: y(k) = kXj=�1 h(k; j)u(j) .

The analogy with formula (3) should be clear.

Given an input trajectoryfu(t)gt2Z, the least solution
of Eqs. (1) is the output response for which the number
of events having occurred up to timet 2 Z is the greatest
(remember that the order inZmin is reversed with respect
to the usual). Selecting this solution corresponds therefore
to consider the least constraining conditions for the evolu-
tion of the system. This means not only that the system



operates ’as soon as possible’ (think of parts handled as
soon as a machine is available in example), but also that
we have selected the initial conditions which generate the
greatest possible output (also calledcanonical initial con-
ditions). When considering causal signals of�, i.e., fort < 0 u(t) = u(0), x(t) = x(0) and y(t) = y(0), as
well asA(t) = A(0), B(t) = B(0), C(t) = C(0), the first
equation of (1) is implicit,i.e.,x(0) = A(0)x(0) �B(0)u(0) .

So the least solution (greatest with respect to usual order),x(0) = [A(0)℄�B(0)u(0) (thanks to th. 1), is thecanonical
initial state.

In the next section, we compute a control inputuopt (op-
timal under just in time criterion) assuming that matricesA(t), B(t), C(t) are known for allt and define a system
on �. If elements of these given matrices are constant or
non-decreasing, solutionsx andy of Eqs. (1) are obviously
non-decreasing (in other words, these given matrices actu-
ally define a system on�). But, as noticed in introduc-
tion, we consider that the elements of these matrices may
not be monotonic functions (possibly decreasing on an in-
terval). One should then be aware that being givenu, a non-
decreasing input, some givenfA(t), B(t), C(t)gt2Z may
generate non-monotonic statex and outputy. So, before
computing the control input, it will be necessary to check
that the given matricesfA(t), B(t), C(t)gt2Zdefine a sys-
tem on�.
Conditions1 : and2 : of theorem 3 characterize impulse re-
sponses of systems defined on�. Using expression 4, we
just have to check that the given matrices satisfy the follow-
ing conditions:8t; j 2 Z; t � j;C(t+ 1)�(t+ 1; j)B(j) � C(t)�(t; j)B(j);
and, C(t)�(t; j � 1)B(j � 1) � C(t)�(t; j)B(j):
established from those of theorem 3. If the given matricesfA(t), B(t), C(t)gt2Zsatisfy these conditions, for all non-
decreasing inputu, solutiony of Eq.(1) is non-decreasing
(in other words, these matrices define a system on�). To
ensure furthermore that the statex is also non-decreasing,
the given matrices must satisfy:8t; j 2 Z; t � j;�(t+ 1; j)B(j) � �(t; j)B(j);
and, �(t; j � 1)B(j � 1) � �(t; j)B(j):

4. Optimal control

Let S a linear system defined on�, the outputy can be
written y = H(u);
whereH: (�; �; �)! (�; �; �) is defined by:[H(u)℄ (t) =Ms2Zh(t; s)u(s)
(h(t; s) is the impulse response ofS).

Denotingz 2 � the output signal to be tracked, theopti-
mal control, denoteduopt, is defined byuopt = Supfu 2 � j y � zg .uopt is the greatest solution of inequationH(u) � z. Re-
membering that the order� is just reversed with the usual
order,fuopt(t)gt2Z is the least input trajectory such that for
all t the output responsefy(t)gt2Zis greater than the output
to be trackedfz(t)gt2Z. For a manufacturing system, this
control input, which gives the latest dates of release of raw
parts such that the customer demand is satisfied, fulfills the
so-calledjust-in-time criterion.
This greatest solution exists if mapH is residuated.(�; �; �) being a complete dioid (see example 2), we only
need to show thatH satisfies the conditions of theorem 2:� 8t 2 Z; �H(")�(t) = Ls2Zh(t; s)"(s) = "(t)� 8t 2 Z;�H(Li ui)�(t) = Ls2Zh(t; s)Li ui(s)= Li Ls2Zh(t; s)ui(s)= �Li H(ui)�(t)
Control inputuopt therefore exists and is defined by:uopt = H℄(z) .

Proposition 2 Controlsuopt(t), t 2 Z, are defined by,uopt(t) = �H℄(z)�(t) = î�th(i; t) Ænz(i)
Proof We denotew the signal defined by:8t 2 Z,w(t) = î�th(i; t) Ænz(i):



1. Letx satisfying H(x) � z
or equivalently,8t 2 Z; Ls2Zh(t; s)x(s) = Ls�th(t; s)x(s) � z(t)8t; s 2 Z; s � t; h(t; s)x(s) � z(t)8t; s 2 Z; s � t; x(s) � h(t; s) Ænz(t)8s 2 Z; x(s) � Vt�sh(t; s) Ænz(t) = w(s)

2. 8t 2 Z,Ls2Zh(t; s)w(s) = Ls2Zh(t; s)h Vi�s z(i)h(i;s) i �Ls2Zh(t; s) z(t)h(t;s) � Ls2Zz(t) = z(t),
which shows thatw is solution ofH(x) � z. �

In the following, we show thatuopt is solution of a
system of recurrent equations which proceed backwards
in time. These equations offer a strong analogy with the
adjoint-state equations of optimal control theory. These
equations are an extension to the time-varying case of an
existing result for (min,+) linear time-invariant systems [2,x5.6]. Firstly, let us remark thatuopt(t) = Vi�t z(i)h(i;t) = Vi�t z(i)C(i)�(i;t)B(t)= Vi�t C(i)�(i;t) Ænz(i)B(t)

(thanks tof.2 andf.3)= �(t)B(t)
setting�(t) = Vi�t z(i)C(i)�(i;t) .

Proposition 3 The greatest solution of equation�(t) = �(t+ 1)A(t+ 1) ^ z(t)C(t) (5)

is given by�(t) = Vi�t z(i)C(i)�(i;t)
Proof

1. Let us first show that� is solution of Eq. (5).8t 2 Z;

�(t+1)A(t+1) ^ z(t)C(t) = Vi�t+1C(i)�(i;t+1)� Ænz(i)A(t+1) ^ z(t)C(t)= Vi�t+1 z(i)C(i)�(i;t+1)A(t+1) ^ z(t)C(t)
(thanks tof.2 andf.3)= Vi�t+1 z(i)C(i)�(i;t) ^ z(t)C(t)�(t;t)

(�(t; t) = Id)= Vi�t z(i)C(i)�(i;t)= �(t)
2. Letf�(t)gt2Za solution of Eq. (5), we have8t 2 Z�(t) = �(t+ t0)�(t+ t0; t) ^t+t0�1ĵ=t z(j)C(j)�(j; t) , t0 � 1 .

With t0 ! +1, it is clear that8t, �(t) � �(t). �
Finally,uopt is the greatest solution of8>><>>: �(t) = �(t+ 1)A(t+ 1) ^ z(t)C(t)u(t) = �(t)B(t) ;8t 2 Z . (6)

The initial conditions of recurrence of these equations
may be: 9 Tf such that8t > Tf ,

1. z(t) = z(Tf ), �(t) = �(Tf ),
2. A(t) = A(Tf ), B(t) = B(Tf ) etC(t) = C(Tf ).

For t > Tf , the first equation is hence implicit,i.e.,�(Tf ) = �(Tf )A(Tf ) ^ z(Tf )C(Tf ) ,

and we select the greatest solution:�(Tf ) = z(Tf )C(Tf )A(Tf )�B(Tf ) .

For a manufacturing system, assumption1: means that
production must be controlled over a finite temporal hori-
zon. Beyond a final instantTf , the output to be tracked and
the ’co-state’� are in fact supposed to remain constant. As-
sumption2: comes down to considering that the parameters
of the system are also constant afterTf .



5. Example

We consider the manufacturing system of figure 1, de-
scribed in section 1, withd = 1 (handling time of a part)
and
1 = 
2 = 0 (travelling times). The upper part of figure
2 represents the trajectories of the output to be trackedz, of
the optimal controluopt computed with Eqs. (6), and of the
output responsey to uopt computed with Eqs. (1).
The lower curve represents the evolution ofa(t) which
gives the number of working machines at timet. It has
been supposed that two machines normally work in the
workshop. One of these has to be shutdown (e.g. due to
planned maintenance) between instants ten and fourteen.
We see that the response outputy to the computed optimal
control uopt is greater than the trajectoryz. In term of
manufacturing system, the customer demand is always
satisfied.

Between instants ten and fourteen, only one machine is
running, and the customer demand rate is two parts per unit
of time (sequence in the grey box labeled(b)). The con-
trol input uopt (one raw part released per unit of time) is
then such that the machine works at its maximum rate, but
the resulting production remains slower than the customer
demand. This slowing down has been anticipated between
instants three and seven (sequence in the grey box labeled
(a)). In fact, the customer demand is then equal to one part
per unit of time whereas two machines are running. The
control input is then such that finished parts are produced
ahead of customer demand. The anticipated production of
finished parts is not possible between instants seven and ten
since the desired production rate (two parts per unit of time)
is then equal to the maximum production rate of the work-
shop.
More generally note that the release of raw parts always oc-
curs ’at the latest’ so that the customer demand is achieved.
In other words, the control inputuopt satisfies the just-in-
time criterion.

6. Conclusion

We have considered the class of DEDS involving exclu-
sively synchronization phenomena for which parameters
may vary as functions of time. For a manufacturing system,
these varying parameters are typically the number of work-
ing machines (often considered as ’re-usable resources’),
or the number of withdrawn parts for conformance test
(’non-re-usable resources’). A linear state model with time-
varying coefficients or an input/output relationship (the co-
efficients of the impulse response depend both upon the in-
stant of observation, and upon the instant of application of
the unit pulse) can be obtained in (min,+) algebra. We pro-
pose an optimal output tracking solution under just in time
criterion. The proposed optimal control, based on residu-
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Figure 2: Application of the optimal control

ation theory, is a simple extension of an existing result for
(min,+) linear time-invariant systems.
The linear system theory over dioids offers an interesting
property in that: systems can be studied both in the time do-
main with the (min,+) algebraic structure and in the event
domain with a dual algebraic structure - the (max,+) alge-
bra. We are besides trying to develop the ideas of this paper
in the (max,+) algebraic structure. In a manufacturing sys-
tem, the parameters we may then allow to vary would be for
example the processing times or the transportation times.
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of MSR’99, 1999.

[7] E. Menguy. Contribution à la commande des systèmes
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