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Optimal Control of (min,+) Linear Time-Varying Systems
Sébastien Lahaye Jean-Louis Boimond Laurent Hardouin

LISA, 62 avenue Notre Dame du Lac, 49000 Angers
E-mail : {lahaye, boimond, hardouj@istia.univ-angers.fr

Abstract maintenance or manufacturing resource scheduling. Once
processed, parts leave the workshop on a second conveyor
The class of discrete event dynamic systems involving(travelling timecs).

only synchronization phenomena can be seen as linear | et us consider the following variables for this system:
time-invariant systems in a particular algebraic structur
called (min,+) algebra. In the same framework, this  ® w(f): cumulated number of raw parts released on the
paper deals with linear time-varying systems, that is, first conveyor up to time,
systems whose parameters may change as functions of
time. For example, in a manufacturing system the number
of working machines, or the number of trains running
in a closed network of railway connections, can vary e x2(t): cumulated number of parts loaded on the second
as functions of time. For such systems, the output track- conveyor up to time,
ing problem is optimally solved under just-in-time critani

e z1(t): cumulated number of parts having left the stor-
age up to time,

e y(t): cumulated number of finished parts up to tile
e a(t): number of working machine(s) at tinte

1. Introduction Notice thatu, x;, =5, y are non-decreasing functions, usu-
ally calledcounterfunctions [2,§5], whereas: may be not

A linear system theory analogous to the conventional theory monotonic.

has been developed for a particular class of Discrete Event

Dynamic Systems (DEDS) subject to synchronization phe-

nomena. Such systems - usually represented with Timed

—

_ u_g—>n O fn A—>AY
Event Graphs (TEG) - can be modeled byif,+) linear l o rl%:lfxzj\
equations. General concepts such as state space, impulsere . eiing rime e, —— \I:I/ travelling time c,
sponse and transfer function have been introduced [2], [10] o d
(a) processing time

[4]. These systems are seen as linear time-invariant (er sta

tionary) systems over thenin,+) algebraic structure. An xR

optimal solution to the output tracking problem under just *\Q‘ A

in time criterion has also been given [5.6], [7]. u ¢ QOk d :D I
In this paper, we generalize the synthesis of this optimal I I |

control to nin,+) lineartime-varyingsystems. We propose (b)

a basic example which aims at illustrating the class of sys-

tems as well as the 'optimal tracking problem’ considered.

We study here the simple manufacturing system of figure

1.a which operates as follows. Parts come into a workshop

and reach a FIFO storage after a travelling tip®n a first

conveyor. This storage is located upstream a pool of ma-

chines vyorkmg in parallel. .Each part is har_1d|ed as soon Vi, i (t) <ult—eci),

as possible by some machine, and spahdsits of time

on a machine. The number of machines on running (idle on the other hand, since the processing time of a part is

or busy) is a function of time, due for example to planned equal tod units of time, and assuming that a machine can

Figure 1: A manufacturing system (a), and its Petri net
model (b)

The travelling timer; on the first conveyor implies that:



be shutdown only when it is idle, we have: C(t)y=(4oc0 0).

Vi, 21 (t) < a(t) + 21 (t — d) As an illustration, let us explain briefly how to obtain
N these evolution equations (see [2],[3] for exhaustiveqmes
hence, considering that a part is handled as soon as pgssibleations of algebraic modelling of Petri nets). To descrhze t

we obtain: behavior of the graph, firings of transitions are counted dur
. ing its evolution. For that, let us define the variablgt) to
vt, z1(t) = min [a(t) + 21 (t = d) , w(t —c1)] - denote the cumulated number of firings of transition labeled

x1 at timet (and identically foru, =}, =2, y, 1, 0). We have

Further, we have thatt, ) ) .
the obvious inequalities:

ib”gt Zﬂflt—d, d tZCUQt—CQ.
(t) = z1(t — d), andy(t) = z2(t — c2) £1(8) < min (u(t), 2 ().

Finally, the manufacturing system obeys the following re-

current equations whersin and + are replaced respec- za(t) < i (t - 1),

tively by & and® (as in fnin,+) algebra): y(t) < z2(t).
r1(t) = a(t)@zi(t—d) dult —cr) Considering that the Petri net operates as soon as possible,
z2(t) = mi(t—d) . i.e, a transition is fired as soon as it is enabled, we have
y(t) = m2(t—c2) equalities:

The question we shall address in this paper can be formu- 21 (t) = min (u(t), 2, () = u(t) & 2, (¢)

lated as follows. Being given:

e the dates of activation and shutdown of the machines a(t) = 21 (t — 1),

(i.e. a(t) is knownvt), y(t) = xa(t).
e an output trajectory to be tracked, denoted?)}, ., The equation for] requires more attention because the up-
(the customer demand), stream place has two output transitiom$,ando. Such a

structure is referred to asanflictand exhibits a nondeter-
minism. The classical approach for solving conflicts, alle
race policy comes down to considering that, among the
conflicting transitions, the first one to be ready to fire "wins
the race” and fires (the other transition "loses the raced, an
mand{z(t)}tel' , ) its enabling is preempted by the conflict). Note that in our
In fl_gure 1.b, the manufacturing system is m‘?de'ed by Petri net, conflicting transitions have null firing times and
a Petri net (see among others [8] for an exhaustive presenzy o ot synchronized (only one upstream place), so that the
tation of Petri net theory). The workshop, which involves 5 .o 1sjicy would always result in a tie and could not decide

exclusively synchronization phenomena, is classicallyim(_) which one is going to fire. With another approach, called
eled by a TEG model (black part of the graph). The varia- preselection policyor routing policy), conflicts are solved

tion of the-r.1umber of _vyorkmg ma}chlnes is enabled thanks thanks to a protocol, algorithm or mapping which selects
to the additional transitions labelé@ndo (grey partofthe 0 ot the conflicting transitions to fire. We consider here
graph). In [6], we have shown using the general algebraic 5y confiicts are solved according to the preselection pol-
model of Petri nets presented in [3] that a subclass of Freeicy' assuming moreover that variablig) as well aso()

Ch0|c|e Petri Net, gnd n par.t|CL|1Ia_r the graﬁh (f)flfllg. 1 can be are known or measureaglpriori (as exogenous data). With
modeled after various manipulations by the following stan- this assumption, we can write:

dard linear equations im{in,+) algebra:

what are thdatest datef release of raw parts which al-
low meeting the customer demand? In other words, we will
compute thdeast input trajectory{u(t)},., such that the
output responséy(t) }, ., is greaterthan thecustomer de-

2 (1) + o(t) = mo(t) +i(t),

{ 2(t) = A(t) @ z(t — 1) @ B(t) @ u(t) )

y(t) = C(t) ® x(t) ' or,

If d =1, c; = cy = 0 unit of time, we have: 21 (t) = a(t) + 22(t) = a(t) @ 22(t),
2(0) = [ (®) w0 w0 = OL IO = WOL P e o o Parameter

and 2(t) =2, (1) @ ut) = alt) ® 22 (t) D u(t)

At) = ( ) e ) B(t) = ( o ) = a(t) @ o1 (t—1) & u(t),



l‘g(t) = l‘l(t — ].),

y(t) = 2 (),
which yields to Egs. (1).

(T = —o0). Note that order<) in Z,,;, is just reversed
with respect to the usual ordex].

Example 2 In this paper, we consider counter functions,

The Egs. (1) only differ from the standard ones of TEG by i.e., non-decreasing functionsZ. — Zy,;,. This set, de-

the fact that elements of matrice-), B(-) andC() are
functions of time.

The outline of the paper is as follows. §2, we recall the
elements ofifin,+) algebra and residuation which we shall
use throughout the paper. 3, we study linear systems

over dioids. In particular, the impulse response of time-

notedY, can be endowed with

e pointwisemin as®
(u @ v)(t) = u(t) & v(t) = min(u(t), v(t)),

¢ the sup-convolution as multiplication, noted

varying systems is expressed from their state model (1). The

optimal control is presented and illustrated through a shor

example ing4 ands5.

2. Preliminaries

2.1. Dioid

A dioid is a setD endowed with two inner operations(
®) such that:

e both® and® are associative and have neutral elements

denoted respectivelyande,
e ® is distributive with respect te,
e cis absorbing fow (Va € D,a®e =c®a =c¢),
e @ isidempotent{a € D,a @ a = a).

If ® is commutativeD is called acommutative dioid.
In any dioid, a naturabrder is defined by:

a<b&sadb=0>b.

(D, <) is acomplete dioidif each subsetl of D admits a
least upper bound denoted

@azzsupaz,

zeA z€A

and if ® distributes with respect to infinite sums. In partic-

ular,
T = @ x = sup z,
2D ze€D

is the greatest element 6f.
In a complete dioid, the greatest lower bound, notedl-

ways exists;
aNb= @ T.
z=a,x=b

Example 1 Let Z,,;, be the se U {+o00} endowed with
min as® and usual addition ag. It is a complete com-
mutative dioid with neutral elements= +o0o0 ande = 0

(w0)(t) = Plu(t—s)20(s)] = minfu(t—s)+0(s)].

SEZ
(%, @, %) is a complete dioid with neutral elements defined
by

0 ;
+oo

t<0

e(t) = 400, Vt € Z,ande(t) = { £50

The natural order over this dioid is defined by:

u=<v&u(t) Su(t), Vi€ Z.

Theorem 1 (see [2§4.5.3]) In a complete dioid, the par-
ticular implicit equation

r=a®@xr®b

admitsa*b as least solution, with

a* :@ai and a® =e.

i>0

Example 3 Starting from a "scalar” dioid, let us consider

p X p matrices with entries iD. The sum and product
of matrices are defined conventionally from the sum and
product of scalars. This set of matrices endowed with these
two operations is also a dioid denot®#*?. Note thatn-
dimensional row or column vector problems can be handled
by embedding such vectors in square matrices with 1
additional arbitrary (identically equal t rows or columns.

2.2. Residuation

Residuation is a general notion in lattice theory which
allows defining 'pseudo-inverses’ of some isotone mgps (
is isotone ifa < b = f(a) < f(b)).

Laws @ and ® of a dioid are not invertible in general.
Residuation is hence used to 'solve’ equations of the type
a®z =b,z®a=">b We will use residuation here to find
'greatest subsolutions’ of such equations.



Definition 1 An isotone magpf : ¢ — D, whereC and
D are ordered sets, is said to esiduated if it exists an
isotone maph : D — C such that

foh<Idp,and ho f > Idc.

Idc and Idp are identity maps of andD respectively.h
is unique and is denoteff. It is calledthe residual of f.

If fis residuated thelly € D, the least upper bound of
subsef{z € C|f(z) < y} exists and belongs to this subset.
This greatest subsolution is equalfté(y).

Property 1 (see [254.4]) Let C a complete dioid, the
isotone mapl, : * — a ® z defined orC is residuated.

The greatest solution of inequatien® = < b therefore

exists and is equal té,.* (b), also denoted yb or o

The isotone mag, : * — = ® a is also residuated. The
greatest solution of inequatian® a < b will be denoted

bfaor L.
These 'quotients’ satisfy the following formulese
a® (ayr) <z (zda) ®a Xz (f.1)
aX(zAy) = (akz)A(ay) (zAy)fa = (zfa) A(yfa) (f-2)
(a@bye =2 zfacb) =2 (£3)

Let us note that formulg.1 is a simple deduction from
definition 1:

LyoLy, < Ide & (La o Laﬁ)(:ﬂ) =a® (a}z) L z,
and,

R,o R, < Ide & (Ra o Raﬁ)(x) = (zfa) ®a < x.

Let us recall a necessary and sufficient condition for a
map defined on complete dioids to be residuated.

Theorem 2 (see [2§4.4.2, th. 4.50])Let f be an isotone
mapping from a complete dioi@ into a complete dioid.
The mapf is residuated if, and only iff (¢) = ¢, and for
every subseX of C

(@)

3. Linear systems

=P ).

rzeX

3.1. Representation of linear systems

A systemsS is a mapping from the set of admissible input
signals to the set of admissible output signals. In this pape
the signals of interest are 'counterse.,, non-decreasing
functions:Z — Z,,:». In example 2, we have denotéd
this set of signals. So that it constitutes a set of admissibl

signals, this set must be endowed with a kind of vector space

structure by defining the two following operations:

e pointwise minimum i(e., addition inZ,,;,) of time
functions, which plays the role of inner addition of sig-
nals:

Vt, (u®v)(t) £ u(t) ® v(t) = min (u(t),v(t));

e addition of {.e., productinZ,,;, by) a constant, which
plays the role of external product of a signal with a
scalar:

Vt, (a-u)(t) £ a®u(t) = a+ u(t).

In [4], [9], a theory for systems defined on these structures
of signals has been developed by analogy with conventional
system theory. In the following, we recall some resultsditte
to our framework.

Definition 2 A systems is called linear overZ,,;,, or
(min,+) linear, if

S(uy ®u2) = S(ur) ® S(uz) = min (S(uq), S(uz))
and,Va € Z,
S(a-u(-)) =a®S(u()) =a+Su()).

Definition 3 A system is said to beontinuous if, for any

finite or infinite collection{u;},.,, it satisfies
i€l iel

Definition 4 A system is said to bmausal if Vuq, us,

uy (t) = ua(t) fort < 7 =

[S(u)](t) = [S(u2)](t) for t < .

The notion ofimpulse responsehas also been intro-
duced in [4, chap. V], [9], [2]. In particular, for systems
defined onX, we have the following characterization [4,
chap. V,§3.2].

Theorem 3 LetS: ¥ — X be a linear continuous system,
then there exists a unique mappihg Z2 — Z,,;» (called
impulse response) such that

1. VseZ,t— h(t,s) € X

2.Vt€Z,s— h(t,—s) €X

3. y = S(u) can be obtained by (t) = P[h(t,s) ®
u(s)], ¥t € Z. "



For systems defined an, theimpulse is the signal de-
notedey and defined by

{

e(=0)
(= +00)

t<0
t>0

eo(t)

When the system is modeled by a Petri net (as in introduc-
tion), such an input comes down to firing the source transi-

tion u an infinity of times after timé (so that an infinity of
tokens are released).

Corollary 1 A linear continuous systeiovery is causal
if, and only if, its impulse respongesatisfies

h(t,s) = h(t,t), fors > t.

Remark 1 As in conventional linear theory, the impulse
responsei(t, j) of atime-invariant(or stationary system
only depends upon the differente- j.

From now on, we will only consider causal continuous
linear systems, and for sake of briefness, we will most of
times only write ’linear systems’.

3.2. Input/output relationship of (min, +) linear
time-varying systems

Starting from the standard state model (1), we will here ex-

plicit the input/output relationship and identify the inpe

response of suchi(in,+) linear time-varying systems.
The first equation of (1) can also be written,

t

2(t) = (t,to)z(te) & €D ®(t,5)B(j)ulj) .t > to
j=to+1

where thestate-transition matrixp(¢, ) is given by

not defined Ji >t
O(t,i) =< Id =t
A At —-1)®--- @ AGi+1) i<t

Then we have, fot > t,

y(t) = C(t)B(t,to)z(t) ® @D C)®(t,5)B()uld)- (2)

j=to+1
Remark 2 The state-transition matrix satisfies the compo-
sition property
D(t,1) = ®(t, k) @ ®(k,i) , wheret > k > i,

and in particular fot > i + 1

B(t,i) = AB)B(t—1,i),

B(t,i+ 1)AG + 1).

Proposition 1 The least solution of Egs. (1) is given by

VteZ, ()= PNt i)u) 3)
J<t
with
h(t,j) = C(t)®(t,§)B(j), for j < t. (4)

Proof By tendingt, towards—oo in Eq. (2), it is clear that
any solution is greater than
Settingy(t) = C(t)Z(t) with

7(t) = @ (¢, j)B(i)ulj),

i<t
we show thaf satisfies the first equation of (1):
(1) =D < ®(t,5)B()u(l)

= @D;<i—1 ®(t,5)B(H)u(j) & B(t)u(t)

T

A(t) [ @01 @ = 1,)BG)u()| © Bbu(t)
(thanks to rem2)

ATt — 1) ® B(t)u(t)

O

The expression of impulse response&an be extended
in a causal manner (see corollary 1) by setting

h(t,j) = C(t)B(t) for j > t,

which yields to:

y(t) = @ h(t, )u(j) = D h(t, j)u(j)

j<t JEZ

(3)
since forj > ¢, u(j) < u(t), and by isotony of:

h(t, j)u(i) = h(t, yu(j) = h(t, H)u(t)

Remark 3 For conventional discrete-time linear time-
varying systems [5], [1], the input/output relationship is
given by:

k
y(k) = _Z h(k, j)u(j) -

j=-o00

The analogy with formula (3) should be clear.

Given an input trajectory{u(t)},.,, the least solution
of Egs. (1) is the output response for which the number
of events having occurred up to tiniec 7 is the greatest
(remember that the order iA,y,;, is reversed with respect
to the usual). Selecting this solution corresponds thegefo
to consider the least constraining conditions for the evolu
tion of the system. This means not only that the system



operates 'as soon as possible’ (think of parts handled as4. Optimal control

soon as a machine is available in example), but also that

we have selected the initial conditions which generate thelLet S a linear system defined o, the outputy can be
greatest possible output (also callednonical initial con- written

ditiong. When considering causal signals ¥f i.e., for y = H(u),

t < 0wu(t) = u(0), z(t) = x(0) andy(t) = y(0), as . .

well asA((t)) - A((O)), B((t)) - B((())?C’(t) A 27(0), tE](e)first where?{: (3, @, ¥) = (%, ®, #)is defined by:

equation of (1) is implicitj.e.,
[H(w)] (1) = @ h(t, s)u(s)
z(0) = A(0)z(0) ® B(0)u(0) . SEZ
So the least solution (greatest with respect to usual grder) (h(t, s) is the impulse response 6).
2(0) = [A(0)]" B(0)u(0) (thanks to th. 1), is theanonical

initial state. Denotingz € ¥ the output signal to be tracked, thpti-

mal contro| denoted:,,;, is defined by

In the next section, we compute a control inpyj; (op-
timal under just in time criterion) assuming that matrices

A(t), B(t), C(t) are known for allt and define a system w0yt i the greatest solution of inequatidf(u) < z. Re-

on . If elements of these given matrices are constant or mempering that the ordet is just reversed with the usual
non-decreasing, solutionsandy of Egs. (1) are obviously order, {up(t)},.7 is the least input trajectory such that for
non-degreasmg (in other words, these given matrices actu-| 4 the output respons(1)},.;, is greater than the output
ally define a system olt). But, as noficed in introduc- 4 pe tracked{2()},.,. For a manufacturing system, this
tion, we consider that the elements of these matrices Mayqqnirol input, which gives the latest dates of release of raw

not be monotonic functions (possibly decreasing on an in- na s sych that the customer demand is satisfied, fulfills the
terval). One should then be aware that being giveanon- so-calledust-in-time criterion

decreasing input, some givei(?), B(t), C(1)},cz MY This greatest solution exists if mapl is residuated.
generate non-monotonic stateand outputy. So, before (, @, *) being a complete dioid (see example 2), we only

computing the control input, it will be necessary to check peeq to show that! satisfies the conditions of theorem 2:
that the given matrice§A(t), B(t), C(t)}, ., define a sys-

Uopt = Sup{u € T |y < z}.

tem onX. e VteZ, [H(e)](t)= D h(t,s)e(s) =e(t)
Conditions? . and 2. of theorem 3 characterize impulse re- €7
sponses of systems defined Bn Using expression 4, we o Vic7
just have to check that the given matrices satisfy the follow ’
ing conditions: H®uw)| () = h(t, s wi(s
Vi e T, t> [ (@ )] (t) S%EGZ( )@ (s)
Ct+1)®(t+1,7)B(j) 2 C()®(t,5)B()), = & EBZh(t,s)ui(s)
i SE
and,
= [@Hw)]®)

C)®(t,j —1)B( —1) 2 C)2(t,5)B()-

. . ~ Control inputu,,,; therefore exists and is defined by:
established from those of theorem 3. If the given matrices

{A(t), B(t), C(t)},,, satisfy these conditions, for all non- Uopt = HP(2) .
decreasing input:, solutiony of Eq.(1) is non-decreasing
(in other words, these matrices define a systentanTo Proposition 2 Controlsu,(t), t € Z, are defined by,
ensure furthermore that the statds also non-decreasing,
the given matrices must satisfy: Uopt (1) = [H¥(2)] () = /\ h(i,t) xz(i)
Vt7j€Z7t2j; >t
®(t+1,5)B(j) = ®(t,5)B(j), Proof We denotes the signal defined by:
and, Vt € Z,w(t) = J\ h(i,t)xz().

®(t,j —1)B(j — 1) 2 ®(t,5)B())- i>t



1. Letz satisfying

or equivalently,
VteZ, @ h(t,s)z(s) = @ h(t,s)zx(s) < z(t)

SEZ s<t

Vit,s € Z, s <t; h(t,s)z(s) < z(t)

Vi, s € Z, s <t; z(s) X h(t,s)yz(t)

Vs € Z, z(s) < t/>\ h(t,s)}z(t) = w(s)
2. VteZ,
@ hlt, syw(s) = B h(t,s>[,/\ ] <
SEZ SEZ i>s
@ h(t,s) may = D 2(t) = 2(1),
SEZ SEZ
which shows thatv is solution ofH(z) < z. O

A Cl)®(it+1)) 32(5)

E(t+1 2(t _ >t 2(t
Et+1; A 08 - A(t+1) A cEt;

z(i z(t
= A 'O(i)cb(i,twgzl))A(t+l)' N ey 08

i>t+1
(thanks tof.2 andf.3)
= A A(t)
AN C(z)<I>(z ARSI I0)
(2(t,t) = Id)
— %(i)
e ‘,—|
i/z\t C (i) P (i,t)
= (1)
2. Let{{(t)},., asolution of Eq. (5), we havét € 7Z
t+t0 1
t + to
= >1.
(t) = <I>t+t0, /\ O to >

With to — 400, itis clear thatvt, £(t) < &(t).

In the following, we show that,,; iS solution of a
system of recurrent equations which proceed backwards
in time. These equations offer a strong analogy with the
adjoint-state equations of optimal control theory. These
equations are an extension to the time-varying case of an
existing result for (nin,+) linear time-invariant systems [2,
§5.6]. Firstly, let us remark that

O
Finally, u,,: is the greatest solution of
gE+1) o z()
&) = A
‘é(é)“) C  viez. (o)
0= By

The initial conditions of recurrence of these equations

topt(t) = A T = A TR may be:
3Ty such thawt > T,
_ N> CHOP3:) Az(9)
= B .
(thanks tof.2 andf.3) 1. 2(t) = 2(Ty), &(t) = &(Ty),
0]
= B 2. A(t) = A(Ty), B(t) = B(Ty) etC(t) = C(TYy).
settingé(t) = /\ o(,)@(zt Fort > T, the first equation is hence implicite.,
. . . §(Ty)  2(Ty)
Proposition 3 The greatest solution of equation &(Ty) = A "
P ? q P Ay T o)
£(t) = jg + B A ég; (5) and we select the greatest solution:
_|_
2(Ty)
o - 2(i T:) = - -
is given by¢ (t) = /\ C(l)é(l 5 <) C(Ty)A(Ty) B(Ty)
For a manufacturing system, assumptiormeans that
Proof

1. Let us first show thaf is solution of Eq. (5).

Vt € Z,

production must be controlled over a finite temporal hori-
zon. Beyond a final instaft;, the output to be tracked and
the 'co-state¢ are in fact supposed to remain constant. As-
sumption2. comes down to considering that the parameters
of the system are also constant affgt



5. Example

We consider the manufacturing system of figure 1, de- |

scribed in section 1, witld = 1 (handling time of a part)
andc; = ¢ = 0 (travelling times). The upper part of figure
2 represents the trajectories of the output to be tracked
the optimal controk,,: computed with Egs. (6), and of the
output responsg to u,,: computed with Egs. (1).

The lower curve represents the evolution a(ft) which
gives the number of working machines at timhe It has

been supposed that two machines normally work in the |

workshop. One of these has to be shutdoenmy.(due to
planned maintenance) between instants ten and fourteen.
We see that the response outpub the computed optimal
control u,,: is greater than the trajectory. In term of

manufacturing system, the customer demand is always| -

satisfied.

events

Ik Lo 1 AR | = tracked output z -
L &S | | |
5 10 15 20 time
a(t) (number of working machines) | |
2 [ | [
B S E— I B
5 10 15 20 time

Between instants ten and fourteen, only one machine is
running, and the customer demand rate is two parts per unit
of time (sequence in the grey box label@g). The con-
trol input u,,; (one raw part released per unit of time) is

Figure 2: Application of the optimal control

then such that the machine works at its maximum rate, butation theory, is a simple extension of an existing result for

the resulting production remains slower than the customer

instants three and seven (sequence in the grey box labele

(min,+) linear time-invariant systems.

demand. This slowing down has been anticipated betweer&?e linear system theory over dioids offers an interesting

operty in that: systems can be studied both in the time do-
ain with the (nin,+) algebraic structure and in the event

(a)). In fact, the customer demand is then equal to one partyomain with a dual algebraic structure - thesx, +) alge-

per unit of time whereas two machines are running. The pra. We are besides trying to develop the ideas of this paper
control input is then such that finished parts are producedin the (max,+) algebraic structure. In a manufacturing sys-
ahead of customer demand. The anticipated production oftem, the parameters we may then allow to vary would be for
finished parts is not possible between instants seven and teexample the processing times or the transportation times.

since the desired production rate (two parts per unit of Yime
is then equal to the maximum production rate of the work-
shop.

More generally note that the release of raw parts always oc-
curs 'at the latest’ so that the customer demand is achieved.
In other words, the control input,,; satisfies the just-in-
time criterion.

6. Conclusion

We have considered the class of DEDS involving exclu-
sively synchronization phenomena for which parameters
may vary as functions of time. For a manufacturing system,
these varying parameters are typically the number of work-
ing machines (often considered as 're-usable resources’),
or the number of withdrawn parts for conformance test
('non-re-usable resources’). A linear state model withetim
varying coefficients or an input/output relationship (tkoe ¢
efficients of the impulse response depend both upon the in-
stant of observation, and upon the instant of application of
the unit pulse) can be obtained inifn,+) algebra. We pro-
pose an optimal output tracking solution under just in time
criterion. The proposed optimal control, based on residu-
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