
Transaction Policies for Mobile Networks∗

Nuno Santos, Luı́s Veiga, Paulo Ferreira
INESC-ID/IST

Distributed Systems Group
Rua Alves Redol N 9, 1000-029 Lisboa

[nuno.santos, luis.veiga, paulo.ferreira]@inesc-id.pt

Abstract

Advances in wireless technology and affordable info-
appliances are making mobile computing a reality. Such
appliances can both communicate with a fixed station or
with other info-appliances in an ad-hoc manner. In both
scenarios the transaction paradigm is vital to provide ap-
plications with consistent access to durable data.

However, current mobile transactional systems fail to
provide the so much needed adaptability to the large set of
usage scenarios and applications semantics (e.g. discon-
nected work, relaxed ACID properties, etc.).

We present a transactional object-based mobile system,
called MobileTrans, that supports the definition and en-
forcement of transaction policies. Such policies are sep-
arated from the application code and specify transactions
behavior: (1) how data is fetched, (2) how updates are
performed, (3) the degrees of consistency and atomicity re-
quired. Transaction policies can be either declarative (e.g.
XML) or programmatic (e.g. Java, C#).

1. Introduction

Mobile and portable devices, such as PDAs and lap-
tops, are growing in number, features and diversity, mak-
ing mobile computing a reality. These devices are equipped
with wireless interfaces that allow them to communicate
within mobile networks with fixed stations or with other
info-appliances in an ad-hoc manner. Mobile networks are
characterized by the mobility and/or disconnection of one
or more hosts. In ad-hoc networks, dynamics is higher
since nodes interact in an arbitrary way, they are connected
for limited amounts of time and their connections may fail
when nodes enter and leave the network. Furthermore, due
to its size, portable devices resources are still scarce (mem-
ory, processing, power, etc.).

∗This work was partially funded by FCT/FEDER.

In such scenarios, data sharing both between portable
devices and between them and fixed stations, is clearly
needed. However, the data required by the applications is
not often accessible. Thus, due to the instability of the net-
work topology, the transaction paradigm is necessary to en-
sure that shared data is accessed in a consistent way in the
presence of disconnections. In addition, transactions pro-
vide a high level interface that relieve the developers of
having to deal with the complexities of the environment.
Therefore, a transaction system is an important tool for de-
veloping applications for such networks.

Current mobile transactional systems [17, 15, 13] al-
ready provide some mechanisms for dealing specifically
with mobile networks. One is the ability to handle discon-
nections of the mobile host. Care must be taken so that fre-
quent disconnections are not handled as failures causing the
abortion of transactions. The other mechanism adapted to
mobile scenarios is the relaxation of one or more properties
of the ACID model [10]. In fact, the classical ACID trans-
actions are clearly too restrictive for such mobile scenarios.

However, current mobile transactional solutions still
have some important drawbacks leading either to unneces-
sary aborts or to unnecessary reduced data availability:

• Typically, if a transaction is not able to commit, it is
forced to abort. In most proposals, alternatives in-
stead of aborting the transaction are not provided or
the existing alternatives are neither flexible nor simple
enough to program by application developers.

• The requirements of applications in terms of the trans-
action properties can be very different. Some appli-
cations may require strict atomicity, while others may
admit to discard some changes and still commit the
transaction successfully. Other applications may de-
sire to abort the transaction immediately if some node
is not reachable while others may desire to postpone
the commitment of the transaction.

• Different degrees of control (e.g. in terms of consis-

Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04) 
0-7695-2141-X/04 $ 20.00 © 2004 IEEE 



tency) may be required by developers for each appli-
cation. Some developers may not desire to configure
every detail of the transaction behavior, while others
may even want to react to the changes of the environ-
ment in realtime.

• Finally, it is complex to specify the transactions be-
havior because it is necessary to think about all the sit-
uations and problems that can occur. In addition, if we
need to adjust the transaction properties, it is necessary
to change the code of the transaction.

In short, there is a lack of available options to prevent
a transaction from aborting and there is a lack of flexibil-
ity and adaptability in current mobile transactional systems.
Thus, current mobile transactional systems fail to provide
the so much needed adaptability to the large set of usage
scenarios and applications. This adaptability is strongly de-
pendent on the semantics of applications.

To solve the above mentioned problems we designed
and implemented MobileTrans, a transactional object-based
peer-to-peer mobile system that supports the definition and
enforcement of mobile transaction policies. By means of a
policy specification and a carefully designed platform, Mo-
bileTrans supports the flexibility and adaptability needed
for mobile networks of info-appliances with a minimum
programming effort.

Each node running MobileTrans is able to access objects
provided by any other node. When serving objects to oth-
ers, a node works as a server; when getting objects from a
remote node, it works as a client. Objects may contain refer-
ences to other objects on others nodes, forming distributed
graphs of objects. Objects are only allowed to be accessed
in the context of a transaction. Transactions are executed
under a distributed optimistic concurrency control protocol
ensuring serializable histories.

The transactions’ behavior can be adapted in run-time to
deal with the specific scenarios and applications needs. In
particular, MobileTrans transaction policies focus on deal-
ing with disconnection and on specifying the minimum con-
sistency and atomicity properties of a transaction:

• Consistency: It is possible to specify consistency rules
that allow the usage of outdated versions of objects if
the corresponding remote node is not available. This
can be done per object or per set of objects.

• Fetching: The policy describes if (and how many) ob-
jects must be pre-fetched before executing the transac-
tion or if objects should be fetched on demand while
the transaction executes.

• Delegation: When a transaction is about to be com-
mitted, it is possible to delegate the transaction, i.e. to
transfer the commit responsibility to other node.

• Atomicity: The policy can specify if the transaction can
commit even if it not all nodes involved in the transac-
tion are reachable, i.e. if some changes can be dropped.

• Caching: When executing transactions, it is possible
to store both the fetched objects and the committed
objects by local transactions, in a node’s cache. This
feature is essential for providing access to data during
disconnection.

• Failure Handling: The policy is also responsible for
determining how to react when the specified condi-
tions of consistency, fetching and atomicity do not hold
(due to contingencies of the network). For instance,
the policy may specify that the transaction should be
suspended until some event occurs. The policy is also
allowed to change the transaction configuration in run-
time in order to handle failures accordingly.

To implement a transaction, in addition to its code (i.e.
objects methods), the application developer must specify
and provide a transaction policy. The specification of a pol-
icy consists simply on assigning a set of attributes that will
determine the behavior of a transaction. It declares the con-
ditions that a transaction must hold and the procedure to be
executed in case those conditions can not be enforced. The
same policy can be applied to several transactions.

MobileTrans provides a high degree of flexibility in two
ways. First, for the application developer: the policy can be
either declarative (e.g. XML) or programmatic (e.g. Java,
C#); in the later case, the developer has a high degree of
control and can react and change, in runtime, the specifica-
tions enforced by the policy. Second, for the platform de-
veloper: MobileTrans is designed to be extensible in order
to allow the inclusion of other attributes to support features
not yet predicted.

Thus, the main contribution of MobileTrans is its support
for transactional awareness in the sense that a transaction
behaves according to a policy previously specified so that it
can adapt to applications and mobile scenarios.

This paper is organized as follows. In the next section
we present an overview of MobileTrans focusing both on
its architecture and on the transaction model. Section 3 ex-
poses the transaction policy mechanism of MobileTrans. In
Sections 4 and 5 we present the details of the current imple-
mentation and its evaluation, respectively. Section 6 com-
pares our work with others and in Section 7 we draw some
conclusions and present future directions.

2. System Overview

We consider both a network which can be simply made
of mobile nodes with no other infrastructure, i.e. an ad-hoc

Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04) 
0-7695-2141-X/04 $ 20.00 © 2004 IEEE 



JVM  or CLR 

OBIWAN Runtime Services

Operating System

M-OBIWAN
Bridge

OBIWAN
 Proxies

Application Objects (replicated)

class extension code

generated by MOBIWAN compiler

MobileTrans

Figure 1. System architecture overview.

network, and also a scenario in which mobile nodes con-
nect to the fixed network. Thus, mobile nodes may connect
both to others mobile nodes or to other fixed nodes, typ-
ically for limited amounts of time, and their connections
may fail due to its inherent mobility. In addition, due to its
size, such portable devices are resource constrained (mem-
ory, processing, power, etc.).

While working as a server, a node provides information
in the form of objects. Objects contain references to other
objects building graphs of objects. A node where an object
was created is called the object’s home node.

Any object, which is part of a graph of objects, may be
given a human readable name. Such objects can be seen as
roots of a (sub)graph. An object graph may contain several
named objects, i.e. roots. Applications obtain references to
such objects, from a name service, given their name.

Nodes access objects (i.e. a single object, a full graph or
subgraphs), provided by others, by replicating them locally;
we call this operation, object fetching. Such access is done
within a transaction and replication is performed automati-
cally and transparently.

2.1. Architecture

MobileTrans is a middleware platform (see Figure 1) that
provides support for the development and execution of ap-
plications. Applications are able to access objects accord-
ing to a distributed transaction semantics. MobileTrans has
two main components; its kernel, called MOBIWAN, and
MobileTrans itself. We describe both in the next sections.

2.1.1 MOBIWAN

MOBIWAN is an evolution of OBIWAN [19, 8], a middle-
ware platform that provides transparent, yet adaptive, in-
cremental replication of object graphs. OBIWAN has been
extended in order to both accommodate the transactional
needs of MobileTrans and also to improve its performance
on resource constrained devices (e.g. PDAs).

MOBIWAN supports the incremental replication of large
object graphs into mobile nodes, allows the creation of dy-
namic clusters of data, and provides hooks for the applica-
tion programmer to implement a set of application specific
properties such as relaxed transactional support or updates
dissemination (which MobileTrans uses).

MOBIWAN is a set of runtime services on top of either
the Java or .Net virtual machines. It is comprised of five
parts: runtime services, a mobile-device bridge (for com-
munication purposes between nodes), an open-compiler
(that generates code automatically), proxies and class exten-
sion code (automatically generated). The base runtime ser-
vices include, mainly, object registration, name service, ob-
ject repository discovery and connection, and custom event-
handling.

For the purpose of this paper, the most relevant MOBI-
WAN data structures are the proxy-out/proxy-in pairs [18].
A proxy-out (an out-going proxy) stands in for an object
that is not yet locally replicated. For each proxy-out there
is a corresponding proxy-in (an in-coming proxy).

When a not yet locally replicated object is invoked for
the first time, the corresponding proxy-out interacts with its
counterpart proxy-in (residing at the remote node) to per-
form the replication of the corresponding object. This en-
ables the incremental replication of object graphs. Once ob-
jects are locally replicated, invocations are direct, i.e. with
no indirection at all. This is achieved by careful combina-
tion of proxies and referring objects. Proxies also mediate
object updating, i.e. when local replicas are sent back to
remote nodes. This happens when a transaction commits.

Replication of more than a single object is also permit-
ted, obviously. In particular, the programmer may specify
at run-time the amount of objects that should be replicated.
So, a whole cluster (i.e. a subgraph of objects) can be repli-
cated in a single step instead of replicating a single object
individually. This mechanism is extremely useful as it al-
lows to replicate, as a whole, a set of objects that are to be
accessed within a transaction.

Communication among nodes is performed using a
bridge based on a set of web-services. These services are
set-up on each node, and are invoked by proxies-out and
runtime services. The web-services encapsulate all com-
munication and delegate requests on to other nodes.

An open-compiler, called obicomp, automatically gen-
erates code for proxy classes and augment application
classes. This augmentation process does not interfere with
application-logic methods. It simply implements, automati-
cally, special-purpose code so that classes are able to create
replicas of their instance objects. Proxy and class-extension
code do not include communication related code in order to
increase flexibility in object replication and updating.

To simplify design, increase modularity and allow dif-
ferent, more sophisticated replication techniques, every

Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04) 
0-7695-2141-X/04 $ 20.00 © 2004 IEEE 



step of object replication (into a mobile node) and up-
date (back to remote nodes) is performed by handling spe-
cially defined events. Specific events (e.g., before-replica,
after-replica, before-update, etc.) are triggered by MOBI-
WAN. Default handlers for these events are implemented
in the base runtime services performing basic semantics
expected. Nonetheless, the application, either explicitly
or in its declarative setup/configuration can define differ-
ent handlers with added versatility, flexibility, different Qos
and fault-tolerance, either replicating objects or performing
their update. These primitives are used by MobileTrans as
they are the basis upon transactional concurrency control
and transactional policy mechanisms are built.

2.1.2 MobileTrans

MobileTrans runs on top of MOBIWAN and makes exten-
sive use of the provided hooks. In other words, it imple-
ments the event handlers related to object replication (i.e.
fetching of objects being accessed within a transaction) and
to object update back into the remote nodes (i.e. when the
transaction commits). These event handlers implement spe-
cific transaction mechanisms concerning concurrency con-
trol, atomicity, etc.; in particular, they behave according to
a transaction policy previously defined.

2.2. Transaction Model

Within a transaction, object graphs provided by other
nodes (the coordinator and the cohort nodes in transactional
terminology) are replicated (i.e. fetched) into a mobile node
where they are then read and written. The set of fetched ob-
jects that are read/written is called the readset/writeset; the
union of the read and the write sets is the dataset. A trans-
action that performs reads and writes is called a read-write
transaction; a transaction that only performs reads is a read
only transaction.

Concurrency control is based on a distributed multi-
version parallel validation algorithm (MVPV) [2]. MVPV
is an optimistic concurrency control protocol that ensures
serializable histories. It consists on three phases: the read,
the validation and the write phases. MVPV is also a multi-
version scheme, where new object versions are created once
updates are made. Each running transaction, when in the
read phase, is provided with a consistent view, which is the
result of a serial execution of transactions that has already
committed when the transaction started. The distribution of
this algorithm is based on the 2PC protocol.

MVPV has important benefits for a mobile environment.
Since a transaction does not see the results of concurrent
read-write transactions, transactions behave predictably and
read-only transactions need not be validated. It is only nec-
essary to validate against read-write transactions to enforce

void AddAppointment ( Appoin tment ap , S t r i n g [ ] h o s t s ,
T r a n s a c t i o n P o l i c y p o l i c y ) {
T r a n s a c t i o n t = new T r a n s a c t i o n ( p o l i c y ) ;
t . Begin ( ) ;
f o r ( i n t i = 0 ; i < h o s t s . l e n g t h ; i ++) {

boo l u n s c h e d u l l e d = t rue ;
Appoin tment a = t . Get ( ” S c h e d u l e ” , h o s t s [ i ] ) ;
f o r ( Appoin tment i =a ; a != n u l l ; a=a . n e x t ( ) ) {

i f ( a . C o l l i d e ( ap ) ) {
u n s c h e d u l l e d = f a l s e ; break ;

}
}
i f ( u n s c h e d u l l e d && a ! = n u l l ) { a . Append ( ap ) ; }

}
t . Commit ( ) ;

}

Figure 2. Example of a transaction.

serializable histories. Furthermore, cascading rollbacks can
not occur; the cohorts do not store any state for remote
transactions; and there is no need to contact the cohorts if
the transaction is aborted. However, since a new version
is created once an object is updated, the amount of storage
space need is significant. However, this is not a drawback
because such versions are only kept if there is enough space
(subject to policy specification).

MobileTrans uses a modified version of the MVPV al-
gorithm, in two ways. First, it is adapted for handling ob-
jects instead of database relations. Second, based on pol-
icy specification, it provides configuration facilities adapt-
ing the transaction behavior and increasing its flexibility.

Application developers must use a set of primitives to
implement a transaction: Begin, Get, Set, Commit and Abort.
A transaction’s lifespan can be divided in two phases: the
fetch phase and the commit phase. The fetch phase con-
sists on the read phase of the MVPV. It starts with a Begin

primitive and admits arbitrary invocations of the Get and Set

primitives for fetching and updating objects, respectively.
The commit phase begins when Commit is performed, and
the transaction is aborted with Abort. Commit phase per-
forms both the validation and the write phases of MVPV.

3. Transaction Policies

Consider a scenario where each network node exports
a schedule which contains a list of appointments. It is a
linked list of objects, each representing an appointment.
The schedule head list is assigned a well know name Sched-

ule. The code of Figure 2 presents a trivial yet motivating
example of a transaction in such scenario.

This transaction consults the lists of a set of nodes and at-
tempts to schedule a new appointment. For example, if this
method was called with hosts={”a.pt”,”b.pt”,”c.pt”}, the trans-
action would fetch the schedules of the listed hosts. For
each schedule, the transaction checks if the new appoint-
ment conflicts with an already scheduled appointment. If

Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04) 
0-7695-2141-X/04 $ 20.00 © 2004 IEEE 



Attributes

Name Value Arguments

consistency

.object
required –
replica –
dispensable –

.degree
high –
medium –
low –

fetching

.object
random depth
node depth, node
randset depth,{node}

.mode
ondemand –
prefetch {obj}

delegation

.coordinator
random –
node node
randset {node}

.responsibility
local –
foreign –

atomicity
.object

mandatory –
tentative –

.degree
high –
low –

caching
.read

yes –
no –

.write
yes –
no –

failure

.consistency

.fetching

.delegation

.atomicity

.user.*

abort –
retry attribute

suspend
.timeout time, attribute
.reshape attribute
.user attribute

Table 1. Attributes of transactions.

it does, the appointment is not added to the schedule. The
transaction does not demand every schedule to have a free
slot. This example is used for the remainder of the paper to
help understand how MobileTrans can support different be-
haviors for the same transaction, without changing its code.

3.1. Configuration Facilities

In MobileTrans, it is possible to specify the exact behav-
ior of a transaction according to a set of predefined param-
eters called attributes. The full list of MobileTrans transac-
tion attributes is presented in Table 1.

An attribute is identified by a unique name. This name
is hierarchical (a sequence of identifiers separated by dots)
to provide a better organization of the attribute namespace.
This structure is purely syntactic. For example, consis-

tency.object and consistency.degree are names of attributes.
An attribute can be assigned a value. Some values, such

as suspend.timeout, can also be parameterized with argu-
ments. The set of values that can be assigned to an attribute
is called the domain. Each attribute has its own domain.
The domain of attribute consistency.object is the set {required,
replica, dispensable}. The value namespace is also organized
hierarchically (e.g. suspend.timeout and suspend.reshape).

It is said that an attribute is instantiated when a

value is assigned. The instance is the pair iattr =<
name, value >, which represents that assignment. In-
stances are valid in the context of a transaction and are only
valid during the transaction life span. Instances of one trans-
action do not interfere with other transactions.

Some attributes are relevant for the whole transaction,
while others refer to a specific object of the transaction’s
dataset. The former ones are called transaction attributes,
the later ones are called object attributes.

A transaction is said to be configured when all its at-
tributes are instanciated. This means that MobileTrans is
now fully instructed about the desired behavior for that
transaction and the transaction can be executed. Thus, con-
figuring the behavior of a transaction consists on choosing
the values of the transaction’s attributes.

In the remainder of this section, we present the major
configuration facilities of MobileTrans and describe the at-
tributes relevant for each facility.

3.1.1 Consistency

MobileTrans provides facilities to control the quality of the
fetched data, by specifying the relevance of each object’s
consistency to a transaction. There are two relevant at-
tributes. One is the object attribute consistency.object. It is
evaluated by MobileTrans whenever the object is fetched.
The other is the transaction attribute consistency.degree. It
defines degrees of consistency for the transaction according
to the consistency requirements of objects. This attribute is
read before the read stage begins and is used every time an
object is fetched.

The semantics is as follows. If the value of consis-

tency.degree is high, it is required that all objects be fetched
from its home nodes. If some object is required for reading,
the transaction can not proceed until it is possible to get a
replica of the object from the home node. This ensures that
the transaction gets a consistent view of data.

If the consistency.degree value is medium, only the home
nodes of the objects marked as required must be directly
reachable. If the home nodes of objects marked as replica

or dispensable are not reachable, MobileTrans must provide
a copy of the objects from the local cache or from caches
of online nodes. Is not guaranteed that objects fetched from
caches are consistent.

Finally, if the degree is low, the home nodes of the data
marked as required must be reachable, and, at least, some
version of the objects marked with replica must also be
reachable. If the data marked as dispensable is not reach-
able, the transaction may still proceed and are returned null
references to the transaction.

In the example, suppose the schedule of a is marked as
required, b as replica and c as dispensable, respectively. This
makes sense, if hosts a and b are more relevant than c. If all

Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04) 
0-7695-2141-X/04 $ 20.00 © 2004 IEEE 



nodes are online, it makes sense that the degree be high, and
the transaction can be executed among all the nodes. How-
ever, if c is not online, it may still be important to execute
the transaction. Hence the degree would be set to low. The
intermediate attributes can also be useful if it is preferable
to fetch inconsistent object versions than none at all.

3.1.2 Fetching

In MobileTrans it is possible to fetch an object according
to two semantics: on a prefetch basis, which means that
objects (sub)graphs are fetched into the transaction’s con-
text before the transaction starts executing; or on-demand,
in which case, objects (sub)graphs are only fetched upon
the first access, on transaction execution.

For this purpose, the object attribute fetching.object must
be provided. It informs MobileTrans about the host from
which to fetch the object and the depth1 of its graph. There
are three possibilities: (1) to fetch the object randomly from
one of the nodes currently online (random); (2) to fetch ran-
domly from a list of possible nodes (randset), where it is
necessary to provide the name of the possible hosts; or (3)
to fetch the object from a specific node (node). This attribute
is evaluated before each object is fetched.

The fetching.mode attribute tells MobileTrans if it is nec-
essary to prefetch the objects or not. In the first case, the
value is prefetch, and it is necessary to provide the identifier
of the root object whose graph is to be prefetched. Objects
not listed are fetched on demand. If the value is ondemand,
every object is fetched on demand, i.e. when read by the
first time.

In the schedule example, suppose that host c is about to
leave the network or to become powerless. In this case, it is
interesting to prefetch the whole object graph to prevent the
inaccessibility of data. Since the other nodes will continue
online, objects can be fetched on-demand. But, if b leaves
the network during the transaction, by specifying the fetch-

ing.object attribute, MobileTrans, can be instructed to fetch a
version of that object from other node.

3.1.3 Delegation

The coordinator is responsible for the initiation and coordi-
nation of a transaction. In MobileTrans it is possible to del-
egate the responsibility of commitment to another node, i.e.
the role of ”coordinator” will be performed by other node.
This role consists on the execution of the 2PC protocol.

This feature is configured by assigning the transaction
attribute delegation.responsibility with values local or foreign.
The former means that the coordinator remains the same.
The later activates delegation.

1Depth of a root object, is the number of object references that need to
be transversed from the root to any other object, reachable from the root.

If delegation is specified, it is necessary to assign the
transaction attribute delegation.coordinator which identifies
the node of the new coordinator. Similarly to fetching,
there are three possibilities of identifying the nodes: random,
ranset or node.

3.1.4 Atomicity

MobileTrans can be instructed to drop some changes made
by the transaction. It is possible to specify the identification
of the objects that must be updated during commit and the
objects that do not cause the transaction to abort in case it
is not possible to commit them successfully (e.g. the home
node is not online).

For this purpose it uses two attributes: the object at-
tribute atomicity.object, which is evaluated by MobileTrans
whenever the commit protocol is executing; and the atomic-

ity.degree attribute that defines the desired atomicity degree
for the transaction. The latter attribute is necessary before
the commit protocol starts.

The procedure is as follows. If atomicity.degree is high, the
home nodes of all the modified objects (writeset) must be
reachable and the local commit of all the participants must
be valid. All the changes must be stored, thus providing the
higher level of atomicity.

The alternative is to set atomicity degree as low. In this
case, only the home nodes of the objects marked as manda-

tory have to commit successfully. If the home nodes of ob-
jects marked as tentative are not reachable or if they can-
not commit locally, these changes can be discarded and the
transaction can still commit.

In the example, suppose that the schedules of a.pt and
b.pt were marked as mandatory and c.pt as tentative. If the
degree was high, the transaction would only commit if all
changes where submitted. But if the degree was dropped
to low, if host c.pt becomes unreachable during commit, for
example, the transaction would still commit. Obviously this
assignment is dependent on the application semantics.

3.1.5 Caching

MobileTrans can be configured to store copies of objects
that belong to the transaction’s dataset in the local cache.
Two attributes are relevant. The caching.read attribute, in-
forms MobileTrans if the fetched replica of object must be
locally cached or not. The caching.write attribute, if the ob-
ject is modified and is successfully committed, tells Mo-
bileTrans that its new version must be stored (or not) in the
local cache. By specifying such attributes, it is possible to
make data available even if it is not possible to fetch objects
from its home nodes. Thus, this facility can be quite useful
to keep on working even while disconnected.

Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04) 
0-7695-2141-X/04 $ 20.00 © 2004 IEEE 



3.1.6 Failures

If the conditions specified by the current attribute in-
stances can not hold, MobileTrans provides a facility for
describing how such failures should be handled. The rel-
evant failure conditions are associated with the attributes
failure.consistency, failure.delegation, failure.atomicity and fail-

ure.fetching. The first two are evaluated when the degrees of
consistency or atomicity, respectively, can not be ensured.
The others are evaluated when fetching can not be executed.

The value assigned to each of these attributes informs
MobileTrans of the action that must be taken to overcome
the respective failure. However, given the set of avail-
able actions, application developers may need to execute
a recovery procedure that involves a sequence of actions.
Therefore, MobileTrans provides a way for describing such
sequence. It consists on allowing developers to add new at-
tributes to the failure.user.* namespace which represent a step
in the recovery procedure. These attributes can be used as
arguments of the value associated with the failure attributes.
Thus, MobileTrans can be informed of the next attribute to
be read and, hence, to describe the next action to be taken.

All the failure.* attributes have the same domain. When
the abort value is assigned, it means that the transaction
should be immediately aborted. The other values are de-
signed to make possible to recover the transaction by reeval-
uating the condition that gave rise to the failure. The retry

value, performs this reevaluation and it must be given, as
argument, the user attribute that must be read in case the as-
sociated condition can not still be performed. Since this ac-
tion performs a new attempt immediately, MobileTrans also
provides the suspend.* values which means that the transac-
tion should be suspended until some specific event happens.
Currently, there are three predicted events, which define
three attributes: suspend.timeout, suspending the transaction
for a specified period of time; suspend.reshape, which sus-
pends the transaction until the system detects a change of
the network topology (some node enters or leaves the net-
work); and suspend.user, where the transaction is suspended
until it is sent an event by the application (dependent on
the application semantics) using the MobileTrans API. All
the suspend.* values expect, as argument, a user attribute.
When the suspend event is triggered, MobileTrans consults
the user attribute which contains the next action to be per-
formed.

For example, suppose that when some object could not
be fetched, we would like to retry the fetching after the net-
work topology has changed, to check if the searched node is
in range. If the node does not appear, the transaction must
abort. In this case it would be necessary to define the fol-
lowing instances:
i1 =<failure.fetching,suspend.reshape(failure.user.attr1)>,
i2 =<failure.user.attr1,retry(failure.user.attr2)>,
i3 =<failure.user.attr2,abort>.

POLICY ( AName n , CtxData c , EnvData e ) → AValue {
AppData a ;
s w i t c h ( n ) {

case a t t r i b u t e 1 . name :
/ / v a l u e1x ∈ a t t r i b u t e 1 . domain
i f r u l e 11 ( c , e , a ) → < v a l u e11 , a r g11 ( c , e , a )>;
. . .
i f r u l e 1n ( c , e , a ) → < v a l u e1n , a r g1n ( c , e , a )>;
i f TRUE → < v a l u e1−default>;

. . .
case a t t r i b u t e m . name :

/ / v a l u e my ∈ a t t r i b u t e m . domain
i f r u l e m1 ( c , e , a ) → < v a l u e m1 , a r g11 ( c , e , a )>;
. . .
i f r u l e mn ( c , e , a ) → < v a l u e mn , a r g11 ( c , e , a )>;
i f TRUE → < v a l u e m−default>;

}
}

Figure 3. Model of the transaction policy.

Policies make possible that during these recovery pro-
cedures, any attribute of the transaction can be reassigned.
Thus, it is possible to describe complex recovery procedures
according to the application semantics.

3.2. Policy Rationale

The specification of the attribute instances for a transac-
tion in MobileTrans is a transaction policy. Until now, we
have assumed that the transaction is fully configured before
the transaction begins. However, using a transaction policy,
the attribute instances can be provided at runtime. When
necessary, MobileTrans asks the transaction policy for the
value of each attribute. The policy returns a value from the
attribute domain along with its arguments.

The model of the transaction policy is depicted in Fig-
ure 3. A transaction policy can be viewed as a sequence of
rules. A rule is a function which associates an attribute to a
value of the attribute’s domain, according to some test con-
dition. These conditions can take into account data items
from several sources:

• Context data: This information is provided by Mobile-
Trans in the CtxData data structure. This data structure
contains information related to the transaction (e.g. the
read set, the write set, the transaction identifier). In
case the requested attribute is an object attribute, this
parameter also contains information about the object,
such as: the object’s name and the object’s home node
name.

• Environment data: It is also provided by MobileTrans
to the policy in the EnvData data structure. It is a
resource to get information about the environment.
Namely, it describes: the current online nodes, the
available bandwidth and the current power availability.

Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04) 
0-7695-2141-X/04 $ 20.00 © 2004 IEEE 



<!−− E x c e r p t o f conf.xml −−>
<t r a n s a c t i o n>

<a t t r i b u t e name=” c o n s i s t e n c y . o b j e c t ”>
<r u l e cond=” o [ h o s t ]== ’ a . p t ’ ” v a l u e =” r e q u i r e d ” />
<r u l e cond=” o [ h o s t ]== ’ b . pt ’ ” v a l u e =” r e p l i c a ” />
<r u l e cond=” o [ h o s t ]== ’ c . p t ’ ” v a l u e =” d i s p e n s a b l e ” />
<r u l e cond=” t r u e ” v a l u e =” r e q u i r e d ” />

</ a t t r i b u t e>
<a t t r i b u t e name=” c o n s i s t e n c y . d e g r e e ”>

<r u l e cond=” t r u e ” v a l u e =” h i gh ”>
</ a t t r i b u t e>
. . .

</ t r a n s a c t i o n>

/ / A p p l i c a t i o n code
T r a n s a c t i o n P o l i c y p = new T r a n s a c t i o n P o l i c y ( ” con f . xml ” ) ;
. . .

Figure 4. Declarative specification.

c l a s s A {
AValue RuleCO (AName n , CtxData c , EnvData e ) {

i f ( c [ ” o b j e c t . h o s t ” ] = = ” a . p t ” ) {
re turn new AValue ( ” r e q u i r e d ” ) ;

}
i f ( c [ ” o b j e c t . h o s t ” ] = = ” b . p t ” ) {

re turn new AValue ( ” r e p l i c a ” ) ;
}
i f ( c [ ” o b j e c t . h o s t ” ] = = ” c . p t ” ) {

re turn new AValue ( ” d i s p e n s a b l e ” ) ;
}
re turn new AValue ( ” r e q u i r e d ” ) ;

}
AValue RuleCD (AName n , CtxData c , EnvData e ) {

re turn new AValue ( ” h igh ” ) ;
}

}
/ / A p p l i c a t i o n code
T r a n s a c t i o n P o l i c y p = new T r a n s a c t i o n P o l i c y ( ) ;
A a = new A ( ) ;
p [ ” c o n s i s t e n c y . o b j e c t ” ] . AddRule ( a . RuleCO ) ;
p [ ” c o n s i s t e n c y . d e g r e e ” ] . AddRule ( a . RuleCD ) ;

Figure 5. Programmatic specification.

• Application data: The policy can also contain internal
semantic information related to the application. Thus,
the application can also be determinant in the way val-
ues are assigned to attributes. This data is represented
as the type AppData.

Several rules can be associated for each attribute. When
the policy is queried, the rules of the corresponding attribute
are evaluated in cascade. MobileTrans requires that each
attribute provides a default rule.

3.3. Policy Specification

A policy is implemented as a class which implements
the policy rules. The application developer is responsible
for creating and initializing the policy that will be used for
configuring the transaction. There are two approaches for
such initialization: declarative and programmatic.

A declarative specification consists on describing the

policy rules on a XML file. The initialization of the transac-
tion policy consists on loading the policy with rules stored
in the file. An example can be seen in Figure 4.

The programmatic approach (see Figure 5) consists on
providing the transaction policy all the required rules. The
rule is a method that receives, as arguments, the attribute
name, the context data and the environment data, and must
return a value. Its implementation fully depends on the ap-
plication. These methods are called by MobileTrans when
it is necessary to get the values of attributes.

4. Implementation

The prototype implementation was developed both on
.Net and .Net Compact Frameworks, using C# as primary
language. The OBIWAN runtime services and MobileTrans
were developed using Remoting services. The MOBIWAN
Bridge was developed as a web-service, and runs on top of
Internet Information Server. The obicomp compiler auto-
matically generates proxies coded in C#. Parsing of class
code only accepts C# source code and extends classes with
replication-specific code. Due to this last feature, applica-
tions must still be developed only in C#. This is not a major
drawback. Nonetheless, we intend to address this issue by
also parsing VB.Net code. The platform library and proxy
code need not be changed since the .Net VM is able to mix
execution of assemblies written in different languages. In
application code, the programmer simply needs to insert in-
structions to discover and fetch repositories. From that on,
only application-logic code is required and communication
is transparently handled by proxies. Once objects are repli-
cated, their local proxies are discarded by the local garbage
collector. The programmer never needs to invoke object
replication explicitly.

5. Evaluation

To demonstrate how transaction policies can be used to
improve the adaptability of transactions, consider the sce-
nario referred in Section 3. Suppose that nodes a, b, c and
x are in a room. Then, x decides to execute the transaction
AddApointment, with the other nodes names as argument.

Before the transaction begins, suppose that x already
knows that a is going to leave the room temporarily but
will come back again. So, it prefetches a’s schedule while
it is online. The transaction executes normally on x. If
the schedule was not changed, the transaction is read-only.
Therefore, the transaction can commit even if a does not
come back online. Otherwise, if it is a read-write transac-
tion, the transaction only commits if a comes back online.

Suppose that it is a read-write transaction, but a had to
go out definitely. In this case the user may not desire to

Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04) 
0-7695-2141-X/04 $ 20.00 © 2004 IEEE 



0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1
0

3
0

5
0

7
0

9
0

1
1

0

1
3

0

1
5

0

1
7

0

1
9

0

2
1

0

2
3

0

2
5

0

2
7

0

2
9

0

# invocations

m
il

li
s

e
c

o
n

d
s

5

10

25

50

75

98

Figure 6. Performance with various replica-
tion depths.

wait indefinitely. He may prefer to discard the updates on a,
but still commit the transaction with the other online nodes
b and c. Thus, the atomicity degree of the policy can be
dropped to allow the commitment of the transaction.

Consider instead that a must get the updates and the
transaction must commit, but node x has to leave the room.
Nodes b and c still remain in the room. In that case, the
commitment of the transaction can be delegated to one of
the nodes. Thus, when a returns, all the transaction cohorts
are present and the transaction will be able to commit.

In these situations, just by specifying the transaction pol-
icy, without changing the transaction code, the transaction
is able to adapt according to the application needs.

5.1. Quantitative Evaluation

Besides the qualitative evaluation, we analyzed the pro-
totype performance with a micro-benchmark: series of iter-
ations were executed on a hypothetical list of appointments
with 1000 elements with a payload of 64 bytes each.

The performance tests were executed with the following
infrastructure: a Pentium 4, 2.8 Ghz, 512 MB PC, an IPAQ
3360 Pocket PC and a Bluetooth USB adapter.

Cold connection setup time was about 8500 ms in each
experiment. The replication mechanism was configured, by
means of different policies, to replicate objects on-demand
with a depth of 5, 10, 25, 50, 75 and 98 objects at a time.
This way, every time a proxy is replaced and the corre-
sponding object is replicated, a number of others, refer-
enced by it, are also pre-fetched.

The limit depth, 98, is imposed by stack restriction on
.Net CF. The graph shows that replication performance is
latency-bound, i.e., it is most efficient when several (more
than 25) objects are replicated each time.

These are rather encouraging result for various reasons:
i) naturally, on-demand object replication of objects masks
communication latency and minimizes memory usage by
applications, ii) the number of objects pre-fetched for near
optimal results needs not be too large (25 or 50). Best re-
sults are achieved with higher replication depths (75 or 98)
but these could waste more memory if only a few of the
objects pre-fetched are actually accessed.

6. Related Work

Most research on mobile transaction systems considers
networks where mobile hosts (MHs) connect wirelessly to
fixed base stations. In other words, they do not consider ad-
hoc networks of MHs. Thus, their solutions are typically
client-server based.

In such systems, one important issue is the disconnection
of MHs. Concerning disconnection, the most common ap-
proaches (e.g. Pro-Motion [17], Clustering [16] and Gold
Rush[4]) were inspired by the Coda file system [12]. When
the MH is connected to the fixed network through a base
station, data is cached in the MH. While the MH is discon-
nected, data locally cached can be accessed inside trans-
actions and logged in the MH. Upon reconnection, transac-
tions are reconciled in the database server (accessed through
the base stations). The Prewrite model [15] handles discon-
nection differently, dividing the transaction in two phases:
one that must be executed online, and other that can be ex-
ecuted while disconnected.

Some mobile transaction systems use semantic informa-
tion to adapt the behavior of transactions. In Pro-Motion
data is encapsulated in compacts which allow the defini-
tion of consistency rules to be applied to such data set as
a whole. In Clustering it is possible to specify consistency
degrees among replicated data. Moflex [13] also provides
a mechanism for describing the associated behavior while
crossing wireless cells. With Toggle [7], it is possible to
specify different atomicity and isolation degrees, by divid-
ing a transaction in vital and non-vital subtransactions.

It’s worthy to note that most of the above mentioned
proposals use semantic atomicity as its correctness criteria.
This has two drawbacks. First, it is not possible to ensure
serializability, thus it is not general enough for developing
transactions that require serialization. Second, the devel-
oper, for each transaction, must implement a compensating
transaction, which can be complex and time consuming.

Research has been done also to extend transaction mod-
els (ETM) [3], in order to make them more suitable for
the requirements of mobile applications. Some frameworks
where developed with focus on the design of such ETMs us-
ing application’s semantic information. The ACTA frame-
work [5] constructs a theoretical model that helps reason-
ing about and compare different ETMs. Inspired by ACTA,

Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04) 
0-7695-2141-X/04 $ 20.00 © 2004 IEEE 



Asset [1] allows users to define custom transaction seman-
tics for specific applications. It provides primitives that can
be composed together to define a variety of ETMs. Aster
[9]presents a formal method for the systematic synthesis of
transactional middleware, based on the formal specification
of transaction properties and stub code generation.

Solutions have also been proposed that provide facilities
for configuring the concurrency control protocol accord-
ing to application’s semantic information. CORD [11] in-
troduced the Concurrency Control Language (CCL); CCL
allows the application developer to specify a concurrency
control policy tailored to the behavior of the transaction
manager. PJama [14] is a proposal that is inline to what
is pursued by MobileTrans. Using PJama, application de-
velopers can define the desired transaction behavior while
maintaining transaction independence.

In short, in all these proposals, the support provided for
transactional policy specification is not appropriate for the
usage scenarios considered by MobileTrans.

7. Conclusions and Future Work

In this paper we introduced the design and implementa-
tion of MobileTrans, a transactional object based system for
mobile networks, that supports the definition and enforce-
ment of transaction policies. MobileTrans uses a distributed
optimistic concurrency control protocol.

Application developers, when using MobileTrans, along
with the transaction code, must specify a transaction policy.
This specification can be declarative by means of a configu-
ration file or programmatic which allow a higher degree of
control, even in runtime. Using transaction policies, devel-
opers are able to configure several aspects of the transaction
behavior, such as the specification of consistency and atom-
icity requirements, how the objects are fetched, if data is to
be locally cached, if delegation is required and how failures
are handled. Thus, transaction policies provide a power-
ful and flexible mechanism for configuring the behavior of
transactions according to application semantics.

MobileTrans is a platform under development, hence,
several features are now under study (e.g. refining the con-
currency control protocol, adding agent based technology,
automatic determination of the optimal depth on fetching).
Thus, it will be necessary to add new attributes in order to
increase the application awareness.

We also intend to increase the expressiveness of how
policies are declaratively specified. For that purpose, we are
considering an approach similar to the one presented in [6],
for developing a transaction policy specification language.

References

[1] A. Biliris et al. ASSET: A system for supporting extended

transactions. In R. T. Snodgrass and M. Winslett, editors,
Proc. of the 1994 ACM Intl. Conf. on Management of Data,
pages 44–54, 1994.

[2] D. Agrawal, A. Bernstein, P. Gupta, and S. Sengupta. Dis-
tributed multi-version optimistic concurrency control with re-
duced rollback. Distributed Computing, 2(1), 1987.

[3] N. S. Barghouti and G. E. Kaiser. Concurrency control in
advanced database applications. ACM Computing Surveys,
23(3):269–317, 1991.

[4] M. Butrico, H. Chang, A. Cocchi, N. Cohen, D. Shea, and
S. Smith. Gold Rush: Mobile transaction middleware with
java-object replication. In Proc. of the Third USENIX Confer-
ence on Object-Oriented Technologies, pages 91–101, 1997.

[5] P. K. Chrysanthis and K. Ramamritham. Synthesis of ex-
tended transaction models using ACTA. ACM Transactions
on Database Systems, 19(3):450–491, 1994.

[6] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The pon-
der policy specification language. Lecture Notes in Computer
Science, 1995:18–39, 2001.

[7] R. A. Dirckze and L. Gruenwald. A toggle transaction man-
agement technique for mobile multidatabases. In Proc. of the
CIKM 98, pages 371–377, 1998.

[8] P. Ferreira, L. Veiga, and C. Ribeiro. Obiwan - design and im-
plementation of a middleware platform. IEEE Trans. on Par-
allel and Distributed Systems, 14(11):1086–1099, Nov 2003.

[9] G. S. Blair et al. The role of software architecture in con-
straining adaptation in component-based middleware plat-
forms. In IFIP/ACM Intl. Conf. on Dist. Systems Platforms,
pages 164–184. Springer-Verlag New York, Inc., 2000.

[10] J. N. Gray and A. Reuter. Transaction Processing: Concepts.
Morgan Kaufmann, 1993.

[11] G. Heineman and G. Kaiser. The CORD approach to exten-
sible concurrency control. In 13th IEEE Intl. Conf. on Data
Engineering, pages 562–571, April 1997.

[12] J. J. Kistler and M. Satyanarayanan. Disconnected opera-
tion in the coda file system. ACM Transactions on Computer
Systems, 10(1):3–25, 1992.

[13] K. Ku and Y. Kim. Moflex transaction model for mobile het-
erogeneous multidatabase systems. In Proc. of the 10th Intl.
Workshop on Research Issues in Data Engineering, 2000.

[14] L. Daynes et al. Customizable concurrency control for per-
sistent java. In S. Jajodia & L. Kerschberg, editor, Advanced
Transaction Models and Architectures. Kluwer, 1997.

[15] S. K. Madria and B. Bhargava. A transaction model for
improving data, availability in mobile computing. Dis-
tributed and Parallel Databases: An International Journal,
10(2):127–160, 2001.

[16] E. Pitoura and B. Bhargava. Maintaining consistency of data
in mobile distributed environments. In Proc. of 15th Intl.
Conf. on Distributed Computing Systems, 1995.

[17] K. Ramamritham and P. K. Chrysanthis. A taxonomy of cor-
rectness criterion in database applications. Journal of Very
Large Databases, 4(1), 1996.

[18] M. Shapiro. Structure and encapsulation in distributed sys-
tems: the proxy principle. In Proc. of the 6th Intl. Conf. on
Dist. Systems, pages 198–204, Boston, May 1986.

[19] L. Veiga and P. Ferreira. Incremental replication for mobility
support in OBIWAN. In The 22nd Intl. Conf. on Distributed
Computing Systems, pages 249–256, July 2002.

Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’04) 
0-7695-2141-X/04 $ 20.00 © 2004 IEEE 


