A Scalable History-based Policy Engine

Pedro Gama, Carlos Ribeiro, Paulo Ferreira
INESC-ID/IST
Distributed Systems Group
Rua Alves Redol, n°9, 1000-029 Lisboa, Portugal
[pedro.gama, carlos.ribeiro, paulo.ferreira] @inesc-id.pt

Abstract— The increasing complexity and heterogeneity in dis-
tributed systems is drawing system administrators into applying
usage and access control policy engines. Higher-level policy
languages allow policy administrators to demarcate themselves
from implementation details, thus focusing on business rule
definition. More specifically, history-based policies allow the
specification of rules based on events that occurred in the past,
such as separation-of-duty related rules (e.g. an employee cannot
both issue a voucher and approve the payment).

Several policy engines already support history-based seman-
tics. However, they either provide limited expressiveness in policy
rules or they neglect critical scalability issues. Individual policy
definitions are disregarded in storage and lookup implemen-
tations, thus ignoring the potential for important performance
optimizations. Furthermore, purging meta-policy semantics are
not provided, inducing the growth of the past event repository
until policy evaluation becomes unmanageable.

We present an extension to the Heimdall' system, a history-
enabled policy engine which allows the definition, enforcement
and auditing of history-based policies. This extension targets the
scalability of Heimdall in practical environments, introducing an
evaluation optimizer and the concept of purging meta-policy tags.
An evaluation built on selected usage patterns corroborates the
effectiveness of our approach, denoting encouraging performance
results.

I. INTRODUCTION

Several usage constraints must be applied in runtime sys-
tems in order to control access to system resources. One
approach for the definition of such constraints is based on the
use of security policies[1]. These policies describe the access
rules with an high level of abstraction, clearly separating the
specification and the implementation of security mechanisms
[2].

Furthermore, usage and access control is increasingly based
upon advanced security patterns. The concept of history-based
policies is particularly relevant, as it allows the inclusion of
temporal events in the policy rules[3], [4], [5], [6]. Common
examples include separation of duty policies[7], [8], which
analyze previous actions in order to prevent a user from
executing potentially conflicting operations[9] (e.g. issuing and
paying the same check).

Several usage scenarios establish the relevance of history-
based policies:

1) A financial department wants to assure that a person

cannot both request an invoice payment and approve
such payment.

'Heimdall is the watchman of the gods in Norse Mythology. He guards
Bifrost, the only entrance to Asgard, the realm of the gods.

2) In order to control costs, an organization defines monthly
payment approval limits for its directors.

3) A doctor can only access medical data related to patients
he assisted in the past.

Moreover, in a multitude of environments, such as those
related to grid computing and peer-to-peer platforms, the high
user and resource variability hinders the enforcement of usage
and security policies employing only traditional access-control
concepts. Effectively, models such as ACLs and RBAC lack
the necessary expressiveness to apply a number of usage
patterns, as the ones exemplified below:

1) A Grid Scheduler wants to assure a minimum CPU QoS
to certain submitted jobs. Thus, it rejects job executions
in nodes where CPU-intensive applications are already
running.

2) A network-service provider wants to limit resource con-
sumption to a certain amount per week (e.g. each user
has a 10GB usage capacity each week). Additionally he
wants to reserve 10% of the capacity for its local users.

3) A resource manager wants to restrict job submissions in
situations where requests are continually rejected (e.g.
due to resource exhaustion). Therefore, it automatically
rejects any job from a user who had more than 2 job
submissions rejected in the past 5 minutes.

Obviously, the usage patterns presented above can be en-
forced programmatically by developing custom extensions
to the policy platform. However, such a solution not only
introduces potential security vulnerabilities, but it also makes
overall policy validation and maintenance difficult.

In addition, scalability concerns are seldom present in these
ad-hoc policy implementations. This constitutes a serious
problem in the case of history-based policies, because its
enforcement generally involves lookups over a large set of
past events (i.e. description of actions that occurred in the
past). Thus, the operation of the policy platform in a real world
environment quickly makes policy evaluation unmanageable,
due to the continuous growth of the past event repository.

The concept of history-based policies has already been
incorporated in several policy engines[10], [11], [12]. Al-
though some performance optimizations were added to these
platforms, none efficiently tackles the problems associated
with the increasing size of the event repository.

We propose scalability optimizations to history-based policy
engines based on two assumptions:

e Most policies are based upon a specific subset of the past
events (e.g. events containing a “Register” action). We
introduce the concept of Custom Event Sets, that allow
the defined event sets to be shared by several independent
policies, thus reducing processing time. Additionally, we
introduce an Event Set Optimizer, in order to establish the
iterative update of the Custom Event Sets, in opposition to
complete event set regeneration at evaluation time. As an
important side effect, Custom Event Sets also contribute
significantly to policy specification readability.

« Most events are only relevant for policy evaluation during
a certain period in time (e.g. for a month) or until a
certain condition is met (e.g. until the user has logged
out). Thus, a critical addition to history-based engines
is the concept of purging meta-policies. These policies
allow irrelevant events to be safely removed from the
past event repository (notice that events can be moved
into a secondary repository, if necessary by legal and/or
auditing reasons, rather than completely destroyed).

In summary, the platform presented in this paper, called
Heimdall, allows the specification and enforcement of history-
based policies. It proposes to tackle one of the most significant
problems of history-based policy enforcement: scalability.
The concept of Custom Event Sets, in conjunction with
the Event Set Optimizer, allow an efficient management of
subsets from the overall past events repository, thus increasing
policy evaluation performance. Furthermore, Custom Event
Sets contribute to policy specification readability and reuse.
In parallel, we introduce purging meta-policies, that keep the
past event repository in a manageable size, while assuring that
only irrelevant events are removed. To our knowledge, this is
the first practical design, implementation and evaluation of a
platform that explicitly proposes a solution for history-based
policy enforcement scalability.

This paper is organized as follows. In the next section
we present a general overview of Heimdall, describing a
generic application execution. In Section III we define several
extensions to the xSPL policy language. We then present
the architecture of the system in Section IV, describing the
various components of the platform. In Section V, we focus
on the prototype implementation, further evaluated in Section
VI. Then, we examine Heimdall within this scientific field
discussing some related work in Section VII. Finally, in
Section VIII we present our conclusions.

II. SYSTEM OVERVIEW

Heimdall is a Middleware platform with the architecture
depicted in Figure 1.

In order to allow an efficient specification and enforcement
of history-based policies, we formulated the following design
goals for Heimdall:

1) Provide an expressive, yet user-friendly, process for

specifying history-based policies.

2) Implement a scalable and agile policy engine.

3) Implement a modular architecture that allows an easy

integration with current runtime systems, while clearly

Services & Resources

Runtime System (e.g. JVM and .Net CLR)

Policy Enforcement Points (PEPs)

T

I %

3 8 Heimdall
& ™

7 .
Event Policy &5+ Policy
Heimdall Bridge T4 Monitor Decision
Web View 9 » Point (PDP)
2

\ 16, }5

'
- Polic -2 Policy Information Point (PIP)
oal olicy
Policy Administration Event Set
: Poi L Purge Engine

Repository | Point (PAP) Optimizer

2 9
Fig. 1. Overview of Heimdall.

separating policy specification and enforcement from
application development.

The first goal is achieved by combining several factors.
Heimdall’s expressiveness is based upon an extension of SPL
(Security Policy Language)[10], with significant extensions
regarding policy scalability and past event repository man-
agement. On top of this language we developed a user-
friendly web interface for policy specification and deployment.
Heimdall Web View allows policy administrators to focus
on business policy issues rather than on policy specification
details. Furthermore, Heimdall Web View allows policy ad-
ministrators to instantiate policy patterns (e.g. separation of
duty, grid fair resource usage, etc) in an automatic and error-
safe manner.

Concerning performance, Heimdall applies several optimiz-
ing and filtering techniques, such as automatically generated
and iteratively updated subsets of past events that, in associa-
tion with a purging mechanism (i.e. a mechanism that allows
the removal of irrelevant events from the past event repository),
significantly increase performance and scalability.

Finally, seamless integration with several runtime systems
(e.g. the Java Virtual Machine, the .Net Common Language
Runtime or the Globus Toolkit 4.0) is provided through
Heimdall interface modules, and more specifically the Event
Bridge (in the context of authorization policies). The input to
Heimdall is generated in the runtime system Policy Enforce-
ment Points by intercepting security critical operations (e.g.
access to a webservice).

For clarity we illustrate in Figure 1 the access to a generic
resource over a runtime system using Heimdall to enforce
history-based policies.

1) The policy administrator defines the organization’s
policies using Heimdall Web View. Policy definitions
(xSPL-based) are sent to the Policy Administration Point
(PAP) for deployment and enforcement.

2) The PAP, after storing the policy definitions, generates
a customized Policy Decision Point (PDP) for each one

of the deployed policies. In addition, it configures the
respective purge definitions in the Policy Information
Point (PIP).

3) A Policy Enforcement Point (PEP) in the runtime system
sends an operation description to Heimdall.

4) The operation description is received in Heimdall by
the Event Bridge Module. This module translates the
operation description into a normalized construct: the
xSPL event. This event is then sent to the Policy Monitor
for overall policy coordination.

5) The Policy Monitor contacts the Policy Decision Point
(PDP) in order to determine if the current event is
applicable for any of the deployed policies. The PDP
retrieves applicable past events from the PIP in order to
analyze the evolution of the policy.

6) If applicable for any of the policies, the current event
is stored in the PIP for future evaluation. Furthermore,
if the current event is specified in a Custom Event Set
(cf. Section II), the Event Set Optimizer is updated
with relevant event information.

7) After overall evaluation is concluded, the Policy Monitor
returns the authorization decision (i.e. an Authorize
or Deny statement) concerning the execution of the
specified action.

8) The Event Bridge translates the Authorization decision
into the runtime system format and returns the security
information to the PEP in the runtime system.

9) Periodically, the policy administrator can use the Heim-
dall Web View in order to analyze overall system status,
checking aspects such as deployed policies, event repos-
itory size, purging definitions, among others.

Notice that Heimdall’s expressiveness supports policy se-
mantics beyond history-based policies. However, in the context
of this paper we are specifically proposing scalability enhance-
ments to history-based policies. We thus focus the architecture
description on the modules related to this issue. For details
regarding the enforcement of other type of policies in Heimdall
see [13].

ITII. XxSPL

Heimdall policies are defined in xSPL (eXtended Security
Policy Language), an extension of the SPL language [10].
This language allows the definition of policies with complex
constraints, including history-based policies.

A. xSPL Basic Constructs

Each policy is defined by the composition of several rules.
Each rule is formed by two distinct sections:

< trigger expression :: decision expression >

The trigger expression specifies the applicability of the
rule. If this expression is true then it means the decision
expression part must be evaluated, and its result will constitute
the authorization decision for the present rule.

One of the central concepts in xSPL is the event. Each
action in the system, like a payment request or a resource

consumption, is mapped into a normalized event construct. An
event can either be instantiated in the Past Events Set (denoted
as ’pe’ in Figure 2), which represents the events previously
executed, or it can represent the operation being evaluated,
called the current event (always denoted as ’ce’ in Heimdall
implementation).

For clarity, we present in Figure 2 a definition in xSPL
of a policy that restricts voting to users that have previously
registered themselves in the system.

policy RegisteredVoting{
?RegisteredVoting ():
EXISTS pe IN PastEvents {
ce.action = "Vote”

pe.author = ce.author AND
pe.action = "Register”

}
}

Fig. 2. Example of a history-based policy in xSPL.

Although the task of defining this rule is several orders of
magnitude easier than coding the rule into the authorization
platform, we additionally allow policy administrators to in-
stantiate policy patterns in Heimdall web interface (named
Heimdall Web View).

B. Custom Event Set

Most history-based policy rules oblige the generation of a
relevant subset of past events, obtained through the successive
application of restriction conditions (e.g. all the login events
for the current user which took place during last week) over
the overall past event repository (existent in the PIP).

For clarity, consider the policy in Figure 3 that controls a
payment process. It specifies that a user cannot both issue
a payment order and subsequently authorize the payment
himself. For simplicity and space reasons we’ll use variations
of this policy throughout the remainder of this paper.

policy PaymentApproval{

?PaymentApproval:
NOT EXISTS pe IN PastEvents {

ce.action = "Approve_Payment”
ce.user = pe.user AND
pe.action = “Pay._invoice” AND
ce.action.invoicelD = pe.action.invoicelD

}

Fig. 3. Example of a Payment Approval policy specified in xSPL

without Custom Event Sets.

Representing the policy in such a way is definitely more
user-friendly and maintainable than using a lower-level lan-
guage directly (e.g. Java, .Net, C++, etc). However, the deci-
sion expression in the policy rule (i.e. the expression after
the ’::> sign), sequentially applies conditions to the global
PastEvents set in order to determine relevant events (i.e. the
”Pay Invoice” events belonging to the current user). This
process must be performed every time the policy’s trigger
expression is true (i.e. whenever a ”Approve Payment” action

is requested). Furthermore, these event sets are independently
specified and generated in other policies within the policy
repository, even if identical.

This is obviously not efficient, thus in Heimdall we propose
the specification of Custom Event Sets (illustrated in Figure
4 using the PaymentApproval policy). These sets not only
improve the readability of the policy, but also and more im-
portantly, allow the optimization of intermediary set generation
results (e.g. the userActions event set could be used in other
policies deployed in the system). This extension to the policy
engine increases history-based policy evaluation performance,
contributing significantly to the overall system scalability.

userActions = PastEvents @{.author = ce.user}
paymentOrders = userActions @{.action = "Pay.invoice”}

policy PaymentApproval{
?PaymentApproval:
ce.action = “Approve_Payment”

ce.action.invoicelD NOT IN paymentOrders

}

Fig. 4. Example of a Payment Approval policy specified in xSPL
using Custom Event Sets.

In the PaymentApproval policy specification of Figure 4,
we removed the existential operator (i.e. "NOT EXISTS pe
IN PastEvents”) and moved the conditions in the decision
expression (i.e. ’ce.user = pe.user’ and ’pe.action = “Pay
invoice””) into two Custom Event Sets. The @’ operator
basically restricts the set received as first argument using the
conditions received as second argument (i.e. the condition
’.action = “Pay invoice™ is applied to the members of the
PastEvents set in order to generate the Custom Event Set)

The userActions Custom Event Set contains all the events
that were executed by the current user, while the paymen-
tOrders Custom Event Set further restricts this set to the
user events that specify an invoice payment request. Notice
that although the specified Custom Event Sets only possess a
unique condition (e.g. .author = ce.user), their definition can
potentially contain several conditions. We present in Figure 5
an alternative definition for the paymentOrders Custom Event
Set:

paymentOrders PastEvents @{.author = ce.user AND

.action ”Pay.invoice”
}
Fig. 5. An Alternative Definition for the paymentOrders Custom
Event Set.

For performance reasons, Heimdall indexes the Custom
Event Sets by all the specified conditions (see more details
in Section V).

These Custom Event Sets are managed by the Event Set
Optimizer module, present in Heimdall Policy Information
Point, and can be reused in any of the system policies.

In order to prevent unnecessary Custom Event Set gener-
ation, Heimdall (more specifically the Event Set Optimizer)

associates these sets with dynamic update triggers (e.g. the
paymentOrders Custom Event Set must be updated every time
a ”Pay Invoice” action is received), as described in Section IV.

C. Purging Past Events

Although the optimizing techniques described above sig-
nificantly increase the policy engine’s performance, a critical
scalability problem remains. In a practical system, the event’s
repository size keeps increasing with system operation, until
the sheer size of the repository makes policy queries unfeasi-
ble. The most common solution to performance deterioration
is an ad-hoc repository cleanup, performed reactively by
the policy administrator. We don’t consider this a feasible
approach, as it can raise inconsistencies in policy enforcement.

However, we notice that in most policy specifications, events
are only relevant for policy evaluation during a certain period
in time (e.g. for a month) or until a certain condition is met
(e.g. until the user has logged out). We thus propose to remove
events from the PIP in a policy-coherent manner, assuring they
are no longer relevant for policy evaluation, and optionally
moving them into a secondary repository if necessary for legal
and/or audit reasons.

Hence, Heimdall adds several extensions to the xSPL lan-
guage in order to allow policy administrators to define precise
purging semantics. For instance, in the PaymentApproval
policy specified above, both “Pay Invoice” and Approve
Payment” events could be removed after a payment has been
approved, as such events are not necessary for further policy
evaluations.

The PaymentApproval Purge definitions, represented in Fig-
ure 6, specifies that policy events should be purged every
7 days. Furthermore, it defines another Custom Event Set
(userApprovedPayments) containing all the payment approvals
for the current user. The Purge process should remove related
operations (i.e. events) for which a matching payment request
and approval exist in the event repository (there is a match if
the action.invoicelD field is the same in both “Pay Invoice”
and ”Approve Payment” events). Notice that the Purge process
operates in both the past events repository and the Event Set
Optimizer’ Custom Event Sets.

userApprovedPayments = userActions @{
.action = “Approve_Payment”}
PURGE-ID : .approvals
PURGE-TRIGGER .action.invoicelD IN userApprovedPayments
PURGE-PERIOD : 7 DAY;

Fig. 6. Purge Definitions for the PaymentApproval policy.

However, care must be taken in assuring the coherence
of the overall policy set. Imagine that, in addition to the
PaymentApproval policy defined above, the ApprovalLimit
policy (represented in Figure 7) was added to the policy
repository. It specifies that a user cannot approve payments
summing more than 50,000 EURO each month.

The ”Approve Payment” actions cannot be discarded from
the PIP immediately after a payment approval, or otherwise

approvedPayments = PaymentApproval.userActions @{
.action = "Approve_Payment”}

approvedPaymentsLast30Days = approvedPayments @{
.time — time() < 30 DAY}

policy ApprovalLimit{
?ApprovalLimit:
ce.action = ”Approve_Payment”

ce.action.value +
approvedPaymentsLast30Days .SUM(. action . value)
< 50000 EURO

Fig. 7. Example of a Payments Approval Limit policy in xSPL.

the ApprovalLimit policy is incorrectly enforced. Thus, at
deployment time, Heimdall Web View informs the policy
administrator about any purging conflict in the defined poli-
cies. With respect to the PaymentApproval and ApprovalLimit
policies, a conflict notification is issued, as illustrated in Figure
8:

PURGE CONFLICT:
——— PaymentApproval Policy ——

——— PURGES ——
userApprovedPayments = userActions @{
.action = ”Approve_Payment”}
PURGE-TRIGGER : .action.invoicelD IN userApprovedPayments
——— ApprovalLimit Policy ——
——— USES ——
approvedPayments = PaymentApproval.userActions @{
.action = ”Approve_Payment”}
Fig. 8. Notification of a Purge Conflict in PaymentApproval and

ApprovalLimit policies.

The notification points out that the PaymentApproval policy
purge definition will potentially remove events that are relevant
for ApprovalLimit’s policy evaluation.

Heimdall will always take a conservative approach in what
regards purge conflicts, thus assuring the coherence of policy
enforcement, and overall system security. Thus, if the policy
administrator disregards the purge conflict warning, Heimdall
will associate a "CONFLICT” tag to the Purge definition, thus
preventing its application. The "CONFLICT” tag is presented
next to the policy definition in Heimdall Web View and
allows the policy administrator to later conciliate the purge
definitions, rather than completely neglecting the issue. In
order to force the purge enforcement, the policy administrator
must extend the PURGE-TRIGGER definition in order to
remove the conflict. In the described scenario, the coherence
could be maintained by specifying that 30 days must have
passed before the purging:

PURGE-TRIGGER—EXTENDS :
PURGE-TRIGGER

PaymentApproval . approvals;
: .time — time() > 30 DAYS;

Fig. 9.
policy.

A PURGE-TRIGGER extension for the PaymentApproval

Furthermore, as purging is critical for overall policy engine
performance, Heimdall Web View allows a policy administra-

tor to analyze possible scalability problems by presenting the
events that are not being purged from the event repository (e.g.
the ”Pay Invoice” event in the PaymentApproval policy).

Finally, the Purge Engine also allows a policy administrator
to purge unnecessary events without having to specify purge
definitions for every policy in the system: the overall purge
definition in Figure 10 is applied over the entire past event
repository, and purges all those events which are more than 6
months old.

OVERALL-PURGE-TRIGGER : .time — time() > 6 MONTHS;

Fig. 10. A Global Purge definition.

IV. ARCHITECTURE

Heimdall possesses a modularized architecture based in
several independent modules, depicted in Figure 1.

The Event Bridge receives action descriptions from the
Policy Enforcement Points in the runtime systems, and creates
a normalized description (referred to as an xSPL event).
In a common Heimdall deployment, several Event Bridges
can coexist, connected with several PEPs. These can denote
different action descriptions and/or interfaces.

The Policy Decision Point (PDP) evaluates an event against
policy definitions, returning an Allow, Deny or Not-applicable
result.

The Policy Monitor is the overall policy coordinator in
Heimdall. In the first place, it manages policy decision queries
received from the PEPs (through the Event Bridge). These
queries are forwarded to Heimdall Policy Decision Points
(PDPs), which return an authorization decision.

The Policy Information Point (PIP), and associated Event
Set Optimizer and Purge Engine, are the core of Heimdall
history-based scalability mechanisms, which we focus in the
context of this paper. They are described below in more detail.

The Policy Administration Point (PAP) interfaces with
Heimdall Web View in order to provide the following func-
tionalities to policy administrators:

o Manage (analyze, deploy, remove and modify) policies in
Heimdall.

« Store policy definitions, along with policy patterns, in the
policy repository.

o Obtain PIP statistics (number of events in the repository,
scheduled purges, etc)

A. Policy Information Point (PIP)

The Policy Information Point is responsible for providing
the PDPs all information that is relevant for policy evaluation.
In traditional ACL and role-based policies, the PIP mainly
interfaces with resources, subjects and the enclosing environ-
ment runtime system, in order to obtain pertinent information
(e.g. current CPU load, number of users in the system, etc).

In the case of history-based policies, the PIP also has to
store relevant past events, in order to allow policy evaluations.

Heimdall defines independent event repositories for each de-
ployed policy, in order to reduce individual event respository
size, and thus accelerate event queries. Although this approach
demands additional storage, due to potential duplicated infor-
mation, the performance gain justifies it. Notice that although
each policy has its own event repository, it does not mean
events are identical in each repository, as each policy can
contain a distinct number of relevant events.

B. Event Set Optimizer

The Event Set Optimizer allows the evaluation of history-
based policies without obliging the regeneration of each event
subset at policy evaluation time. Recall the PaymentApproval
policy in Figure 4. Whenever an ”Approve Payment” action is
requested, the paymentOrders set must be traversed in order
to verify if the current user also issued the corresponding
payment order. Although this set can be generated during each
evaluation, the process is rather time-consuming and, more
importantly, the generation time increases with the number of
events in the PIP, which constrains system scalability.

We propose to maintain the Custom Event Sets iteratively,
updating them whenever relevant events are received. In
particular, the PaymentApproval policy specifies two distinct
Custom Event Sets, the userActions and the paymentOrders
sets, containing respectively all the actions and the payment
orders performed by the current user. Each of these Custom
Event Sets is composed by a number of instances, depending
on the set restriction conditions (e.g. the userActions set is
composed by a distinct instance for each user and the pay-
mentOrders restricts these instances, thus addressing only “Pay
Invoice” events). Although this approach generates additional
storage expenditure, it significantly improves performance,
which is paramount in policy engines when compared to ever-
decreasing storage and memory costs.

In order to illustrate these concepts, we represent in Figure
11 a generic execution of a system enforcing the Paymen-
tApproval policy defined in Figure 4 and the ApprovalLimits
policy defined in Figure 7.

Custom Event

Sets
| | | |
ComproeaPaymens]| 00 0 ® Q)
1
| | | |
II paymentOrders [A] | [&]]’ | [A[;;CJ]’ | [Al;g]’ | l/\[iﬁl’
[U D R R
| I oo e
. L e, |, (AC],
W |y sl L m

Events> A t

User X User Y User X User Y pa\ment/\pproval
Pay Pay Pay Approve approvals

Fig. 11. The evolution of two history-based policies: PaymentAp-
proval and ApprovalLimit

The Figure represents the content of the userActions, pay-
mentOrders and approvedPayments Custom Event Sets while
events are being processed by the policy engine. We assume
that initially all sets are empty.

e User X and Y request several payment orders. The associ-
ated events (A, B and C) are inserted into the userActions
and paymentOrders Custom Event Sets associated with
each user.

e When User Y approves the payment order previously
requested by user X (Event D), the Event Set Optimizer
creates another entry for the approvedPayments Custom
Event Set in order to introduce event D. As previously,
this event is also inserted into the userActions Custom
Event Set associated with user Y.

« Finally, the policy engine processes purging definitions
associated with the ApprovalLimit policy. The event
D, corresponding to a payment approval is withdrawn
from the Event Set Optimizer in both userActions and
paymentApprovals Custom Event Set instances (notice
that the event is also removed from the global event
repository).

Additional coherence issues must be overcome when the
conditions specified in the Custom Event Sets restriction
operator (@conditions) include time-based or set membership
functions.

The first case is applicable when the events in the Custom
Event Set are dependent upon the evaluation time. Consider
the approvedPaymentsLast30Days Custom Event Set defined
in Figure 7.

approvedPaymentsLast30Days = approvedPayments @{
.time — time() < 30 DAY}

Fig. 12. A Custom Event Set dependent on the evaluation time.

This set should only contain the events which were gen-
erated during the 30 days prior to the policy evaluation. In
order to maintain this semantics with the Event Set Optimizer
mechanism, Heimdall automatically inserts an additional purge
definition in the policy, stating that prior to every evaluation,
the Custom Event Set should be purged of all the events that
don’t respect the temporal restriction condition. This special
kind of purge only affects the events in the Custom Event Set,
disregarding the global event repository.

PURGE-ID : . AUTOMATIC_TIME. 01
PURGE-TRIGGER ~ : NOT (.time — time() < 30 DAY)
PURGE-PERIOD : ON_EVALUATION

Fig. 13. An automatically generated Purge definition.

The second situation arises when Custom Event Set mem-
bership is dependent upon the existence of certain events in
other Custom Event Sets. Consider for clarity the Custom
Event Set defined in Figure 14:

The paymentsNotApproved Custom Event Set contains all
the ”Pay Invoice” events for which a corresponding ”Approve
Payment” event does not exist. The fact that the membership
of an event in paymentsNotApproved is dependent upon
the membership of other events in allPaymentApprovals also
obliges a validation of the paymentsNotApproved Custom

allPaymentOrders = PastEvents @{
.action = "Pay.Invoice”}
allPaymentApprovals = PastEvents @{
.action = ”Approve_Payment”}
paymentsNotApproved = allPaymentOrders @{
.action.invoiceID NOT IN
allPaymentApprovals}

Fig. 14. The paymentsNotApproved Custom Event Set is dependent
upon the allPaymentApprovals Custom Event Set.

Event Set prior to policy evaluation. However, in this case,
it is not sufficient to validate a PURGE-TRIGGER condition
on all the events in the event set. The fact that the associated
Custom Event Set (i.e. the allPaymentApprovals) can either
have increased or decreased the number of events means
that the trigger conditions would be excessively complex in
order to accommodate all purging possibilities. Thus Heimdall
rather associates a "MODIFIED” tag with the base event
set (i.e. the allPaymentApprovals). When it needs to use the
paymentsNotApproved event set, it verifies if the tag is active;
in that case it regenerates all paymentsNotApproved instances.

C. Purge Engine

The Purge Engine assures the scalability of the history-
based policy engine by constraining past event repository size.
It periodically enforces the Purge definitions according to the
semantics already presented in Section III.

The Purge Engine must perform lookups over the entirety
of the event repository, but the fact that the periodicity of the
purge process can be defined according to system processing
capacity, keeps this process from significantly interfering with
usual policy evaluations.

V. IMPLEMENTATION

Heimdall is implemented in Java, and deployed using Java
Runtime Engine 1.4.2, in order to obtain a portable platform
that can be deployed in a majority of environments.

The Event Bridge interfaces Heimdall with runtime system
Policy Enforcement Points. It receives action requests and
communicates the authorization decision. Currently we only
support xSPL-based event descriptions, but a SAML[14]-
enabled Event Bridge is being considered.

The Policy Monitor controls the overall deployment and
enforcement of policies in the system. For that purpose, it
holds a vector with the identifier of all deployed policies.
Whenever an event is received from the Event Bridge, the
Policy Monitor uses the Policy Decision Point to evaluate the
event against all deployed policies.

The Policy Information Point is implemented as a set of
event repositories, one for each of the policies in the system.
At policy deployment time, each of these repositories is dy-
namically generated, according to policy definitions, in order
to optimize event storage and retrieval. A filtering mechanism
discards any event that is not relevant for the evaluation of
the policy (e.g. if a policy controls a payment service, it does
not need to store events related to file access). In addition, the

repository stores only useful evaluation fields (e.g. if a policy
controls the number of books sold, it does not have to store the
price of the books). This approach allows us to minimize Log
dimension, and thus enhance performance of event retrieval
(for more details see [10]).

The Event Set Optimizer is generated dynamically for each
policy, along with the Policy Decision Point. A repository
for several event vectors is created for each of the Custom
Event Sets specified in the policy xSPL definition (e.g. an
event vector for each of the system users). The condition
stated in the restriction operator creating the Custom Event
Set is also used to define distribution rules for the events in
each repository. For instance, the ”.author = ce.user” condi-
tion indexes events in the vector according to the “ce.user”
attribute. This allows the policy engine to search through the
past events without having to lookup the entirety of the event
repository. Events are inserted into the Event Set Optimizer, if
relevant, immediately after they are authorized by the policy
engine. They are only discarded from the optimizer instances
when they become irrelevant for policy evaluation, by means
of the Purge Engine or the Event Set Optimizer coherence
mechanisms. The incorporation of Custom Event Sets in the
policy definitions further increases the readability of the policy
and fosters policy reuse.

The Purge Engine implementation is also generated dynami-
cally according to policy purge definitions in xSPL. A different
thread is associated with each policy, in order to activate the
purge process at the defined periodicity.

VI. EVALUATION

The extensions to Heimdall presented in this paper, and
more specifically the Event Set Optimizer and the Purge
Engine, aim to solve scalability problems currently faced by
history-based policy engines. In order to assess the adequacy
of Heimdall in what respects this goal, we performed a
practical simulation in a Pentium 4, 2.8GHz, 512MB PC,
running Windows XP Professional SP2.

Consider the PaymentApproval policy presented previously
in Figure 4. We are assuming a scenario in which there are
250 active users in the system. Each one is inserting payment
orders, which are later approved by a different user. Notice that
in terms of policy evaluation performance, this is the worst
possible scenario because, in order to validate the payment
approval, the policy engine must search the entirety of the
payment orders in order to confirm the user didn’t previously
issued a payment order with the same invoice number.

For space reasons, we restrict the presented evaluations
to a single policy. However, further evaluations show that
individual policy reevaluation time is independent of the
number of policies in the system (e.g. evaluating an event in
N similar policies takes about the same time as evaluating N
events in an individual policy).

At simulation startup, each user keeps submitting payment
orders in round-robin, until a certain number of payment cycles
(i.e. a "Pay Invoice” event followed by a ”Approve Payment”
event) has been submitted to the policy engine (from 100,000

to 1,000,000 events). In this manner, we can simulate the load
of the system after a large number of operations was executed.
Afterwards, we perform additional batches of payment cycles,
sustained until a certain time has elapsed. This allows us to
obtain a reliable average for policy evaluation time for the
pay/approve cycle.

We performed the simulation with various combinations
in what respects the policy engine optimizations discussed
in this paper, ranging from a fully optimized (Event Set
Optimizer and Purge Engine) policy engine, to another policy
engine lacking all optimizations. When the Purging Engine
is active, purging is deployed every 5,000 payment cycles,
and events are considered irrelevant after that same number of
cycles. We obtained results for the event evaluation time, as
discussed above, and also for the event repository dimension.
The scale for the Y range in the chart of Figure 15 is
logarithmic, because otherwise unoptimized results would not
be perceptible.

Event Evaluation Scalability (time)

100,000 +
10,000 —x
9

1,000 i%m

100
A
10 ‘\‘\A\

1 — T T T T T

—x—ESO and Purging
—e— ES Optimizer

—a—Purging

Number of Event
Evaluations (per second)

—a— Not Optimized

O O O O O O O O O O
TEFLLFLFLLL LS
I S N U SN

Number of Events sent to Heimdall

Fig. 15. System Evolution w.r.t. Pay/Approve Cycle Evaluation Time
(notice that the Event Set Optimizer is denoted as ESO in the chart).

This chart shows that both the Event Set Optimizer and the
Purge Engine represent a significant improvement to the policy
engine w.r.t. performance, increasing the number of events
evaluated each second by more than a order of magnitude.

As expected, when used in conjunction, they present the
best results in this set of simulations. The Purge Engine by
itself assures a stable event evaluation time; it surpasses the
Event Set Optimizer optimization when performance gains due
to the customized management of event subsets is minimized
by the overall number of events in the log (at approximately
700,000 events).

In terms of event repository dimension, represented in Fig-
ure 16, the best results are obtained with the Purge Engine by
itself. This is expectable, as irrelevant events are periodically
removed from the event repository, and no significant data
structures are needed for this optimization.

On the other extreme, we have the Event Set Optimizer
optimization alone. Not only must the traditional event repos-
itory hold the entirety of the generated events (purging is not
active), but in addition the events must also be stored in the
Event Set Optimizer data structures. This fact doubles space
requirements for the optimizer-enabled engine when compared

Event Evaluation Scalability (PIP size)

2
= 2,500,000 -
g 2000000 / —e— ES Optimizer
@ o 1,500,000 -
> o / —m— Not Optimized
Wa 1,000,000)
S —a— ESO and Purging
3 500,000 - Purging
[0
=]
z P PSS LSS

0@60069009%@Q@g@g@g@g@

DRSO
Number of Events sent to Heimdall
Fig. 16. System Evolution w.r.t past event repository Size (notice

that the Event Set Optimizer is denoted as ESO in the chart).

to the engine lacking optimizations. Accordingly, the events
that must be stored when optimizations are combined are
double of those for the Purge Engine alone.

We conclude that the Purge Engine combined with the Event
Set Optimizer is the best implementation alternative for the
policy engine w.r.t. the scalability of the system. Performance
is largely increased and event repository storage requirements
are kept at a controlled size.

In sum, the evaluation shows that Heimdall scales efficiently
with the number of events in the event repository, presenting
itself as an adequate choice for policy enforcement in practical
environments.

VII. RELATED WORK

History-based policies have already been incorporated in
several systems, and discussed in numerous papers.

Ribeiro [10] defines a security policy language, SPL, which
includes the concept of history-based policies. He defines a
global event repository where descriptions of all the executed
actions are stored. Existential and universal operators are
provided in order to select relevant events from this global
repository, thus allowing an high level of expressiveness in
policy rules. The internal organization of the event reposi-
tory includes a filtering mechanism that selects only relevant
event fields for storage. Furthermore, each policy is stored
in independent hash tables, in order to increase performance.
However, the hash table indexing function is only effective in
a reduced number of situations (e.g. when there is only one
restriction condition for an event subset, or all restrictions are
specified in the policy’s trigger expression), and its use can
even be counterproductive (such as in the examples stated in
this paper).

Dias[15] incorporated SPL in a mobile agents platform.
The policies (including history-based policies) were used to
conduct agent behavior in remote systems operation. In order
to surpass significant performance problems, associated with
moving the event repository from one remote system to an-
other, Dias introduced the notion of a remote event repository
for the Policy Decision Point. This approach however suffers

from network latency and failure issues, hindering an efficient
policy enforcement.

The LGI (Law-governed interaction) platform[16], [17] al-
lows the enforcement of a system policy (named Law) through
the exchange of messages between controllers. The rules of the
policy are specified directly in Prolog and define a message
workflow. Therefore, the system is more focused in the coor-
dination of distributed applications than in the enforcement of
security policies. The management (storage and retrieval) of
events must be programmed into the policy definition itself,
and the event repository (referred to as the Control State of
the system) is stored as “a bag of Prolog-like terms”. This
hinders the implementation of complex policies, and further
restricts storage optimizations. Heimdall, on the other hand,
automatically generates the necessary Policy Decision Points
(PDPs) from the policy definition. LGI’s scalability analysis
disregards the effects of event repository growth, which we
consider a critical factor for policy engine performance.

The XACML (eXtended Access Control Modeling Lan-
guage) [18] from the OASIS group, include the concept of
history-based policies, as well as existential and universal
operators. However, it lacks the concept of set restriction,
which is one of the basis for Heimdall’s Custom Event Sets.
As a language specification, it does not oblige a specific im-
plementation, and thus performance issues are not addressed.

Kent[19] discusses the specification of temporal constraints
in policy rules by using deontic logic. Although this allows
the formalization of the usage control model, no enforcement
mechanisms were presented.

PDL (Policy Description Language)[12] allows the speci-
fication of past events in the policy rules. As in the case of
Heimdall, Policy Decision Points are generated automatically
at policy deployment time[20] and the events are stored in
independent event history instances. However, policy evalua-
tion is based upon the construction of non-deterministic finite
automata, thus entailing serious scalability problems in the
case of complex policies and/or large number of events in the
repositories.

Park and Sandhu introduce the concept of pre-conditions
in the context of a usage control model[21]. These conditions
can be dependent on actions executed in the past, such as
the number of times a certain operation was executed. This
model is further refined by introducing several past temporal
operators[22], in order to increase model expressiveness w.r.t.
history-based policies. However, past events are not explicitly
stored in an organized manner; thus, custom fields must be
added by the policy administrator to the subject’s attributes
in order to allow this type of expressiveness (e.g. the policy
administrator might need to define a user attribute containing
the number of times that the user logged on during last week).

Deeds[23] is a history-based access control system. All
policies must be written in Java, and event management must
be custom developed for every policy (e.g. store a payment
event or mark a login tag after user has logged in the
system). Although this approach can foster efficient policy
implementations, the ad-hoc development of PDPs and PEPs

is impractical in large and/or complex systems. Heimdall, on
the other hand, generates Policy Decision Points automatically,
and events are managed in a transparent manner by Heimdall’s
Policy Information Point implementation.

Salsa[24] is a workflow-oriented mechanism. History-based
functions were introduced on top of the original monitor
server, in order to retrieve past events from the workflow log,
and identify event dependencies. The system lacks a scalability
evaluation w.r.t. history-based policies, as well as details on
the policy language expressiveness.

Adage[11], [25] is a generic authorization policy engine for
distributed systems. It introduces the concept of history-based
separation of duty. This model assumes that a user can be
allowed to assume conflicting roles at the same time, as long
as the executed actions don’t constitute a conflict themselves
(a user can simultaneously issue and pay a check, as long as
it isn’t the same check). This level of expressiveness is also
supported by Heimdall. However, Adage does not include the
concepts of Custom Events Sets nor of Event Purging, thus
lacking scalability mechanisms.

Sandhu[26] proposes a mechanism for separation of duty
enforcement. Due to the specialized nature of policy en-
forcement, Sandhu refers that after operation completion (e.g.
issuing and payment of a voucher) the associated events can
be discarded. Heimdall supports this approach for separation
of duty policies and further allows customized purging of the
event repository for other kinds of policies.

Stream[27] is a Data Stream Management System (DSMS)
that could potentially be used to enhance Heimdall Policy
Monitor processing capabilities. It provides a language named
CQL (Continuous Query Language)[28] that allows the fil-
tering of relevant records in the data stream, thus enabling
a number of performance optimizations. However, Heimdall
semantics often oblige the processing of the entire history
repository, hindering traditional stream-based processing.

We thus conclude that all the analyzed systems lack the
necessary expressiveness to specify purging semantics. In ad-
dition, they generally disregard event set optimizations which
are implemented by Heimdall, such as the concept of Custom
Event Sets.

VIII. CONCLUSIONS

In this paper we evidenced the relevance of history-based
policies. Policy engines that lack such expressiveness oblige
policy administrators to code usage and access rules into the
policy platform itself, thus introducing potential security vul-
nerabilities. We further pinpointed several scalability problems
in the implementation of history-based policy rules.

We introduced the concept of Custom Events Sets, consti-
tuted by subsets of the past event repository, relevant for a
specific policy evaluation. The Event Set Optimizer manages
Custom Events Sets in order to prevent unnecessary set
regeneration. This approach represents significant performance
improvements, together with improved policy readability.

Furthermore, Purging Meta-Policy tags allow irrelevant
events to be removed from the system in a controlled and

coherent manner.
These solutions were implemented in the Heimdall Policy
Engine. The evaluation of selected usage scenarios show that

the

system can cope with a large number of events in the

Policy Information Point and continuous intensive operation,
thus denoting encouraging results.

[1]

[3]
[4]

[5]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

J. Goguen and J. Meseguer, “Security policies and security models,” in
Proceedings of the IEEE Symp. Security and Privacy, California, USA,
1982.

T. Y. C. WOO and S. S. Lam, “Authorizations in distributed systems:
A new approach,” Journal of Computer Security, vol. 2, no. 2,3, pp.
107-136, 1993.

C. de Laat, G. Gross, L. Gommans, J. Vollbrecht, and D. Spence, “Rfc
2903 - generic AAA architecture,” IETF, Tech. Rep., August 2000.

S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian, “Flexible
support for multiple access control policies,” ACM Transactions on
Database Systems (TODS), vol. 26, no. 2, pp. 214-260, 2001.

A. Schaad and J. Moffett, “A framework for organisational control
principles,” in Proceedings of the 18th Annual Computer Security
Applications Conference, Las Vegas, USA, 2002.

R. S. Sandhu and P. Samarati, “Access control: Principles and practice,”
IEEE Communications Magazine, vol. 32, no. 9, pp. 40-48, 1994.
Gligor, Gavrila, and Ferraiolo, “On the formal definition of separation-
of-duty policies and their composition,” in Proceedings of the 19th IEEE
Computer Society Symposium on Researh in Security and Privacy, 1998.
M. J. Nash and K. R. Poland, “Some conundrums concerning separation
of duty,” in Proceedings of the 1990 IEEE Symposium on Security and
Privacy, Oakland, USA, May 1990.

N. Minsky and V. Ungureanu, “Unified support for heterogenous security
policies in distributed systems,” in Proceedings of the 7th USENIX
Security Symposium, Texas, USA., January 1998.

C. N. Ribeiro, A. Ziquete, P. Ferreira, and P. Guedes, “SPL: An access
control language for security policies with complex constraints,” in
Proceedings of the Network and Distributed System Security Symposium,
San Diego, California, Feb 2001.

R. T. Simon and M. E. Zurko, “Separation of duty in role-based envi-
ronments,” in Proceedings of the IEEE Computer Security Foundations
Workshop, 1997.

J. Lobo, R. Bhatia, and S. Naqvi, “A policy description language,” in
Proceedings of the National Conference of the American Association for
Artificial Intelligence, Florida, USA, 1999.

P. Gama and P. Ferreira, “Obligation policies: An enforcement platform,”
in Proceedings of the Sixth IEEE International Workshop on Policies for
Distributed Systems and Networks (POLICY’05), Stockholm, Sweden,
June 2005.

S. Cantor, J. Kemp, R. Philpott, and E. Maler, “Assertions and protocols
for the oasis security assertion markup language (saml) v2.0,” OASIS,
Tech. Rep., March 2005.

P. Dias, C. Ribeiro, and P. Ferreira, “Enforcing history-based security
policies in mobile agent systems,” in Proceedings of the IEEE 4th In-
ternational Workshop on Policies for Distributed Systems and Networks,
Lake Como, Italy, 2003.

N. Minsky and V. Ungureanu, “Law-governed interaction: A coordina-
tion & control mechanism for heterogeneous distributed systems,” ACM
Trans. Software Eng. and Methodology, vol. 9, no. 3, pp. 273-305, July
2000.

N. Minsky, Y. M. Minsky, and V. Ungureanu, “Making tuple spaces safe
for heterogeneous distributed systems,” in Proceedings of the 2000 ACM
Symposium on Applied Computing, Como, Italy, 2000, pp. 218-226.

T. Moses, “extensible access control markup language (xacml) version
2.0,” OASIS, Tech. Rep., February 2005.

S. Kent, T. Maibaum, and W. Quirk, “Formally specifying temporal
constraints and error recovery,” in Proceedings of the RE’93 - Ist Intl.
IEEE Symp. on Requirements Engineering, San Diego, California, 1996,
pp. 208-215.

J. Chomicki and J. Lobo, “Monitors for history-based policies,” in
Proceedings of the Second IEEE International Workshop on Policies
for Distributed Systems and Networks (POLICY’01), London, UK, June
2001.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

J. Park and R. Sandhu, “The ucon abc usage control model,” ACM
Transactions on Information and Systems Security, Feb 2004.

X. Zhang, J. Park, F. Parisi-Presicce, and R. Sandhu, “A logical
specification for usage control,” in Proceedings of the Symposium on
Access Control Models and Technologies, New York, USA, 2004.

G. Edjlali, A. Acharya, and V. Chaudhary, “History-based access control
for mobile code,” in Proceedings of the 5th ACM Conference on
Computer and Communications Security (CCS-5), San Francisco, USA.,
November 1998.

M. H. Kang, J. S. Park, and J. N. Froscher, “Access control mechanisms
for inter-organizational workflow,” in Proceedings of the sixth ACM
Symposium on Access Control Models and Technologies, Chantilly,
Virginia, USA, May 2001.

M. E. Zurko, R. Simon, and T. Sanfilippo, “A user-centered, modular
authorization service built on an rbac foundation,” in Proceedings of the
1999 IEEE Symposium on Security and Privacy, Oakland, USA., 1999.
R. S. Sandhu, “Separation of duties in computerized information sys-
tems,” in Proceedings of the IFIP Workshop on Database Security, 1990.
A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito,
R. Motwani, U. Srivastava, and J. Widom, STREAM: The Stanford Data
Stream Management System, 2004.

A. Arasu, S. Babu, and J. Widom, “The cql continuous query language:
Semantic foundations and query execution,” To appear in VLDB Journal,
2005.

