Detecting Conflicts in ABAC Policies
with Rule-reduction and Binary-search Techniques

Cheng-chun Shu
Institute of Computing Technology (ICT)
Chinese Academic of Science (CAS)
Beijing, P. R. China
shuchengchun@software.ict.ac.cn

Abstract—Attribute-based access control (ABAC) policies are
effective and flexible in governing the access to information
and resources in open distributed computing environments.
However, ABAC policy rules are often complex making them
prone to conflicts. This paper proposes an optimized method
to detect the conflicts between statistically conflicting rules in
an ABAC policy. This method includes two optimization tech-
niques: rule reduction and binary-search. The first technique
reduces the rules into a set of compact, semantically equivalent
rules through removing redundant information among the
rules. The binary-search technique is then applied to discover
the conflicts among them.

I. INTRODUCTION

Access control policies provide secure and controlled re-
source sharing in a variety of applications including database
federation (e.g. [3]), Web services (e.g. [6]) and Grid
systems (e.g. [5]). Recently attribute-based access control
(ABAC) [2] policies are gaining popularity in open dis-
tributed environments. ABAC policies govern user requests
based on the characteristics of requestors and resources
rather than their identities.

One important aspect of dealing with ABAC policies is
to detect the conflicts among policy rules. Conflicting policy
rules make different assertions for the same set of user
requests. Without the conflicts being detected and resolved,
the access control may be too open to guarantee the security
of participating entities or be too restrictive to benefit from
the collaboration and sharing of information and resources.
The conflicts between policy rules should be detected and
eliminated before the rules are deployed at Policy Decision
Points(PDPs) through conflict detection techniques. Some
ABAC policies, such as XACML, use rule combining al-
gorithms [4] at a policy level to automatically resolve the
conflicts among policy rules. However, the consequence
of using these algorithms to override the access control
decisions made by resource owners can be unpredictable
when the number of rules being deployed at a PDP becomes
too large to be comprehensible by resource administrators.

This paper investigates the problem of automatically de-
tect and remove the conflicts among ABAC policy rules

Erica Y. Yang and Alvaro E. Arenas
E-Science Centre
STFC Rutherford Appleton Laboratory
Didcot, Oxfordshire, U. K.
{erica.yang, alvaro.arenas} @stfc.ac.uk

and proposes techniques to efficiently resolve the problem.
Specifically, this paper focuses on statically-conflicting rules
where conflicts among rules are detectable and can be
removed without any evaluation being done against user
requests.

Our contributions are sumarised as follows. We formally
introduce the notions of “semantically equivalent” policies
and “statistically conflicting” rules. These notions are then
used to improve the efficiency of conflict detection in
ABAC policy rules. Our approach includes two techniques:
rule reduction and binary search. Based on the notion of
semantically-equivalent policies, rule reduction reduces the
rules into a set of compact, semantically equivalent rules
through detecting and removing the redundancy among
policy rules. A variant of the classic binary search technique
is applied to search conflicting policy rules upon the reduced
rule set, resulting in a set of conflict-free rules.

II. ABAC PoLICY MODEL

The formal syntax and semantics of our policy model are
based on those introduced by Bonatti [1] and Wimmer[6]. In
the policy model, an ABAC policy comprises of rules, a rule
contains four elements: subject,object, action and decision,
and a decision specifies whether users (i.e., subjects) are
allowed or denied (i.e., decisions) to perform actions over
given resources (i.e., objects). The subject and object ele-
ments of a rule are defined as multiple attribute predicates,
the action element as a set of action names that are allowed
to be performed over objects, the decision element as one
of the values allow or deny.

A. Model

The formal definitions of the ABAC policy model are
given as follows.

Definition 2.1: (Attribute predicate, multiple-attribute set)
An attribute predicate ap defines an attribute comparison of
the form (attribute-identifier o constant). The comparison
operator o is in {<,<,=,>,>}. A multiple-attribute set is
represented by a disjunction of conjunctions of one or more

attribute predicates in the form (ap;1 A ... Aapim)V ...V
(apr,1 A ... Napi,m)), where ap; ; is an attribute predicate.

Definition 2.2: (Rule and ABAC Policy) A rule R =
(S,0, A,d) is a quadruple specifying that a set of actions A
performed by a set of subjects S over a set of objects O is
granted by decision d by the rule, where S and O are spec-
ified by a multiple-attribute set. A subject multiple-attribute
set characterises a set of subjects S and is represented as
(51,0 Ao ASim) Voo V(81 Ao A Sgm), Where s; 5 is an
attribute predicate in the ith conjunction that uses the jth
subject attribute-identifier. An object multiple-attribute set
has a similar representation. A is a set of action names,
denoted by aq,as,...,a,. The decision d only takes two
possible values: allow or deny, which represents a positive
or a negative access decision respectively.

A policy P = {R1, Rs..., R, } is made up of a set of rules
Ri,Ry...,R,.

B. Semantics

Access control policy systems guard the collaboration
and sharing of information and resources by accepting or
declining the user requests according to the decisions by the
evaluation of policy rules. To evaluate the policy rules, the
evaluation context e is firstly extracted from the user request,
which includes the subject and object sets of attribute-value
pairs, and the action of the request.

Definition 2.3: (Evaluation context) An evaluation con-
text e is defined as a triple (Syeq, Oreq; Greq), Where Speq is
a set of attribute-value pairs of a subject (sa; = valy), ...,
(sap = valy), Opeq is a set of attribute-value pairs of an
object (oa1 = ovaly),...,(0ay = valy), and a,.q is the
action of a request.

The subjects and objects in the evaluation context is
modelled as sets of attribute-value pairs. Since most user
requests have only one action and it is possible to decompose
a complex request into multiple evaluation contexts, only a
single action is modelled in the evaluation context.

All the rules in the ABAC policy are evaluated against e.
A rule is applicable to e if the subject’s and object’s attribute
sets are within those specified by e and the requested action
falls within the rule’s action set of e. The set of decisions of
applicable rules is returned as the result of rule evaluation.

It is possible that policies with different rules and/or
rule specifications can sometimes produce the same set of
decisions for a given evaluation context. Such “equivalent”
policies are interesting because it suggests an intuitive ap-
proach to conduct conflict analysis upon a complex policy
through replacing it with a ‘“semantically equivalent but
simpler” policy, leading to the improvement in the efficiency
of detecting and eliminating conflicts. This is our starting
point for searching efficient methods to detect conflicts
among policy rules. We term such policies as semantically
equivalent policies. The formal definition of semantically
equivalent policies is given as follows.

Definition 2.4: (Semantically Equivalent policies) Two
policies P = {Ry,Ry...,R,} and P' = {R},R;....R,}
are semantically equivalent if for a given tuple (S,0,A), any
decision specified by one policy can also be found in another,
i.e. V(S,O,A,d), (HRZ = (SZ‘,OZ‘,Ai, dz) - P, SL ns 7é
d)/\OiﬂO 7é (ZS/\AZ'QA 7é (ZS/\dz = d) <~ (HR] =
(Sj,04,A;,d;) C P ,S;NS #¢N0;N0 # pANA;NAF#
P Ndj =d).

Theorem 2.5: If two policies P = {Ry, Rs...,R,} and
P' ' ={R},R,...,R,} are semantically equivalent, then any
evaluation context e can be evaluated to the same set of
decisions,i.e. Ve, || P||, = || P'|".

Semantically, a given rule R = (S,0,A,d), S = ((s11 A
AN 81’,,”) V..V (Sk71 VANRYIVAN Sk,m))aO = ((01,1 VANRTVAN
01,n) V...V (01 A ... Noyy)) is equivalent to a set of rules
{Ri,j|Ri,j = (Si,Oj,A,d), S; = (Si,l VANRRVAN Si’m),Oj =
(0jn Ao Nojn)}bl <4 < k1 < j < n. The conflicts
among rules R; ; can be analyzed more easily than for the
rule R, and the results of R can be synthesized by the
individual results of rules R; ;. Therefore, without loss of
generality, our discussion of conflicts is limited to the rules
of form R;;, i.e., the multiple-attribute sets contain only
conjunctions of attribute predicates for a single subject and
a single object in the following sections.

The problem that a single user request is applied to
both positive (allow) and negative (deny) decisions by an
ABAC policy is called a conflict. An interesting category
of conflicting rules in an ABAC policy is those rules who
a) share a common set of attribute identifiers; and b) the
attribute predicates of the rules with the same identifiers
have intersected value sets. Such rules are common in a set
of policy rules and the conflicts among them are detectable
and removable prior to runtime. The definition of statically-
conflicting rules is formally given as follows:

Definition 2.6: (Statically-conflicting rules) Two rules R;
and R; are statically-conflicting if:

(D)Their decisions are distinct,i.e.,d(R;) # d(R;).

(2)Their action sets overlap, i.e., A(R;) N A(R;) # ¢.

(3)One of the rules shares all attribute identifiers with
other rule. Without loss of generality, suppose rule R; shares
all attribute predicates with rule ;. Formally the two rules
satisfy Vap in S(R;)(or O(R;)),Jap’ in S(R;)(or O(R;))
such that Aid(ap) = Aid(ap’).

(4)The attribute predicates with shared identifiers have in-
tersected value sets, i.e., Vap in S(R;)(or O(R;)) and Vap' in
S(R;)(or O(R;)), Aid(ap) = Aid(ap’) = Vap N Vyp # ¢.

The formal definition of reduced policy rules is given as
below.

Definition 2.7: (Reduced rules and policy) Two policy
rules R; and R; are reduced if they satisfy one of the
following conditions:

IThe proof of this theorem corresponds to the proof of Theorem 2.10 in
the document: http://epubs.cclrc.ac.uk/bitstream/3280/abac_conflicts.pdf.

(1)All the shared subject and object attribute identifiers
have the value sets of the corresponding attribute predicates
identical, i.e., Vap;,ap; such that ((ap; in S(R;)) A (ap;
in S(R;))) or ((ap; in O(R;)) A (ap; in O(R;))), and
Aid(ap;) = Aid(ap;), they must hold V(ap;) = V(ap;).
Or

(2)At least one of their shared subject or object attribute
identifier has the value sets of the corresponding attribute
predicates do not intersect, i.e., Jap;, ap; such that ((ap;
in S(Rz)) A\ (apj in S(R]))) or ((ap; in O(Rl» AN (Cij in
O(R;))), Aid(ap;) = Aid(ap;), they must hold V (ap;) N
Vap;) = ¢

If every pair of rules in an ABAC Policy P =
{R1,Ry...,R,} is reduced, then the policy is a reduced
policy.

Theorem 2.8: The original policy P = {R;, R;} and the
reduced rules P = {R},R,....R.},1 < k < 2°*! are
semantically equivalent?.

III. DETECTING STATICALLY-CONFLICTING RULES

This section describes an optimized method for detecting
statistical conflicts among policy rules. The method achieves
the efficiency by exploiting the redundant relationships
among rules and avoiding unnecessary rule examinations as
much as possible.

The optimized method consists of two techniques: rule
reduction and conflict detection through a novel binary
searching technique. The method does not detect directly
conflicts on the original policy rules but instead on the
reduced rules generated by the rule reduction technique.
The reduced rules are semantically equivalent to the original
rules, but policy analysis, such as conflict detection, can be
performed more efficiently.

A. Rule Reduction

Rule reduction transforms the original rules into reduced
rules that have no intersected attribute predicates. Given two
rules that have redundancy between them, the reduction only
transforms the attribute predicates with shared identifiers.
The two rules are transformed into reduced rules by reducing
every attribute predicate with shared attribute identifiers to
non-intersected attribute predicates and then making reduced
rules using the reduced attribute predicates.

The optimized method examines reduced rules horizon-
tally: it checks one attribute identifier for comparing all the
reduced rules’ attribute predicates after another, rather than
one rule by another. By organizing the identical attribute
predicates (e.g. rule R,’s attribute predicate workyear < 8
and rule R.’s attribute predicate workyear < 8) of different
reduced rules into one attribute predicate (e.g. attribute
predicate workyear < 8), the optimized method examines

2The proof of this theorem corresponds to the proof of Theorem 4.2 in
the document: http://epubs.cclrc.ac.uk/bitstream/3280/abac_conflicts.pdf.

every attribute predicate no more than once, even it is shared
by multiple rules.

B. Binary Search

The second step of the optimized method is to detect
the conflicting rules over the reduced rules. The detection
needs to compare the attribute predicates of both subject and
object multiple-attribute sets. Instead of comparing the list
of attribute predicates with a given attribute identifier one by
one, the optimized method sorts the attribute predicates and
bases upon the classic binary search technique to efficiently
identify those attribute predicates intersect with the target
rule. The sorting of the list of attribute predicates is possible
because the attribute predicates in the list do not intersect
with each other, which is guaranteed by the rule reduction
step.

For a given attribute predicate of the target rule, binary-
search of the intersected attribute predicates in the list firstly
compares the given attribute predicate with the middle one
in the list, then halves the search scope by using the low
half or the high half as the new list of attribute predicates
for searching, until the intersected middle attribute predicate
is found or is determined to be none.

C. A Combined Algorithm for Conflict Detection

Algorithm 1 gives a combined algorithm for detecting
statically-conflicting rules in an ABAC policy. The conflict-
ing rules of rule R; are found using the representation of
the already reduced rules Ri, Ras,..., R;—1 when the rule
is being reduced. The algorithm also uses binary_search
to improve the efficiency of searching intersected attribute
predicates (Line 17). For every attribute predicate of rule
R;, the rule sets of its intersected attribute predicate are
kept in the set rule_set (Line 20). The conflicting rules are
generated by intersecting all the rule sets in rule_sets which
contains the rule sets of every attribute predicates of rule
R;. The rules left in the intersection result s_rule_set with
different decisions with rule R; are statically-conflicting
rules(Lines 27-30).

IV. IMPLEMENTATION AND EXPERIMENTS

We have implemented the algorithms for naive and opti-
mized methods using Java. The implementation of the opti-
mized method comprises of three techniques: rule reduction,
binary-search and bitmap-based set operations. In bitmap-
based set, every rule in the given ABAC policy is indexed
from O to n — 1, and each rule set of the reduced attribute
predicate is represented as a bitmap of an array of integers
where a bit is set for the corresponding rule in the rule set
and is clear otherwise. The basic set operations such as union
and intersection can be completed in constant time.

We built a rule generator which can produce a ABAC
policy with a given number of rules using the predefined set-
tings: (1) the set of attribute identifiers and the value ranges

Algorithm 1: efficient_conflict_detection(P)

Input: P = {Rl,RQ...,Rn}
Output: the statically-conflicting rules con flicting in the
given policy

1 begin
2 conflicting = {};
3 sort the rules in policy P in descended order based on

the number of a rule’s attribute predicates;

4 for R; in P do
5 s_rule_set = {};
6 for act in A(R;) do
7 rule_set=actionMap.get(act);
8 s_rule_set+ = rule_set;
9 rule_set.add(R;);
10 end
11 aplist = S(R;).aplist ;
12 aplist.addAll(O(R;).aplist);
13 reslist = {};
14 rule_sets = {};
15 for ap in aplist do
16 node=attributeldenti fer Nodes.get(Aid(ap));
17 binary_search(aps,ap,node.list,0,
node.list.length-1);
18 rule_set = {};
19 for apt in aps do
20 rule_set += apt.rule_set;
reslist.addAll(reduce(apt,ap));
21 end
22 rule_sets+ = rule_set;
23 end
24 for rs in rule_sets do
25 s_rule_set = s_rule_set Nrs;
26 end
27 for r in s_rule_set do
28 if r.decision! = R;.decision then
29 conflicting+ = {r, R: };
30 end
31 end
32 for ap in reslist do
33 ap.rule_set.add(R;);
34 end
35 end
36 return con flicting;
37 end

of the attributes; and (2) the action names. A multiple-
attribute set of a rule contains several attribute predicates
that the identifiers and the value sets are picked uniformly at
random according to the predefined settings: (1) The actions
of a rule are also uniformly picked based on the settings (2).
The decision of a rule is generated by randomly choosing
the value allow or deny.

The experiments are conducted on a Pentium M 1.7GHz,
1 Gb RAM machine. We use #attr to denote the number of
attribute predicates per multiple-attribute set. The results of
the experiments consistently show that the optimized method
outperforms the naive method in detecting statistically con-
flicting rules. This is particularly evident when a policy
consists of more than 10,000 rules. The time cost of conflict

detection increases squarely with the number of rules using
the naive method. But the same cost only increases linearly
using the optimized method. For example when #attr=3, the
time cost of using the naive method is about 40 seconds for
10,000 rules, which grows to around 160 seconds for 20,000
rules. In contrast, for the same #arttr, the time cost of using
the optimized method increases from 5.3 seconds to around
12.3 seconds, which is about one magnitude faster than that
of the naive method.

V. CONCLUSIONS

ABAC policy rules are subject to conflicts that make
contradicting decisions for the same user requests. This pa-
per formally defines the statistical conflicts between ABAC
policy rules, which is a category of conflicting rules in which
conflicts can be detected and removed prior to runtime. Our
paper focuses on enhancing the efficiency of detecting and
removing such conflicts among the rules in an ABAC policy.
We have produced a prototype implementation of a conflict
detection tool based on the conflict detection method we
propose in this paper. The preliminary experimental results
are encouraging. The results show that the optimized method
is efficient in that the time cost of detecting statistically
conflicting rules increases linearly as the number of rules
increases. The method is also scalable because the efficiency
remains the same even when the number of rules hits 20,000.

Acknowledgment

This work is partially funded by the European Commis-
sion under FP6 projects EchoGRID, grant No 04552, and
XtreemOS, grant No 033576.

REFERENCES

[1] P. Bonatti, S. De Capitani, and P. Samarati. An Algebra for
Composing Access Control Policies. ACM Transactions on
Information and System Security, 5(1):1-35, 2002.

[2] P. Bonatti, and P. Samarati. A unified framework for regu-
lating access and information release on the web. Journal of
Computer Security,10(3),pages 241-272,2002.

[3] S. Dawson, S. Qian, and P. Samarati. Providing Security
and Interoperation of Heterogeneous Systems. In Proc. 14th
International Conference on Information Security (SEC9S8),
Vienna-Budapest, Aug. 31-Sept. 2, 1998.

[4] Security service technical committee. eXtendible Access
Control Markup Language Committee specification 2.0. 2005.

[5] M. Thompson, A. Essuaru and S. Mudumbai. Certificate-based
Authorization Policy in a PKI Environment. ACM Transactions
on Information and System Security, 6(4):566-588, 2003.

[6] M. Wimmer, A. Kemper, M. Rits, and V. Lotz. Consolidating
the Access Control of Composite Applications and Workflows.
In Data and Applications Security 2006, LNCS 4127, pages
44-59, 2006.

