
In Vivo Evolution of Policies that Govern a Distributed System

Constantin Serban
Applied Research

Telcordia Technologies
serban@research.telcordia.com

Naftaly Minsky
Department of Computer Science

Rutgers University
minsky@cs.rutgers.edu

Abstract

This paper addresses an important open problem con-
fronting any decentralized and stateful access control (AC)
mechanism for networked systems, particularly when the
system at hand is large, heterogeneous and open. The
problem, in a nutshell, is how to enable safe evolution
of the policy that governs a given system, while that sys-
tem continues to operate. This problem, and its solution,
are addressed here in terms of the Law-Governed Interac-
tion (LGI) mechanism, but the ideas underlying this paper
should be broadly relevant to other decentralized and state-
ful control mechanisms, such as the use of distributed fire-
walls for the protection of distributed enterprise systems.

1 Introduction

This paper addresses an important open problem con-
fronting any decentralized and stateful access control (AC)
mechanism for networked systems, particularly when the
system at hand is large, heterogeneous and open. The prob-
lem, in a nutshell, is how to enable safe evolution of the
policy that governs a given system, while that system con-
tinues to operate. The need for such an in vivo evolution
(i.e., evolution in a living organism, as it where) of system’s
policy is self evident, when dealing with a long lived sys-
tem that must operate continuously. But as we shall see,
such evolution can be very harmful to the integrity of the
system being governed by the evolving policy. (Consider,
for analogy, the changing of traffic law in London to the
European law, in the middle of rush hour.) This problem,
and its solution, are discussed here in terms of the gover-
nance mechanism called Law-Governed Interaction (LGI),
but the ideas underlying this paper should be broadly rele-
vant to other decentralized and stateful control mechanisms,
such as the use of distributed firewalls for the protection of
enterprise systems.
The rest of this section is organized as follows. We first

provide a very brief introduction of the LGI mechanism,
which should be sufficient for this paper (for more about

LGI the reader is referred to the manual that accompany its
release [9]). Then, in Section 1.2, we introduce a model for
in vivo evolving laws for distributed systems. And in Sec-
tion 1.3 we discuss the challenges posed by such evolution.

1.1 A Very Brief Introduction to LGI

LGI is a generalized AC mechanism that enables a group
of distributed actors—collectively called here a system—
to exchange messages subject to a law that governs them
all, and which is enforced securely and in a decentralized
manner.
More specifically, an actor Ax that operates under a

given law L exchanges messages with the rest of the sys-
tem via a proxy, called the controller, trusted to enforce law
L. A controller is a triple TL

x = 〈L, I, CSx〉,whereL is the
law under which this particular actor operates; CSx is the
control-state (or simply state) maintained by the controller
on behalf of Ax; and I is a generic mechanism that medi-
ates the interactions of x with others, according to the given
law L. The pair consisting of an actor and its controller is
called an agent x = 〈Ax, TL

x 〉. Figure 1 shows the passage
of a message from an actor Ax to Ay , as it is mediated by a
pair of controllers, first by TL

x , and then by TL
y .

The purpose of a law under LGI is to decide what should
be done in response to the occurrence of certain regulated
events—such as the receipt or the sending of a message at
the controller. For any such event e occurring at an agent
x (i.e., at the controller), the law mandates a response to be
carried out at x. This mandated response, called the ruling
of the law, is a functionL(e, s), where s is the state of agent
x at the time of the occurrence of event e. Such a ruling is
a sequence of zero or more control operations, which can
cause such things as forwarding of messages, and updating
the state s of the home agent x. (Note that the ruling of
the law is not limited to accepting or rejecting a message,
as under most conventional AC mechanism. This fact is a
source of much of the power of LGI.)
It is worth noting that that LGI replaces the conventional

concept of policy under AC—traditionally defined as an ac-

1

II
CSx CSy AyAx

L L

Tx
L Ty

L

agent x agent y

Figure 1. A pair of interacting L-agents

cess control matrix—with the pair 〈law, state〉, where the
fixed law holds sway over an entire system, while the state
is a distributed collection of local states, each of which can
change dynamically independently of the others, but subject
to the global law.
LGI laws can be specified using different languages,

without changing the semantics of the mechanism. Under
the current implementation of LGI, in particular, one can
choose between two such languages, based on Prolog and
Java, respectively. The examples of laws in this paper are
specified by means of an informal pseudo-code under which
a law is a sequence of event-condition-action rules of the
following form: upon〈event〉 if〈condition〉 do〈action〉
where the 〈event〉 represents one of the regulated events;
the 〈condition〉 is a general expression defined over the
event and the state of the agent; and the 〈action〉 is one
or more operations mandated by the law.
Finally, we introduce here briefly two features of LGI,

called obligations and exceptions, which are required due
to the decentralized and stateful nature of this mechanism,
and which are relevant to this paper. (For more about these
features, and for their rationale, see [9]). First, the ruling of
an LGI law may impose an obligation on the agent, caus-
ing a specific event to be triggered sometime in the future,
after a specified period of time, thus providing a proactive
capability. Second, an event called an exception, can
be triggered when an operation previously mandated by the
law cannot be completed successfully—and it is up to the
law to prescribe a recovery measure. We will see examples
of the use of these features in the following section.

1.2 A Model of In Vivo Evolving Laws

We assume that a law of a given distributed system S
undergoes a process of evolution through a lineage

L = 〈L0,L1, ...,Li, ...,Ln = Lc〉

of law versions. Law Ln, the latest of these versions, at a
given moment in time, is by definition the current law of
system S—it is also denoted by Lc.
Ideally, one would like all agents of system S to always

operate under the current law Lc of its lineage L. That is,
when a new version of the lineage is introduced, one would

like everybody in the system to switch to it immediately,
and in a virtually atomic manner. This is readily doable un-
der a centralized AC mechanism that uses a single reference
monitor to mediates all message exchanges in the system.
But as we shall see below, under a decentralized mecha-
nism, such as LGI, this ideal can only be achieved under
some stringent conditions, and over a considerable period
of time. Therefore one needs to employ a more incremental
technique for converging to a state in which all members of
S operate under the same law Lc. This implies that during
the convergence period different agents that interact with
each other might be operating under different versions of
the law in lineage L. We call this situation the dispersion of
the law.
The fundamental reason for such dispersion is that in or-

der for the system as a whole to adopt the new Lc one needs
to notify all the agents of this system about the new current
law; and have each of them, individually, change its own
law to the new Lc. Moreover, these law changes need to
be synchnronized, and be carried out in a virtually atomic
manner. But this is hard to achieve, for several reasons.
First, the composition of the system at hand may not be

fully known. Because the system may be open, allowing
for new agents to be formed, and for existing ones to disap-
pear, with no centralized control and without registration1.
Therefore the system administrator (or the agent responsi-
ble for introducing the new law version Lc) may not have
enough knowledge to notify all system agents about the new
version. Second, even if the composition of S is known to
the administrator, some of the members of S may be tem-
porarily unreachable, due to a network failure, or because
they are not online. Finally, some of the agents that are no-
tified of the new Lc, may not be able or willing to change
their law to it immediately, because they are in the middle
of some transaction that needs to be concluded under the
previous law.
Therefore, the system may have to operate under a dis-

persed lineage L, during certain periods in the course of its
evolution. During such a period of dispersion we sometime
refer to L as “the law of the system”. These periods of dis-
persion may be transient, but they may also be quite lengthy
if the speed of evolution of the law exceeds the speed of
convergence to new versions of it.
It is worth introducing at this point the following nota-

tions. An arbitrary law version in a lineage L is denoted
simply as L. The immediately preceding and succeeding
version of L in L are denoted by L− and L+, respectively;
an arbitrary version to the left or right of L in the lineage L
is denoted by L−∗ and L+∗, respectively. Finally, an agent
x operating under a law L will be denoted by x/L.

1Although LGI can establish central control and registration via appro-
priate laws, it does not require it; and it is unnecessary in many applica-
tions.

2

1.3 On the Challenges Posed by In Vivo
Evolution of Laws Under Decentral-
ized AC

While in vivo evolution of the law that governs a dis-
tributed system is often necessary, it can be perilous to the
integrity of the system, and must be handled with care. The
following are the main problems confronting such evolu-
tion, when the laws are stateful, and when they are enforced
in a decentralized manner.

• When a new version of the law is introduced, it is not
enough to replace the old version of the law of each
member of S with the new one. One also needs to up-
date the state of each agent to fit the new law, thus pre-
serving, under the new law, the meaning of things like
roles, capabilities, or status of ongoing transactions,
which are represented in the state of individual agents.
Accordingly, the adaptation of the state to the new law
should be done on a per-agent basis. The question is
how should such adaptation be defined and carried out.

• During a period of law-dispersion, agents operating
under different versions of the law might attempt to
exchange messages, without being aware that there is
a difference between their respective laws. The ques-
tion is how to handle the resulting inconsistencies. In
particular, what should an agent x/L do when receiv-
ing a message sent under a previous version L−∗ of
the law? Such messages are called ghosts, as they are
relics of past laws.

• Once a new law version Lc is introduced, how should
one converge to the universal adoption of it by all
agents of of the given system S, given that the ideal
of universal and atomic adoption of the current law Lc

is generally impossible.

It seems clear that these issues have no single answer, as
they depend on both the system at hand and the law under
which it operates. Therefore, we do not attempt to provide
specific answers to these questions. What we provide, in-
stead, are basic tools for resolving these issues, and a gen-
eral approach for doing so in specific situations.

The rest of this paper is organized as follows. Section 2
describes the structure of evolving laws, and introduces the
basic tools for supporting their evolution, illustrating them
via an example. Section 3 describes the law-change process
from a single agent perspective. Section 4 addresses the is-
sue of evolution from a system-wide perspective. Section 5
discusses related work, and Section 6 concludes this paper.

2 The Structure of Evolving Laws

Laws in a lineage L are identified via their name, as de-
clared by the Law(Li) clause in the preamble of each law;
these names are constrained to be unique for a given lin-
eage L. The text of each law L in the lineage is main-
tained at a URL, to be denoted by url(L). Also, every
law L in L, except the first law L0, must have the clause
previousLaw(url(L−)) in its preamble, pointing to the law
preceding it in the lineage. Finally, certificates are used
to authenticate the laws in a lineage L and to authorize a
change when a new law is presented.
Evolving laws use several features introduced into LGI

for this purpose. These include two additional events:
lawChanged, and ghost, as well as a primitive operation:
changeLaw. We will discuss these features in the context of
the following example.

2.1 An Example

We will introduce here the first two versions L0 and L1

of an evolving law lineage L.

An Initial Law L0 of a Lineage: Let us consider the fol-
lowing, informally stated, capability-based access control
policy. First, a subject x can access an object o if it holds a
capability cap(o). Second, the holder of a capability can
delegate it by lending, for a specified period of time. That
is, if x delegates its capability to y, then x looses this capa-
bility; y has the obligation to return it to x when the lending
period has expired. Figure 2 displays an LGI law (written
in pseudo code) that establishes this policy.
Rule R1 of this law permits x to access o only when

capability cap(o) is present in the control state (or sim-
ply state) of x, denoted by the clause ∃cap(o). Rule R2
enables the delegation by-lending of a capability, for a spec-
ified period of time. Note that one is allowed to delegate a
given capability only if it has it in its control state; and if
it is the original owner of that capability, i.e., if it does not
have a pending obligation to return it. Also, the delegator
loses the capability once it lends it. Rule R3 shows how y
acquires the delegated capability, along with an obligation
to return it back to the delegator, after a prescribed period
of time t.
Rule R4 deals with the exception raised when the in-

tended receiver of a delegated capability is not available. In
such a case, the sender of the capability will re-acquire it in
its state.
Rule R5 is invoked when the obligation to return a

lended capability comes due. The ruling for this event
is to remove this capability from the state of its current
holder, and to return it to the lender. Rule R6 shows the
re-acquiring of this capability at the initial owner.

3

Preamble: Law(L0)

R1. upon sent(x,operation(Op),O)
if ∃cap(o) do forward

R2. upon sent(x,delegate(cap(o),t), y)
if ∃cap(o)&¬∃obligation(cap(O,X))

do −cap(o),do forward

R3. upon arrived(x,delegate(cap(o),t), y)
do +cap(o)
do imposeObligation(cap(O,X),t)

R4. upon exception(x,delegate(cap(o),t),y)
do +cap(o)

R5. upon obligationDue(cap(O,X))
do −cap(o)
do forward(Y,return(cap(o)),X)

R6. upon arrived(Y,return(cap(o)),X)
do +cap(o)

R7. upon arrived(x, pleaseUpdate(URL), y)
do changeLaw(URL)

Figure 2. Law L0

Finally, Rule R7 enables this law to be changed, as will
be discussed in due course. (Note that this law does not
show how the capabilities are acquired initially. LGI offers
several ways to perform such initialization, which cannot be
explained here due to lack of space.)

Law L1 of a Lineage: Suppose that after some time, the
policy of the system needs to be changed such that: (a) dele-
gation is permanent and not by lending; that is, the delegator
does not loose the capability it delegates and no obligation
is imposed on the delegatee; and (b) only delegatable capa-
bilities, which have the form cap(o,1), can be delegated,
while capabilities of the form cap(o,0) cannot be dele-
gated.

Law L1, displayed in Figure 3, establishes this policy
via its first three rules. Rule R1 allows x to access o when
capability cap(O,F) is present in the state of x, regard-
less of whether F is 0 or 1. Rule R2 allows x to delegate
its capability to y only if x has itself the capability, and
the capability is delegatable (i.e. the delegability flag is 1).
RuleR3 shows the acquiring of such copy-capability.
Rules R4 through Rule R7 are designed to support the

transition from law L0 and law L1. They are discussed in
the following section.

Preamble: Law(L1)
previousLaw(url(L0))

R1. upon sent(x,operation(Op),O)
if ∃cap(O,F) do forward

R2. upon sent(x,delegate(cap(O,F)), y)
if ∃cap(O,1) do forward

R3. upon arrived(x,delegate(cap(O,F)), y)
do +cap(O,F)

R4. upon lawChanged(L0, L1)
if ∃cap(o)

do −cap(o)
do +cap(O,1)

R5. upon ghost(Event, L0)
if Event=obligationDue(cap(O,X))
do fwd(Y,delegate(cap(O,1)),[X,L0])

R6. upon ghost(Event, L0)
ifEvent=exc(Y,delegate(cap(O,t)),X)

do +cap(O,1)

R7. upon ghost(Event, L0)
ifEvent=arrived(Y,return(cap(o)),X)

do +cap(O,1)

Figure 3. Law L1

3 Single Agent Perspectives

This section focuses on a single agent operating under
one of the law versions in L. We start with the basic mech-
anism for changing the law under which an agent oper-
ates. Then, in Section 3.2, we discuss the treatment of
the “ghostly events” that an agent may confront due to its
change of law. Finally, in Section 3.3 we discuss the han-
dling of communication between agents operating under
different law versions in L.

3.1 The Changing of a Law

A law change at an agent x/L, from its law L to the next
version L+, is a two stage process. First, while x operates
under law L it invokes (via the ruling of its law) the primi-
tive operation changeLaw(U), where U is the URL of the
new law L+. Second, the very next event in the life of x is
the event lawChanged(L,L+), which occurs under its
new law L+. The purpose of this event is to provide an op-
portunity for law L+ to complete the change of the law, in
particular by making an appropriate update of its state. We
now elaborate on these two stages of the law change; and

4

will then point out that this change from L can be done to
any law L+∗ in L.

The First Stage of a Law Change: The circumstances
under which the operation changeLaw(U) can be carried
out by agent x/L, depend on the law L. Suppose, for in-
stance, that x operates under our example law L0 displayed
in Figure 2. According to RuleR7 of this law, the operation
changeLaw(U)will be invoked immediately upon the ar-
rival of a message of type pleaseUpdate(URL), pre-
sumably containing the URL of L1. So, the arrival of such
a message is viewed by law L0 as a command to change the
law (for simplicity, our example law does not specify how
and by whom such a command can be sent.) Alternatively,
once x/L is somehow notified of the existence of a new ver-
sion of its law, the timing of the actual change might be left
to the discretion of the actor of x, perhaps subject to some
constraints, such as time limit.
Once the changeLaw(U) operation has been invoked,

the changing process starts to take place. The first step is to
load the new law L+ from the provided URL, and to check
its certificate, if any, for validity. When loading the new
law, the controller verifies that L+ belongs to L’s lineage
by checking the previousLaw(U) declaration in L+, as
shown in the preamble of L1.

The Second Stage of a Law Change: Immediately after
agent x replaces its law to L+ a lawChanged(L,L+)
event would be triggered at x, as the first event to take place
after the law change. The arguments of this event repre-
sent the old law that has been updated, and the new one,
which is thus the current law of agent x. The purpose of
this event is to provide an opportunity for the new law to
perform some initializations, such as: (a) adapt the control
state of the agent x to the new law; or (b) perform some
initialization operations, such as forwarding a message to
some designated monitor notifying it of the law change.
For example, according to Rule R4 in Figure 3, after x

changes its law to L1, every term cap(o) in the state of x
would be changed to a term of cap(O,1), representing a
delegatable capability for o under law L1.

Skipping Over Several Generations of L: So far we
have discussed the changing of a law L to the imme-
diately succeeding law L+. But the same operation
changeLaw(U) is designed to change from L to any later
version L’ of this lineage. Such skipping over generation
of laws is done essentially as follows: (1) The controller
of x verifies that L’ represents a subsequent version of L.
(2) The controller loads all the intermediary laws in the se-
quence 〈L, ...,L′〉 up to, and including, the final target law.
(3) A sequence of lawChanged events is carried out for
all the transitions in the law sequence; (4) Any event that

might occur during the evaluation of the lawChanged se-
quence will become a ghost event scheduled under the new
law L’ (see below about ghost events).

3.2 Self Ghosts

What we call “self ghost” are events that take place at an
agent x/L+, but are caused by something in the history of
x when it was operating under an earlier version of the law.
The most important such ghosts have to do with obligations
and exceptions. They are discussed below.

Exception Ghosts: Such ghosts can occur as follows.
Suppose that a message sent by x/L fails, subsequently
causing an exception event at x. But if x changes its law
to L+ while either the message or the exception are in tran-
sit, then this exception will be triggered under the new law
L+.
Rule R6 in law L1 deals with such an exception ghost.

If agent x delegates a capability under law L0, then imme-
diately changes its law to L1, a subsequent exception ghost
might occur at x. This rule will restore the capability whose
delegation failed, but in the form cap(O,1) it needs to
have under L1.

Obligations Ghost: Such ghosts can occur as follows:
suppose that an agent x/L imposes an obligation on itself
to come due afterΔt seconds. If x updates its law to L+ be-
fore the Δt period has elapsed, the firing of this obligation
will cause an obligation ghost event. Rule R5 in law L1 is
an example of dealing with such a ghost. Here, if an agent
has a pending obligation to return a capability cap(o) to
its lender, and the law has been changed to law L1, then the
obligation is fired as a ghost event. As a result, the capabil-
ity will be returned to the original owner, assuming (in this
example) that the latter is still operating under the law L0.
If the original owner already transitioned to law L1, then
the message would be processed as a ghost, under RuleR7,
as discussed in the following section.

3.3 Communication Under Law Disper-
sion

We consider here a system in which different agents
are operating under different versions of L, and individual
agents do not generally know the version of the law under
which other agents operate. Therefore, the sender of a mes-
sage, say x/L, has no choice but to assume that all other
agents operate under law L as well. (This is consistent with
the default of message sending under LGI).
The question discussed in this section is what should

happen when this default assumption turns out to be incor-
rect, i.e., when the interlocutor of x/L operates on a dif-

5

x/LL

x/L y/L+

y/L+

1
2

3

1

2

3
ghost

exception

b

a

Figure 4. Interaction Between Agents Operating Un-
der Different Law Versions

ferent version of the law. For simplicity we will examine
this question by considering two agents x/L and y/L+ ex-
changing messages with each other. (The following discus-
sion is valid for the case that several generations separate
the law versions under which x and y operate.) We start
with y sending a message to x, and then consider the other
way around.

Messages from the Future: Suppose that y/L+ sends
a message to x/L, as depicted in part (a) of Figure 4.
This message must be considered invalid by x, since
it has been destined for an agent operating under L+,
of which x knows nothing. Therefore, this message is
blocked from being delivered to x; and y, the sender of
this message, is notified with a specific exception event:
exception(x,M,y,destinationLawObsolete
(L)), where L represents the law that x operates under.
This exception is depicted by arrow number 2 in Figure 4.
One possible response of y to such an exception is to

re-send the message after a certain period of time, expect-
ing that y will update its law. Another type of response of y,
now that it knowswhich law does x operate under, is to send
a message to x explicitly stating its actual law. Such com-
munication between agents operating under different, but
known laws, is supported by LGI—it is called interopera-
tion, or export. In particular, such an export—depicted by a
dashed arrow in Figure 4—can be used to inform x that an
update is available to its law. We will return in Section 4.2
to this type of response of y.

Messages from the Past: Suppose, now, that x/L sends a
message to y/L+, as depicted in part (b) of Figure 4. When
this message arrives at y/L+ it would trigger a ghost event,

because y detects that the message has been sent under a
law version that precedes the one y itself operates under.
What happens when a ghost event occurs depends on law

L+ of y. For example, RuleR7 in L1 handles the arrival of
a ghost message at an agent. In this case, the ghost message
represents the return of a delegated capability from an agent
still operating under L0. Moreover, just as in the case of
messages from the future discussed above, y can export a
message to x (as depicted by a dashed arrow in Figure 4),
informing it that an update is available to its law. Again, we
return to this possibility in Section 4.2.

4 System Perspective

The issue to be addressed here is how does a system S,
operating under an evolving lineage L, attempt to converge
towards the universal adoption of its current lawLc. We use
the term “attempt,” since, as has been pointed out earlier,
complete convergencemay not be achieved for long periods
of time, if ever—in part, because the evolution of the law
may be faster than its propagation, and because parts of the
system may be temporarily disconnected from each other.
In this section we discuss the process of convergence to a
new current law Lc introduced by the system administrator.
Such convergence has two phases, which may overlap in

time: (1) seeding, which results in having a subset of the
agents in system S change their law to Lc; and (2) peer
to peer (P2P) convergence towards Lc, which starts with
the “seeds” planted in phase 1. We discuss these phases
in the following two subsections. Finally, in Section 4.3,
we describe a mechanism for universal and virtually atomic
change to Lc, which can be effective is some situations.

4.1 The Seeding of a New Current Law Lc

This phase of convergence toward Lc has two parts: (a)
dissemination of the new Lc to a subset S′ of agents in S;
and (b) the adoption of Lc by a subset S′′ of S′.
The dissemination may be done in a variety of ways. In

particular, the system manager may inform a subset S′ of
S of the existence of the new Lc. (He may not be able to
inform all agents in S because he might not know about all
of them, or because some of them are unreachable, perhaps
temporarily.) Another dissemination technique is by pull.
That is, the various agents periodically query a given server
about the existence of a new Lc for their system. The initia-
tive for such periodic queries can come from the actor of an
agent, or from its law, which imposes an obligation to do so
periodically.
But informing an agent x about the new Lc does not nec-

essary mean that x will immediately adopt this law. As we
have explained earlier, an agents may decide to wait for a
while before changing its law to Lc, and it may even not do

6

it at all. Therefore, the set S′′ of agents that would end up
being seeded with the newLc may be smaller than the set S′

of agents who were informed of it. But as long as S′′ is not
empty we can continue to the next phase of convergence.

4.2 P2P Convergence Towards Lc

If the set S′′ of agents seeded with law Lc is not the en-
tire system, one needs to propagate this law to S−S′′. This
can be done incrementally, as a by-product of routine com-
munication. That is, if an agent discovers during routine
communication that its counterpart operates under an older
version of the law, it should direct this agent to perform a
law change.
More specifically, this P2P convergence, which needs to

be supported by all versions in L, can be described in terms
of the communication between two agents x/L and y/L+.
As discussed in Section 3.3, when these two agents ex-
change messages under the assumption that they operate
under the same law, the disparity between their laws will
be detected at y/L+, and subsequently reported either as an
exception, as depicted in Figure 4(a), or as a ghost message,
as depicted in Figure 4(b). As also stated in Section 3.3,
once y discovers the law L of x, y can send messages to
x/L and not simply to x (which is interpreted as x/L+.)
These messages, depicted in Figure 4 by dashed arrows,
can be something like pleaseUpdate(URL), where the
URL is that of its own law L+. Such a message, intended
to ask x to change its law to L+, would be effective if the
law L of x is written to respond positively to this request.
This can be done, in particular, as shown in RuleR7 of the
example law L0.

4.3 A Mechanism for a Virtually Atomic
Law Change by the Entire System

This section is a summary of a technique—introduced in
the first paper about LGI [8]—that attempts a universal and
atomic change of law. This technique has two successive
stages. The first stage uses a the two-phase commit proto-
col to get the agreement of all agents to carry out the law
change. The second stage is divided into three successive
parts: (a) a relaxation period, designed to allow agents to
finish activities under the old law; (b) a passive period, de-
signed to eliminate ghost messages, and inter-version mes-
sage exchange; and (c) the law change itself, where the new
law is set in place, by every agent, along with its updated
control state.
The main limitation of this mechanism is that one can-

not always get the agreement of all agents in the system
to change the law. In particular, because a subset of these
agents may be disconnected from the rest; and because the
complete membership of the system, which may be dynam-

ically changing, may not be known. But this atomic change
can be used with only a partial participation in it, as an ef-
fective seeding stage (cf. Section 4.1) to be followed by the
P2P convergence mechanism discussed in Section 4.2.

5 Related Work

Despite the importance of access control and high-
availability requirements for many distributed systems, the
problem of changing a distributed policy while the system
continues to operate has received little attention so far. Per-
haps the earliest attempt to address this issue has been pub-
lished [8] in 1991 in the context of LGI; the present paper
is an extension of that work, which is summarized in Sec-
tion 4.3. The following are summaries of more recent at-
tempts at this problem.
Ponder [5] is a mechanism for specifying management

and security policies for a distributed system; its policies
are enforced in a distributed manner. In [6], the authors de-
scribe a policy deployment and lifecycle model, including a
policy change mechanism. This mechanism, similar to our
previousmodel described in Section 4.3, requires that a pol-
icy is disabled with respect to all the agents in a policy set,
then a new policy is deployed for that set. Although this
model eliminates the potential of having ghost events and
inconsistent communication between different versions of a
policy, it can potentially produce large down times, where
no policy is active in the system. Also, due to the lack of
stateful character of Ponder policies, there is no mapping
function between an old policy and the new policy.
DRAMA [4] is a policy-based network management sys-

tem, designed to managemobile ad-hoc networks. The poli-
cies are represented by event-condition-action rules con-
cerned with configuration, monitoring, and reporting of
management events in a network. DRAMA policies are en-
forced in a distributed manner by Policy Agents that are
co-located with the managed network elements. Policy
operations–such as enabling, disabling, or introducing new
policies–are propagated between Policy Agents in a peer-
to-peer manner, with some similarity to our convergence
technique described in Section 4.2. DRAMA, however, is
not concerned with controlling the communication between
managed network elements, thus it does not have to address
inconsistencies due to a partial update of a system.
XACML [7] uses a hybrid policy enforcement scheme,

which involves distributed Policy Enforcement Points
(PEP), co-locatedwith protected resources, as well as a cen-
tral Policy Decision Point (PDP), responsible for evaluating
policies that apply to a given access request. Due to the
centralized nature of the PDP, XACML is not confronted
with the problems addressed in this paper, because its pol-
icy change takes place atomically with respect to the entire
system.

7

The law-changemodel presented in this work has a num-
ber of affinities with the concept of automatically upgrad-
ing a distributed system. Most prominently, the model of
Ajmani et al. [1, 2] shares a number of features, such as
the peer-to-peer automatic discovery of inconsistencies be-
tween different versions of a software; a delayed, and con-
trolled scheduling of an upgrade, as well as the mapping
of the state as part of the upgrade process. There is a num-
ber of significant differences, however, between their model
and our model. First, our model assumes that a law retains
control over its own update procedure, thus defining and
maintaining state consistency. Their model assumes an ab-
stract, and unspecified consistent checkpoint for performing
an update. Such a checkpoint can introduce severe limita-
tions with respect to the types and the implementation of
the objects that can be updated. Second, their model suf-
fers from an unnecessary centralization for both seeding an
update, and for coordinating the update schedule throughout
the system. Our model does not rely on a centralized update
database, and can use sophisticated controller-to-controller
communication for both seeding the change and propagat-
ing it at individual components. Third, their model for deal-
ing with inconsistencies between various version of a soft-
ware uses the concept of a simulated object–an adapter that
is responsible from dealing with, what we call, ghost com-
munication events. Past simulator objects, however, have no
access to the state of neither the older object nor the newer
object, thus leading to un-handled inconsistencies. Last, our
mechanism provides advanced access control to ensure that
only proper changes take place, where a proper change can
be defined according to multiple and flexible criteria. Their
model relies on a centralized entity to decide unilaterally
what a proper update is, without employing additional local
information useful in such a decision.

6 Conclusion

We have introduced a model for in vivo evolution of the
laws that govern a distributed system, when the governance
(or access control) mechanism is strictly decentralized. We
have argued that laws tend to be dispersed under such evolu-
tion, and that this dispersion, along with other aspects of in
vivo evolution, can cause serious problems to the integrity
of the system at hand.
We have described an approach for addressing these

problems, thus providing for an orderly and safe process
of evolution. We have implemented the necessary founda-
tion that supports this approach under the LGI mechanism.
This foundation for evolution is very lean, leaving most of
the complexity of ensuring orderly evolution of the laws to
the evolving laws themselves. Although this foundation has
been implemented, it has not yet been included in the re-
leased version of LGI.

The main limitation of this paper is that it assumes that,
in the absence of evolution, the entire system is governed
by a single law. As we have seen, the evolution tends to
disperse different versions of this law among the different
system parts, but all these versions belong to a single lin-
eage of laws. However, as we have shown in [3], a complex
system may be governed by an ensemble of interoperating
laws, generally organized into what we call a conformance
hierarchy. The in vivo evolution of such an ensemble of
laws is still an open question.
Another issue not sufficiently explored in this paper, is

the structure of evolving laws. We have illustrated this
structure in a single example in this paper. But a more com-
prehensive study of such structures would be useful.

References

[1] S. Ajmani, B. Liskov, and L. Shrira. Scheduling and simula-
tion: How to upgrade distributed systems. In Ninth Workshop
on Hot Topics in Operating Systems (HotOS-IX), pages 43–
48, Lihue, Hawaii, May 2003.

[2] S. Ajmani, B. Liskov, and L. Shrira. Modular software up-
grades for distributed systems. In European Conference on
Object-Oriented Programming (ECOOP), July 2006.

[3] X. Ao and N. H. Minsky. Flexible regulation of distributed
coalitions. In LNCS 2808: Proc. European Symp. on Research
in Computer Security (ESORICS), Oct. 2003.

[4] R. Chadha, H. Cheng, Y.-H. Cheng, J. Chiang, A. Ghetie,
G. Levin, and H. Tanna. Policy-based mobile ad hoc network
management. In POLICY, pages 35–44, 2004.

[5] N. Dulay, N. Damianou, E. Lupu, and M. Sloman. A policy
language for the management of distributed agents. In AOSE,
pages 84–100, 2001.

[6] N. Dulay, E. Lupu, M. Sloman, and N. Damianou. A pol-
icy deployment model for the ponder language. In Proc.
IEEE/IFIP International Symposium on Integrated Network
Management (IM2001, pages 14–18, 2001.

[7] S. Godic and T. Moses. Oasis extensible access control
markup language (xacml), vesion 2.0. http://www.oasis-
open.org/committees/xacml/index.shtml, March 2005.

[8] N. H. Minsky. The imposition of protocols over open dis-
tributed systems. IEEE Transactions on Software Engineer-
ing, Feb. 1991.

[9] N. H. Minsky. Law Governed Interaction (LGI): A Dis-
tributed Coordination and Control Mechanism (An Introduc-
tion, and a Reference Manual), February 2006. (available at
http://www.moses.rutgers.edu/documentation/manual.pdf)

8

	Introduction
	A Very Brief Introduction to LGI
	 A Model of In Vivo Evolving Laws
	On the Challenges Posed by In Vivo Evolution of Laws Under Decentralized AC

	The Structure of Evolving Laws
	An Example

	Single Agent Perspectives
	The Changing of a Law
	Self Ghosts
	Communication Under Law Dispersion

	System Perspective
	The Seeding of a New Current Law Lc
	P2P Convergence Towards Lc
	A Mechanism for a Virtually Atomic Law Change by the Entire System

	Related Work
	Conclusion

