
DAuth: Fine-grained Authorization Delegation for
Distributed Web Application Consumers

Joshua Schiffman
Systems and Internet Infrastructure Security Laboratory

The Pennsylvania State University
Email: jschiffm@cse.psu.edu

Xinwen Zhang, Simon Gibbs
Computer Science Lab

Samsung Information Systems America
Email: {xinwen.z, s.gibbs}@samsung.com

Abstract—Web applications are becoming the predominant
means by which users interact with online content. However,
current authentication approaches use a single authentication
credential to manage access permissions, which is too inflexible
for distributed programs with unique security and privacy
requirements for each component. In this paper, we introduce
DAuth, an authorization mechanism that allows fine-grained
and flexible control of access permissions derived from a sin-
gle authentication credential for distributed consumers of web
applications. We implement DAuth as a proxy for a Twitter
social networking application within our distributed Elastic
Application framework and find it introduces negligible overhead
and requires only minor modification of existing applications.
Through our evaluation, we demonstrate DAuth improves on
existing web authentication mechanisms to support distributed
web application consumers and can be implemented as a proxy
to web applications that do not wish to develop their own
implementation.

I. INTRODUCTION

Application functionality is increasingly moving online as
evidenced by the popularity of web applications such as
Google Docs and Facebook applications [4]. These applica-
tions are no longer isolated. They now provide extensible
APIs allowing social networks and other web application
consumers to access user resources shared on those sites [23].
As web services become more intricate and highly interrelated,
developers have begun to create distributed applications. Such
applications are comprised of various services that enhance
user experience and offer new and interesting content by
mixing data from various sources. Examples include the so-
called “mashups,” which combine a user’s social networking
sites into a single aggregated feed.

While this integration inherently increases the value of
individual services, the interaction is rarely sufficiently me-
diated, placing the applications and end users at significant
risk. Developers frequently design programs that exercise a
wide variety of web application functionality and users often
authorize these third parties with little understanding of how
much access they are giving up. What is worse, the granularity
at which applications are authorized is typically far too broad,
necessarily enabling full access to user accounts.

Traditionally, users have provided authorization to third
party applications by entering their username and password,
effectively giving complete control to the applications. With
this approach being obviously dangerous, protocols have

been developed to authorize third party applications without
revealing such secrets [13], [5], [2], [12], [11]. However,
these approaches assume that the consumer accessing the web
service is a single identity. An application authorized to access
user content will be given a single credential associated with
the permissions delegated to it. As a result, all components
in a distributed applications will be authorized with the full
permissions of the application, regardless of whether they need
them or not.

As developers leverage the cheap and easy to procure
computational resources of public hosting environments like
cloud computing platforms [1], [8], such overly authorized
components may be run on public infrastructures in different
administrative domains. Past studies have shown that these
virtualized hosting platforms are vulnerable to attack [29],
[26], and may lead to theft of access credentials. As a result,
malicious entities can compromise user accounts by gaining
access through systems to which they are indirectly authorized
by the user.

To address this problem, we introduce DAuth, a mecha-
nism for fine-grain sub-delegation of access permissions for
distributed consumers of web applications. DAuth enables
developers and users to specify the exact set of permis-
sions that application components may have by generating
new credentials from existing authorization protocols. Using
a permission policy, DAuth can enforce least privilege by
limiting application component permission according to the
functionality required by the component and the level of
trust associated with the location the component is hosted.
The central component of our design is the DAuth agent,
which creates, registers, and revokes access Sub-tokens for
application components based on the application’s permission
policy. The service provider also exposes an interface for
these Sub-tokens, which can be implemented with only small
changes. Alternatively, a DAuth proxy can be used for web
services that do not implement DAuth.

We developed and deployed DAuth on a framework for
distributed programs called Elastic Applications [30]. This
framework was designed to seamlessly shift application com-
ponents between resource constrained devices and cloud com-
puting platforms to conserve power and reduce costs. We
evaluated our design by creating a Twitter application, whose
functionality is split between a mobile device and a remote

1

hosting platform. We demonstrate in our evaluation that DAuth
adds minimal overhead of less than 6 ms when using a proxy
and requires only minor modification of existing applications.

In this paper, we make the following contributions:
• We have created an approach for specifying the exact

set of web-service-specific permissions that distributed
application components may access based on the required
functionality of the component and the safety of the
hosting location.

• DAuth enables the application policy author to define
permissions regardless of how broadly service providers
currently authorize applications, which is typically on the
order of read or write.

• Our approach is fully transparent to the user and will
manage the delegation and revocation of application com-
ponents without additional user input beyond the initial
authorization of the application.

• DAuth introduces only minimal overhead to existing
applications and complements popular authorization pro-
tocols like OAuth [11].

Outline: We start by providing background on current
authorization approaches in web applications and define our
problem and security requirements in Section II. Next, we give
an overview of our DAuth design in Section III. We provide
a brief overview of our Elastic Application framework and
DAuth implementation in Section IV and evaluate our design
in Section V with an example Twitter application. Section VI
covers related work in authorization and we conclude with
Section VII.

II. AUTHORIZATION IN WEB APPLICATIONS

Web applications revolve around user-generated content. A
key concern for both users and application providers is how
to manage access control of data stored in the application.
In this section, we discuss current approaches used by web
applications for authorizing access to user data. Next, we
will demonstrate how distributed applications violate the ba-
sic assumptions of current protocols. Finally, we detail our
security requirements for a solution to authorizing distributed
applications.

A. Authorization Background

Increasingly, Web 2.0 applications expose functionality
through a set of APIs that enable both installed applications
(i.e., desktop programs or mobile phone apps) and other web
applications such as mashups to access user generated content
on behalf of a user. For example, Twitter [15] provides an
API that allows applications to manage a user’s status updates
or integrate user feeds with other social networking services.
While some users may publish their content publicly, it is often
desirable to protect content from unauthorized clients. Current
approaches for managing access to user data can be classified
into two broad categories: 1) Authentication and 2) Access
Authorization.

Web applications use authentication techniques to validate
a client’s identity, which gives that client access permissions

UserConsumerService
Provider

1a) Asks for
request token

1b) Get unauthorized
request token

2a) Redirect user to
approval page

2b) Authenticated user
approves access request

2c) Returns
authorization code

3a) Submits authorized
request token

3b) Get access token

Fig. 1. OAuth [11] protocol: The consumer requests permission to access
a user’s protected resources stored at the service provider. The provider gives
the consumer a request token, which the user approves and is exchanged for
an access token. This gives the consumer the necessary permissions to access
content on behalf of the user.

associated with that account. The most basic form of authen-
tication is using a combination of username and password.
Unfortunately, users must create and manage often-redundant
account information across the numerous web applications
they frequent. An alternative is to use an identity provider
to manage the process of authenticating users to web appli-
cations. Federated authentication approaches such as Shibbo-
leth [14] centralize authentication for multiple applications to
a single point, but are restricted to services within a particular
administrative domain. Single sign-on services like Microsoft
Passport [10] and Google Accounts offer a single identity
management point while OpenID [12] offers an open and
decentralized standard for authenticating users. In fact, several
large sites such as Google, Yahoo, and MySpace already act
as OpenID providers.

While authentication approaches are effective for identifying
users, they are less useful for applications that act on their
behalf. For example, a mobile phone application should not
necessarily have all the access permissions of the user it
represents. Moreover, providing third party applications with
login credentials raises the risk of identity theft through leaked
secrets. In order to avoid giving login credentials to third
parties, authorization protocols, most notably OAuth [11] and
Google’s AuthSub [2], can be used to delegate limited per-
missions to third parties without giving away user credentials.

We will focus on OAuth as it is an open standard that is
largely adopted by popular web applications such as Google,
Facebook, and Twitter. The OAuth standard defines a con-
sumer as a website or application that accesses content at a
service provider (i.e., the web application) on behalf of a user.
Consumers first obtain a consumer key and consumer secret
from the service provider. The key identifies the consumer
making a request and the secret is used to authenticate the
consumer. Once registered, a consumer can request access to

2

a user’s account by following the OAuth protocol shown in
Figure 1.

The protocol involves three key steps:
1) The consumer obtains an unauthorized request token that

describes the resources the consumer wants to access.
2) The consumer directs the user to a service provider

authorization page where an authenticated user can
approve the request. Upon approval, the consumer is
given a verification code to authorize the request token.

3) The token is exchanged for an access token, which
grants a set of access permissions for protected resources
on the service provider.

When the consumer performs API calls to the service
provider, it signs each HTTP request and the parameters with
the consumer secret and a secret included with the Access
token using one of several signature methods such as HMAC-
SHA1 or RSA-SHA1. This binds the request to a specific
consumer and set of access permissions. This authorization
information can be encoded in the HTTP Authorization header,
the body of a HTTP POST request, or as parameters in the
URL. The user may later make a request to revoke the access
token or the provider can optionally provide some time limit.

B. Problem Definition

We expand on our threats with an example scenario and
then describe the challenges distributed consumers cause for
authorization protocols such as OAuth. In previous work, we
developed a framework for designing applications that move
heavy computation off resource constrained handheld devices
onto cloud computing architectures such as Amazon’s EC2 [1]
and Microsoft’s Azure [8]. We call applications that run in this
framework, Elastic Applications [31] or EAs. These EAs are
comprised of small programs, named weblets, which can be
spawned either locally on a device or remotely on a cloud
environment depending on resource constraints.

Consider the social translator EA in Figure 2. The applica-
tion subscribes to a user specified social network and translates
status updates from a foreign language to another language.
The user can then repost the translated updates back to the
social networking site. The application divides the translation
and posting logic into two separate weblets so that code for
polling the site for updates and translating them can be run
on the cloud instead of the device.

While we trust both the application and service provider
to behave correctly and not leak protected resources, weblets
running in environments outside of the user’s control pose a
potential risk. Previous work has shown that hosting environ-
ments such as clouds [26] are susceptible to compromise [29],
which may intercept network traffic, snoop memory [24], or
modify file contents on disk. This can lead to theft of the
weblet’s access token and secrets. Hence, it is desirable for
applications to limit the permissions available to components
running in untrusted environments.

Unfortunately, authorization approaches such as OAuth as-
sume the consumer is always a single entity, which gives all
components using the consumer’s access credentials the same

Device Cloud Computing Provider

Social
Network

Application
GUI

Posting
Weblet Translator

Weblet

Translate updates

Send updates
to the device

Post translated
updates

Fig. 2. An example distributed social network consumer. The application is
divided into a translation weblet and a posting weblet. Status updates are read
by the translator and converted to the user’s language. The user then chooses
which translated updates to post back on the social network for his friends.

permissions to access user data. In the case of our translation
EA, both weblets will be given permission to read status
updates and post new ones because the application requires
both permissions to function properly. This is despite the fact
each weblet needs only a subset of those permissions. Another
issue is that OAuth relies on the service provider to define the
permissions the consumer can request. Unfortunately, most
providers only define a broad set of access rights such as
complete access to data or read only. This makes it impossible
for an application developer to adhere to a least-privilege
policy when deploying application components. Another issue
is revocation of delegated permissions. Most service providers
either require the user to manually invalidate the access token
or have it expire after some time. This widens the damage a
stolen access credential may cause since it will persist if the
user is unaware of the theft.

C. Solution Requirements

In order to address these issues, we outline a series of
requirements that a solution for delegating permissions should
meet for distributed web application consumers.

Fine-grain assignment of permissions: An authorization
mechanism must allow an application to sub-delegate the spe-
cific permissions that its components require from its full set of
permissions. This means being able to select the application-
specific API calls without granting additional unnecessary
rights (i.e., read updates instead of read everything).

Automated sub-delegation and revocation: While it is
expected for the user to manually authorize the consumer
application, it is unreasonable to require the user to authorize
each consumer component individually. A solution must be
able to issue and revoke sub-delegated permissions in an
automated fashion.

Policy driven delegation: An application policy should
describe the amount of access granted to components. This en-
ables application developers and users, not service providers,
to specify a level of trust for each portion of the application

3

and the environment in which they run. For example, a user
may give components on a mobile device full permissions, but
give a restricted set to code running on a public cloud.

Minimal and incremental changes to existing architectures:
A new authorization approach should require only minimal
changes to existing service providers.

III. DAUTH POLICY

We now introduce DAuth, an approach for sub-delegating
permissions in a distributed consumer application. DAuth is
comprised of three components, 1) a DAuth agent, 2) a per-
mission policy, and 3) the service provider sub-token interface.
The DAuth agent runs in the consumer and transparently
manages the issuing and revocation of access sub-tokens to
application components. These tokens authorize the access of
protected resources at the service provider. The permission
policy defines the subset of rights that may be grant to
components. When consumer components are executed, the
DAuth agent sends a request for a sub-token to the service
provider’s sub- token interface with the permissions defined
in the policy. Later, the agent can send a request to revoke
that sub-token when the component is no longer in use.

In this section, we first explain our assumptions and threat
model. Next, we describe the DAuth components are used in
an authorization protocol. Finally, we discuss the permission
policy and how it is defined and used.

A. Assumptions

In our design, we assume the application and service
provider is implemented correctly and is not malicious. We
also trust the user’s client such as a browser for web appli-
cation consumers or for installed programs. We assume the
authorization protocol is correct and do not consider attacks on
the cryptography it uses. Furthermore, we trust that the hosting
environment for remote components will not intentionally leak
secrets or modify code. However, our threat model assumes
an attacker that can intercept and modify network traffic and
compromise public hosting environments like clouds to steal
secrets, snoop memory, or modify disk contents of the host.

B. Protocol

Recall from Section II-A, the OAuth protocol gives the
consumer an access token to interact with protected resources
on the service provider on behalf of the user. The DAuth pro-
tocol augments this process so the application can request sub-
tokens with a subset of access token’s permissions. Figure 3
describes the DAuth protocol among the user, service provider
and the application components.

In the first phase, the consumer obtains an unauthorized
request token for the consumer application as normal. The user
is then redirected by the consumer to the service provider’s
approval page. If the user approves the request, the consumer
is issued an access token, which we refer to a master token.
The master token authorizes the consumer with a set of
permissions, M = 〈p0, p1, . . . , pn〉, where p is an authorized
operation.

UserDAuth
Agent

Service
Provider

Get verification code

Submit code and
get master token

Consumer
Component

Get unauthorized
request token Redirect user to approval page

Request
sub-token

Get sub-token
Get sub-token

Revoke sub-token

Access user's resources

Authenticated user approves access request

Fig. 3. DAuth Protocol: The DAuth protocol begins the same as OAuth with
the DAuth agent obtaining the access token from the service provider. Instead
of giving this token to the consumer components, the agent registers Sub-
tokens with specific access permissions for each component. The agent later
revokes the Sub-token when it is no longer needed. Here, white arrowheads
represent a response by the recipient of the message.

In phase two, the application initiates its components. For
each component c running in location l, the DAuth agent uses
the policy P to obtain the subset of permissions the component
may have, sc, where sc ⊆M . The policy is described further
in Section III-C. Next, the agent sends a request to the service
provider for a sub-token with permissions sc. The service
provider generates a new sub-token, stores it in association
with the consumer’s account, and returns the token to the
agent. The sub-token is then passed to c, which uses it in place
of an access token to access user resources on the service
provider. This phase is repeated for each newly created c
during the lifetime of the consumer or until the master token
is revoked.

The protocol enters phase three when a component c finishes
and is no longer needed. First, the DAuth agent sends a
revocation request to the service provider for c’s sub-token.
The provider then deletes the sub-token from the consumer’s
account and responds with an acknowledgment. From then on,
c can no longer access user data with permissions sc. Note
that if the master token is revoked by the user, by extension
all sub-tokens are also revoked.

C. Permission Policy

The application permission policy defines the rights each
application component may be delegated. The policy enables
the application developer and user to express the required
permissions for each component and limit permissions that
can be delegated for specific environments. The granularity of
permissions the policy can express is limited to the operations
the components can perform. Since many web services expose
APIs through a RESTful interface [25], access operations can
be identified by a URL. Policies can be more broadly defined
by the type of HTTP request performed (i.e., GET, PUT,
POST, DELETE), which many web services already use to
classify write (POST) versus read (GET) operations.

Our policy design is motivated by the need to: (1) define the

4

Mobile DeviceCloud Platform

Weblet
Container

Weblet

Weblet
Container

Weblet

UI
Container EA Interface

Device
Elasticity
Manager

Cloud
Elasticity
Service

Fig. 4. Elastic Application [30] infrastructure: The Cloud Elasticity
Service (CES) and Device Elasticity Manager (DEM) cooperate to start, stop,
and manage EA components on the device and cloud. The EA is made up
of a UI running in the device, which accesses weblets running in weblet
containers.

set of necessary and desired functions a component can per-
form and (2) limit what functions are performed in untrusted
environments. To do this, we created our policy to specify
for each component c, the set of permissions, fc, needed
for complete component functionality. Optionally, the policy
author may also specify, rc, the set of required permissions
c needs at a minimum in order to run, where rc ⊆ fc.
Conceptually, one can imagine a program that requires read
access to user data to function at all, but additional features
would be enabled if write access is give as well. Each location,
l, has a set of permissions al that are allowed to be delegated
while running in that location. When the DAuth agent needs
to assign a sub-token to a component, it obtains sc = fc ∩ al.
If rc ⊆ sc and sc ⊆M , the agent can request a sub-token for
that subset of permissions. For components whose rc 6⊆ sc,
either a new location must be selected for the component or
it is denied a sub-token and will not have access to the user’s
resources. Users can also configure the DAuth agent to attempt
to launch components at locations that allow all or portion of
the optional permission in fc beyond those in rc.

Since web application consumers come in two forms (in-
stalled application and web application), we envision two use
cases for designing and verifying the policy. For installed
application consumers, the user can inspect the application’s
permission policy file locally for approval and make any
changes they wish like restricting the permission set for
specific locations. For web application consumers, the con-
sumer should present the policy to the user for inspection and
modification before the consumer is authorized to access the
user’s resources.

IV. DAUTH ARCHITECTURE

We evaluated our DAuth design by implementing it within
an experimental application SDK for building distributed ap-
plications, called Elastic Application (EA). These applications
are comprised of various autonomous components called we-
blets, which are intelligently deployed on the device and cloud
hosting platforms based on objectives such as minimizing
power usage or maximizing performance. We chose to imple-
ment DAuth within the service that manages the deployment of
weblets because it acts as a reference monitor for authorizing

weblet permissions. In this section, we first give an overview
of the Elastic Application infrastructure and then describe our
DAuth implementation.

A. Elastic Application Overview

In order to better understand our implementation, we give a
brief description of the Elastic Application framework. While
the full details are unnecessary for this discussion, they can be
found in our previous work [30]. An EA is a UI component
and one or more weblets packaged along with a manifest,
which includes signed hashes of the package contents and
other configuration information. Weblets are self-contained
functional components that communicate to each other using
HTTP(S). Weblets are executed in an application VM (such
as Java or a Python interpreter), called a weblet container. At
launch-time, the UI is instantiated for the user. As functionality
is requested, weblets are spawned by the EA infrastructure to
perform processing. As process demand increases or resources
become limited, the weblets can be transitioned to a remote
cloud platform.

Figure 4 shows an overview of the EA framework. An EA
is supported by two key components, the Device Elasticity
Manager (DEM) and the Cloud Elasticity Service (CES), both
of which manage the EA component execution and migration
between device and cloud platforms. The DEM consists of a
set of services that runs locally on a consumer device, such as
a mobile phone, and is responsible for configuring applications
at launch time, making configuration changes during run-time,
and launching or transitioning weblets to a cloud platform. The
CES resides on a cloud and is used by the DEM to manage
weblets and resources on the underlying platform.

We have developed an SDK to help developer write pro-
grams that leverage the infrastructure. We also developed a set
of example applications for smart phone systems (Android and
Windows Mobile) and Amazon EC2 for the cloud component.
For example, an EA could leverage cloud resources to perform
image processing, which is too computationally demanding
for typical phones. Another possible application could send
snapshots from a phone’s camera to weblets on a cloud to
perform image recognition. The resulting pixel locations of
the object are returned to the device’s tracking weblet, which
performs motion tracking of those points and renders an
informative message on top of the object.

B. DAuth for Elastic Applications

Our DAuth implementation consists of three parts as illus-
trated in Figure 5. The first is the Sub-token Delegation Service
(SDS) that is integrated into the DEM on the client device. The
SDS acts as the DAuth agent and exposes an interface for EAs
to register OAuth access tokens and for creating, registering,
and revoking sub- tokens at a target service provider on behalf
of the application. Adding the SDS to the DEM required
about 50 extra lines of code. At install time, the EA registers
their manifest containing the service provider’s REST API and
the EAs permission policy. We implemented the permission

5

policy as an XML document and give an example of one in
Section V-A.

Next, we extended the standard OAuth protocol with two
API calls. The first, /register_subtoken, is an autho-
rized call that takes a freshly generated sub-token (OAuth
access token) and set of access permissions (list of service
provider URLs) the token is authorized to use. Upon receiving
the call, the service provider associates the sub-token with
the consumer’s access token authorized by a particular user
and returns an identifier to the sub-token. The second call,
/revoke_subtoken, takes the sub-token identifier and
deletes it from the set of sub-tokens for that consumer’s access
token.

The last component we implemented is a DAuth proxy.
The proxy is a small HTTP server (about 500 lines of
Python) in the CES that sits between the service provider
and the consumer, in order to implement the DAuth sub-token
interface. This component is necessary for service providers
that do not support DAuth. Instead of interacting with the
service provider, the SDS communicates with the proxy via
HTTPS for all Sub-token management and stores a copy of the
master token on the proxy. We modified each weblet container
to access the proxy instead of the service provider’s domain.
The proxy intercepts all requests and inspects the authorization
header of the request. Specifically, the sub-token and API call
are compared to the set of permissions for that token in its list
of registered tokens. If the sub-token is authorized, the proxy
replaces the token in the header with the master token (OAuth
access token) and resigns the request. Otherwise, the request is
passed along as normal, which will be rejected by the service
provider. This allows the provider to return an error message
regarding a failed authorization attempt directly to the weblet.

C. SDS Protocol

We now describe each step in our DAuth protocol imple-
mented in Figure 5. 1) The user first authorizes the consumer
application using the standard OAuth protocol described ear-
lier in Section II-A. As a result, the application is returned an
OAuth access token. 2) The application UI then registers the
master token with the SDS, which resides within the DEM’s
set of services. In our implementation, we created the SDS as
a set of XMLRPC calls the EA can perform on the DEM. In
addition to the access token, the DEM possesses a definition of
the service provider’s API calls and the application’s consumer
key and secret. Since the EA framework requires applications
to be installed before use, we designed the DEM to store this
information at EA install time. Next, 3) the SDS registers the
access token with the DAuth proxy.

During the course of the application’s use, the DEM will
be instructed to launch a weblet. In order to authorize the
weblet, the SDS references the policy to determine the set of
API calls the weblet may perform and then generates a Sub-
token by taking the SHA-1 sum of a random nonce. It then
4) registers the Sub-token and the allowed API URLs at the
proxy.

 DEM SDS App
GUI

Weblet

Device

Service
Provider

CES
1) Authorize
consumer

and get
Access Token

2) Register
Access Token

5) Spawn
Weblet with
Sub-token

7) Revoke
Sub-token

4) Register
Sub-token

DAuth
Proxy

6) Access
resources

3) Register
Access Token

Fig. 5. Implementation and authorization protocol for DAuth in an Elastic
Application framework. After obtaining the OAuth access token, the SDS
registers it with the DAuth proxy. Later, the SDS generates and registers Sub-
tokens for new weblets, which allow the weblets to access resources on the
provider. The SDS revokes the Sub-token when access is no longer necessary.

For weblets that run on a remote host, the 5) DEM contacts
the CES to spawn a weblet with the newly generated Sub-
token. The Sub-token is included with this call to the CES,
which is encrypted using HTTPS. For weblets running on
the cloud, 6) the weblet accesses protected resources at the
service provider via the DAuth proxy. When the proxy receives
the request, it first examines the Sub-token used and the
associated API calls registered for it. If the Sub-token grants
the weblet access, the proxy replaces the Sub-token used in
the Authorization headers of the HTTP request with valid
credentials. This means using the access token and resigning
the request with it. For weblets that are running on the device
instead of the cloud, the DEM acts as the proxy.

Finally, when the SDS is required to revoke a Sub-token, 7)
the proxy is contacted and told to delete the Sub-token. This
revocation can occur for several reasons. The first, is when
the application is shutdown. The second is when a specific
weblet is shutdown. This may occur when the functionality of
the weblet is no longer needed.

V. EVALUATION

We evaluated our system by developing a Twitter monitor
EA. The application monitors a user’s Twitter account and
sends status updates to the user’s device when new updates
are posted by people they are following. We divided the EA
into a monitoring weblet that runs on a cloud platform and
a posting weblet on the device that lets the user reply or
repost updates retrieved by the monitor weblet. First, we will
describe the EA and examine the overhead on performance and
additional coding that was required to support DAuth. Then

6

we analyze how effective DAuth is at handling sub-delegation
of permissions.

For ease of development, we created both the DEM and CES
as python XML-RPC servers, which communicate via HTTPS.
Our DEM was deployed on a netbook with 1GB RAM and
a 1.6GHz Intel Atom CPU and the CES was on an Amazon
EC2 AMI. Both systems ran Ubuntu Server 9.04.

A. Twitter EA

As described in Section IV-A, an EA contains a UI, weblets,
and a manifest. Our Twitter EA is comprised of two weblets
and a GUI written in Python and using wxWidgets for the
interface. The first weblet is the monitor, which constantly
polls a user’s Twitter account for new content and sends the
results to the application’s UI. The monitor is intended to run
on the cloud where network access and power consumption is
not an issue compared to a mobile device. The second weblet
is the poster, which allows the user to post new updates or
responses to updates the monitor detects. For all weblets, we
hard code the EA’s consumer key and secret.

For the EA package’s manifest, we created an XML docu-
ment. Figure 6 is a portion of the manifest showing the relevant
permission information. We note the DAuth policy could be
implemented within a more sophisticated policy framework
like XACML [3]. However, we chose to build a more simple
and tailored approach that avoids the overhead of a large en-
forcement engine. For each weblet, a location and permissions
tag is present. The location tag specifies the desired or required
(indicated by the required attribute) location where the weblet
should run. The permissions set contains application specific
permission tags. The required attribute defines what permis-
sions must be given to the weblet if it is to function at all. Twit-
ter defines API calls similarly using POST requests as writes
and GET requests as reads. We took a similar approach and
divided the permissions into two broad categories: 1) READ
and 2) WRITE. Since our monitor weblet only requires permis-
sion to read status updates, we only assign read permissions
with the <twitter:permission type="READ"/> tag.
By contrast, the poster weblet needs only write permissions,
but may optionally have read as well.

We first designed the application to use OAuth as normal.
We found the average time it took the monitor to read the
user’s Twitter timeline to be approximately 439 ms. We then
converted the EA to support DAuth, which took roughly 25
lines of code. This added about 5.23 ms (1.19%) to the request
time with only 1.76 ms due to processing at the proxy. Thus,
DAuth proxy only added only minimal overhead to the EA,
mostly due to network delay.

B. Security Analysis

We now analyze the how access to user resources is pro-
tected by DAuth in our example Twitter EA. As stated in
Section III-A, we do not consider attacks on the device itself
or preventing malicious applications from intentionally leaking
credentials. We also trust the EA framework, the DAuth proxy,
and the Twitter to be bug free and correct. Finally, we focus

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:ea="http://example.com/elasticApp"

xmlns:twitter="http://ea.twitter.com/">
<ea:application name="elasticTwitter">

...
<ea:weblet name="Monitor">

<ea:location required="false">
Cloud

</ea:location>
<ea:permissions required="true">

<twitter:permission type="READ"/>
</ea:permissions>

</ea:weblet>
<ea:weblet name="Poster">

<ea:permissions required="true">
<twitter:permission type="WRITE"/>

</ea:permissions>
<ea:permissions required="false">

<twitter:permission type="READ"/>
</ea:permissions>

</ea:weblet>
...

</ea:application>
</manifest>

Fig. 6. Manifest for Twitter EA

on an attacker that can intercept and modify network traffic
and compromise the public cloud that hosts remote weblets.

In the normal EA framework, both the monitor and poster
weblets would be required to use the EA’s access token for
all API calls to Twitter. As a result, the monitor weblet would
be given permission to use both read and write calls. Given
our threat model, an attacker can compromise the monitor’s
hosting environment and steal the access token and Consumer
Secret. This would let the attacker gain both read and write
access to the user’s account until the user revokes the access
token. Revoking the access token would require the user to
reauthorize the entire application.

In our DAuth enabled system, the monitor would only have
access to the Sub-token associated with read permissions.
Theft of the Sub-token would only allow the attacker to
perform read operations through the DAuth proxy assuming
Twitter does not implement the DAuth interface directly. To
reduce the window of access the Sub-token provides the
attacker, the DEM can shutdown the monitor weblet and restart
it periodically with a fresh Sub-token after revoking the old
one. This invalidates the potentially stolen Sub-token without
requiring the user to reauthorize the application. While DAuth
cannot prevent the theft under our attack model, it does limit
the permission of weblets running in vulnerable environments
to the set defined in the EA’s manifest. This enables policy
authors to create more conservative permission policies that
minimize the number of sensitive operations performed on
untrusted hosts.

VI. RELATED WORK

Today’s web applications divide code into server-side and
client-side portions. Typically, the server-side portion of the
code contains the most security critical parts because the
client-side runs in an entirely untrusted environment. Malware
or malicious users can modify the code and subvert the
code’s behavior. Previous work on preventing unauthorized
data leakage in web applications have focused primarily on

7

securing this untrusted portion of web applications and on
managing authentication credentials.

In the domain of securing client side code, effort has been
made to ensure browser-run portions behaves as expected.
Since client-side code is typically written in JavaScript, sev-
eral tools have become popular in generating browser- run
code from other languages. These frameworks perform “tier-
splitting” in order to take fully designed application code and
produce the server and client portions. Popular frameworks
include GWT [6], Links [19], Hop [27], and Volta [9]. These
frameworks aid in creating less buggy code, but provide little
guarantee that the client side is unmodified at runtime.

Recent research has adapted these frameworks to achieve
additional security guarantees. The Swift [18] compiler tier-
splits a Java application so that the server never depends
on the client for security critical information. To do this,
the programmers must annotate their code with information-
flow labels, which is then compiled in Jif [7]. The resultant
program, if compiled, is guaranteed to adhere to an informa-
tion flow policy. From there, the program is tier-split using
GWT. Ripley [28] uses the Volta compiler to tier-split a
.Net application similarly to Swift, but without the use of
annotation. In addition, Ripley allows the server to replicate
the client side code concurrently with the browser in order
to detect modified browser-side code. Unfortunately, these
techniques require special compilers or code modification and
fail to detect compromised clients that behave within the
specification of the code.

However, the permissions defined in such authentication
schemes are often too coarse, giving applications a large
majority if not all permissions. Delegation Logic [22] defined
a language for describing sub-delegation of permissions. Other
research [17], [16], [20] investigated using X.509 certificates
to delegate permissions using signed capabilities. However,
public key cryptography and certificates are not frequently
used in web applications environments. One proposed solu-
tion uses a trusted third party to issue plain text delegation
permits [21] that users can inspect to know what permissions
are being delegated to mashups. DAuth does not require such
a third party and maps specific permissions to sub-delegation
tokens.

VII. CONCLUSION

In this paper, we presented DAuth, a mechanism for au-
thorizing fine-grain sub-delegation of web application access
permissions in distributed applications. Where existing web
authorization standards like OAuth fail to provide application-
specific permission policies, DAuth extends them to enable
developers and users to specify the exact set of API calls the
each application component may use. For each component that
uses a shared credential to access protected resources, DAuth
manages the task of assigning and revoking capabilities that
provide a policy-defined set of permissions to that component.
DAuth is designed to function as both an extension at the ser-
vice provider’s endpoint and as a proxy that can be deployed
within a private environment. Such a proxy allows applications

to use DAuth without requiring the service provider to adopt
it and within the confines of a protected installation. We
implemented our design on our Elastic Application framework
for resource constrained devices and evaluated its performance
with a custom Twitter application. We found DAuth introduces
only minor overhead to its performance and requires few code
changes to make code DAuth aware.

REFERENCES

[1] Amazon ec2, http://aws.amazon.com/ec2/.
[2] Authentication for Web Applications,

http://code.google.com/apis/accounts/docs/authforwebapps.html.
[3] eXtensible Access Control Markup Language, http://www.oasis-open.

org/committees/tc home.php?wg abbrev=xacml.
[4] Facebook developers, http://developers.facebook.com.
[5] Flickr authentication api, http://www.flickr.com/services/api/auth.spec.html.
[6] Google web toolkit, http://code.google.com/webtoolkit.
[7] Jif: Java information flow, http://www.cs.cornell.edu/jif/.
[8] Microsoft azure, http://www.microsoft.com/windowsazure.
[9] Microsoft live labs volta, http://labs.live.com/volta.

[10] Microsoft passport network, http://passport.net.
[11] Oauth, http://oauth.net.
[12] Openid, http://openid.net.
[13] Registration for web-based applications,

http://code.google.com/apis/accounts/docs/registrationforwebappsauto.html.
[14] Shibboleth, http://shibboleth.internet2.edu.
[15] Twitter api, http://apiwiki.twitter.com.
[16] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The

keynote trust-management system, version 2, ietf rfc 2704, 1999.
[17] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management.

In Proc. of IEEE Symposium on Security and Privac, 1996.
[18] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and

X. Zheng. Secure web application via automatic partitioning. In In
SOSP, 2007.

[19] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web programming
without tiers. In In 5th International Symposium on Formal Methods
for Components and Objects, 2006.

[20] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen.
Spki certificate theory, ietf rfc 2693, 1999.

[21] R. Hasan, M. Winslett, R. Conlan, B. Slesinsky, and N. Ramani. Please
permit me: Stateless delegated authorization in mashups. In Proc. of
ACSAC, 2008.

[22] N. Li, B. N. Grosof, and J. Feigenbaum. Delegation Logic: A logic-based
approach to distributed authorization. ACM Transaction on Information
and System Security (TISSEC), (1), 2003.

[23] C. Pautasso, O. Zimmermann, and F. Leymann. Restful web services
vs. big web services: Making the right architectural decision. In Proc.
of 17th International World Wide Web Conference, 2008.

[24] B. Payne. XenAccess. http://code.google.com/p/xenaccess/.
[25] L. Richardson and S. Ruby. RESTful Web Services. O’Reilly, 2007.
[26] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get off

my cloud! exploring information leakage in third-party compute clouds.
In ACM conference on Computer and Communications Security, 2009.

[27] M. Serrano, E. Gallesio, and F. Loitsch. Hop: a language for program-
ming the web 2.0. In Companion to the Conference on Object-oriented
Programming Systems, Languages, and Applications, 2006.

[28] K. Vikram, A. Prateek, and B. Livshits. Ripley: Automatically securing
web 2.0 applications through replicated execution. In Proc. of the
Conference on Computer and Communications Security, 2009.

[29] R. Wojtczuk. Subverting the Xen hypervisor. www.blackhat.com/
presentations/bh-usa-08/Wojtczuk.

[30] X. Zhang, S. Jeong, A. Kunjithapatham, and S. Gibbs. Towards an
Elastic Application Model for Augmenting Computing Capabilities of
Mobile Platforms. In Third International ICST Conference on Mobile
Wireless Middleware, Operating Systems, and Applications, 2010.

[31] X. Zhang, J. Schiffman, S. Gibbs, A. Kunjithapatham, and S.Jeong.
Securing elastic applications on mobile devices for cloud computing. In
Proc. of ACM Cloud Computing Security Workshop, 2009.

8

