Policy-based Access Control in
Mobile Social Ecosystems

Sara Hachem, Alessandra Toninelli, Animesh Pathak, and Valérie Issarny
{sara.hachem, alessandra.toninelli, animesh.pathak, valerie.issarny } @inria.fr
INRIA Paris-Rocquencourt, France

Abstract—The novel scenarios enabled by emerging mobile
social applications raise serious concerns regarding access control
of users’ contextual and social data. Given the variety of existing
and upcoming social applications, it is important to provide
(i) generic yet flexible policy models that combine expressivity
with personalization, (ii) actual running infrastructures to en-
force policy-based access control on heterogenous devices with
minimal development/deployment effort, and (iii) user-interfaces
to allow the easy specification of policies without dealing with the
complexity of the underlying policy and data models. Toward this
goal, in this paper we make three contributions. First, we present
a novel policy framework for controlling access to social data in
mobile applications. The framework allows the representation of
expressive policies based on users’ social interactions, which can
be easily extended with new domain data models, while keeping
policy model compatibility intact. Secondly, we demonstrate
how we integrated the policy framework as part of Yarta,
a middleware for managing mobile users’ social ecosystems,
implemented and deployed on laptops and smart phones. Third,
we show the graphical policy editor provided with the policy
framework to allow non-technology savvy users to easily specify
and manage their access control policies.

I. INTRODUCTION

The popularity of social applications has been steadily
increasing on the Web over the past few years. Advances in
wireless network technologies and the widespread diffusion of
smart phones equipped with sensing capabilities offer promis-
ing chances to enhance social applications and make them
truly pervasive in everyday life. In addition, the formation of
ad hoc networks enables social encounters between proximate
users with common interests, anywhere and anytime [1], [2].

The novel scenarios enabled by these emerging mobile
social applications, however, raise serious concerns regarding
privacy and access control of users’ data. The most critical
aspect is that mobile social applications manage contextual
data, such as personal contents, user interests and activities,
as well as human relationships, which are sensitive per se and
can be further used to infer sensitive information. It is therefore
crucial to ensure an adequate level of control on information
describing users’ social environments and interactions.

Given the variety of existing and upcoming social applica-
tions, it is important to design a policy framework to be as
generic and flexible as possible, so that several different appli-
cations can make use of it. This raises several requirements:
on one hand, it calls for (i) generic yet flexible policy models

The work is this article is partially supported by EC FP7 ICT NOE NESSOS
project.

that combine expressivity with personalization. On the other
hand, it raises the need for (ii) actual running infrastructures to
enforce policy-based access control on heterogenous devices
with a minimal development and deployment effort, as well as
(iii) user-interfaces to allow the easy specification of policies
without dealing with the complexity of the underlying policy
and data models.

Most policy models, even those designed for ubiquitous
applications, are not able to represent access control choices
within the complex dynamics of social interactions. Some
recent efforts propose policy-based approaches to control ac-
cess to shared resources in social networking applications [3]-
[5]. Nevertheless, all these solutions rely on a rather simple
modeling of social networks, which only includes the base
“friendship” relationship, often considered as bi-directional
(which is not the case in most real life social relationships,
e.g., the “know of” relationship). In addition, current access
control policy-based frameworks for social applications are
generally designed to protect specific resources, such as media
contents [3], [5] or medical information [4], and do not provide
a generic model for any type of social information as an
accessible resource.

This lack of generality, both in modeling access conditions
and accessed resource, hinders the reuse of existing policy
frameworks and their adaptation to new social application sce-
narios. Policies, based on various social constraints, should be
designed to allow the specification of access control directives
on different resources. Furthermore, they should be defined
by relying on an interoperable data model to allow policy
reuse across different user applications and policy exchange
between different users of the same application. At the same
time, policies should be customized for a specific application
and its domain data model, to avoid imprecise and/or incorrect
security directives. For example, for a user wishing to share
different types of content (such as pictures and notes) via a
social application, the generic concept for “content” would not
be suitable as he would need to specify distinct policies for
pictures and notes, respectively.

As far as the need for running infrastructures is concerned,
not only are actual components needed to enforce access
control, but those components should also be able to execute
on a variety of mobile devices (e.g., smart phones) with
minimal configuration effort. To the best of our knowledge,
only a few solutions have been actually implemented as
running systems [3], [5] but they may be difficult to reuse
out of their proof-of-concept scenario, whereas no complete

policy infrastructure exists for access control in mobile social
applications. Note that the availability of fully implemented
policy architectures has been crucial in the past towards the
adoption of policies in real application scenarios for distributed
systems, such as QoS and network management [6] or au-
tonomous agent coordination [7].

A further requirement for the policy architecture is the
availability of a user-interface to allow both application de-
velopers and end-users to specify their own security policies
without dealing with the complexity of the underlying policy
model. At present, policy frameworks for social applications
often extend the interface of the target application [8], which
are by definition application-specific, or they present policies
according to their internal representation, thus requiring signif-
icant technical expertise to deal with the interface [3]. This is
not suitable for social scenarios, where mobile users become
the security administrator of their devices and applications,
managing their own data and applications, rather than simply
relying on external centralized or outsourced security manage-
ment services [9].

Based on the above discussion, we claim the need for
a flexible policy architecture to enforce access control in
mobile social applications. Toward this goal, we make the
following contributions. First, we have designed a novel policy
framework for controlling access to social data in mobile appli-
cations. The framework is based on the semantic policy model
presented in [10] and allows the representation of expressive
policies based on users’ mobile social ecosystem (MSE), that
is, the rich set of social interactions occuring between people
in mobile environments, according to various social relation-
ships (e.g., friends, family or co-workers), different activities
performed on content (commenting, tagging, etc.), as well as
formation of groups and organization of events. The adoption
of semantic technologies makes the extension of the policy
model with new domain data models straightforward, while
keeping policy model compatibility intact. Secondly, we have
integrated the policy framework as part of Yarta, a middleware
for managing mobile users’ social ecosystems [11]. Third,
we have provided a graphical policy editor to allow non-
technology savvy users to easily specify and manage their
access control policies.

The paper is structured as follows. Section II presents
our policy framework, and in Section III we describe how
we integrated it within the Yarta middleware architecture.
Then, we provide details about the graphical policy editor we
implemented (Section IV). To assess our contribution, in Sec-
tion V we provide extensive evaluation of the current prototype
implementation for smart phones. Finally, in Section VI we
discuss related work. Conclusions and future work follow.

II. A PoLicY FRAMEWORK FOR
MOBILE SOCIAL ECOSYSTEMS

Our policy model allows the specification of access control
policies to protect users’ social data, based on social data
themselves. Each policy defines under which conditions (i.e.,
the social context) a given resource is accessible via a certain
action. The accessible resource is any information within the

SOCIAL

CONTEXT
rdf:type

mse:belongsTo

p:allowed

mse:belongsTo

: 1
! ! | mseknows \C :
1 H ' :
| . ; ACCESSIBLE !

! '
: ACTION ! ! RESOURCE '

Fig. 1. Example Policy Graph

user’s mobile social ecosystem. The action can either be read,
add, or remove (a set of) triple(s) from/to the user’s MSE
data. The social context represents any socially meaningful
information that constrains access to a resource. Note that
the social context itself is expressed in terms of the user’s
MSE. For example, one may define the following policy: Any
member of INRIA can read the list of the friends of Alice who
are also members of INRIA Figure 1. In this case, the list of
Alice’s friends is the accessed resource (all nodes linked to
alice via the knows relationship and are members of INRIA),
while the social context is people who are members INRIA.
Thus, the model supports the definition of access control
policies based on users’ social relationships and activities.

A. Policy Representation Details

We use the representational model presented in [10] to
specify policies. In particular, a policy is represented as a
set of attributes with predetermined values, either constant or
variable with constraints over the range of values. The current
knowledge describing the mobile social ecosystem where the
access request takes place (and which is the target of the
request as well) is also modeled in terms of attribute/value
pairs. For a policy to be “in effect” the attribute values
that define the MSE knowledge have to match the definition
of the policy attributes with constrained values (i.e., policy
constraints).

Both the base MSE model and the policy model are rep-
resented using the Resource Description Framework (RDF)',
a base Semantic Web standard, and the RDF query language
SPARQL?. In particular, the MSE is represented as a graph
of RDF triples, i.e., subject-predicate-object triples, with each
statement describing an attribute and its value. A policy is a
set of RDF statements or SPARQL triple patterns. The set of
RDF statements and SPARQL triple patterns defining a policy
is linked as a graph of nodes and arcs. Figure 1 shows the
graph-based representation of the example policy introduced
above. The prefixes p: and mse: represent the namespace
of the policy model and the MSE model, respectively, while
terms preceded by question mark represent variables. For the
sake of simplicity we omit the namespace for instances.

By relying on a graph representation, our policy model
allows the definition of any type of logical relation between the

Uhttp://www.w3.org/TR/rdf-primer/
Zhttp://www.w3.org/TR/rdf-sparql-query/

subclass-of

Fig. 2. MSE Data Model

base elements defined above, e.g., between the data requestor
and the data owner, the requestor and the resource, the
requestor and the environment, or any other relation the user
might wish to specify. All these constraints can be specified by
simply drawing new arcs between the policy nodes. Therefore,
the model is able to represent existing policy models, such
as role-based, identity-based or attribute-based, with enhanced
expressive capabilities.

Finally, accessible resources can be defined in a flexible way
by simply building appropriate graph patterns. For example,
instead of controlling access to Alice’s friends, we might
control access to any information about her only by replacing
the triple (Alice, knows, 2o0bj) with the less constrained
(Alice, ?pred, ?obj).Similarly, several different policies
may be defined, possibly using multi-hop graph patterns.

We provide a rich representation of MSEs and the interac-
tions possible in them based on the expressive and extensible
model defined in [11]. For the sake of clarity we recall in Fig-
ure 2 the graph of first-class entities and relationships. Beside
the availability of a base MSE model, access control policies
for a specific mobile social application should be defined in
terms of the domain knowledge characterizing that application.
Towards this goal, our base MSE model is designed to be
easily augmentable thanks to the extensibility features of RDF:
this allows the easy specification of access control policies for
different mobile social application scenarios.

On the other hand, RDF allows the association of a formal
semantics to policy and MSE data models, and this sup-
ports simple reasoning over them. Because all mobile social
applications share a common MSE data and policy model,
they rely on a shared foundation of common meaning, which
they can further extend based on specific requirements. By
means of automated reasoning, classes and properties defined
in application-specific extensions are put in clear semantic
relation with base classes, thus enabling the reuse of existing
policies in different applications. In summary, RDF reasoning
capabilities, based on explicit semantics, and extensibility
features are the key enablers for the reuse and exchange of

policies between mobile social applications.

B. Policy Evaluation

Receive
request

Add temporary
request information
to Knowledge Base

Grant
access to
triple(s)

Yes
Triple(s)
returned ?

Yes 2- Query
execution
Drop policy

Remove temporary
request information
from Knowledge Base

Retrieve
policy

1- Compare
request to policy

Does
request
match
policy?

Al
policies
evaluated
?

Deny access
to triple(s)

Fig. 3. Policy evaluation process

We now show how a policy is evaluated to answer a request
for accessing data, given an MSE knowledge. Whenever a
request is received, each policy currently enforced by the user
is evaluated to determine whether the requested resource is
accessible. In the following we describe the matching process
for a single policy. The same process can be repeated for all
policies. Note that, since the default behavior is to prohibit
access unless differently stated, evaluation is performed until
a policy granting access to the requested resource is found.

In general, access will take place within certain circum-
stances, i.e., a specific requestor asking to perform a given
action on a resource. The resource can be known or unknown,
depending on the action: in case of add/remove, the resource
is known, while in case of a read action, the resource is in
general unknown (because the requestor is typically asking
for a type of information, but does not exactly know which
information will be returned).

In particular, each access request on MSE data is repre-
sented as a SPARQL query, which always includes a set of
RDF statements describing the requestor and the action. To
avoid useless query execution, we perform an initial matching
between the SPARQL queries representing the access request
and the policy, respectively. Policy evaluation resolves then to
the execution of two main steps as shown in Figure 3:

1. Matching the access request against the policy: This step
is needed to verify if their graph patterns are compatible. If this
is the case, the two queries are merged to create a single query,
which combines the policy with information describing the
current request (i.e., who is the requestor, what is the action,
which resource is currently requested). If not, the policy does
not apply to the current request and the request for access fails
(for the considered policy).

2. Executing the resulting query over the knowledge base:
Temporary information about the requestor and the action is
added to the knowledge base, which also contains user’s MSE
data. Then, the combined query, obtained at the previous step,

is executed over the knowledge base; if any result is returned
(i.e., at least one RDF triple), access is granted to that result.
If not, the request for access fails (again, for the considered
policy).

Note that when the requested resource is a specific (set of)
RDF triple(s), access is granted if and only if each triple is
accessible. This case applies to add/remove actions only,
where the requestor knows exactly which triples to access.
On the other hand, if the requested resource is a SPARQL
pattern (i.e., a read action), access is granted to only those
triples that are allowed by current policies, while others are
simply filtered out during the evaluation process.

C. An Example of Policy Specification & Evaluation

Let us recall the example policy represented in Figure 1:
Any member of INRIA can read the list of the friends of Alice
who are also members of INRIA. This policy can be formalized
as the following SPARQL query:

CONSTRUCT {Alice mse:knows 20bj. }
where { ?req rdf:type p:requestor
?req mse:belongsTo INRIA
?req p:allowed p:read.
p:read p:performedOn Alice.
Alice mse:knows ?0bj.
?0bj mse:belongsTo INRIA.}

Let us now consider the following access request: Bob
would like to see Alice’s friends. The corresponding SPARQL
formalization reads as follows:

CONSTRUCT {Alice mse:knows 20bj. }

where { Bob rdf:type p:requestor.
Bob p:allowed p:read.
p:read p:performedOn Alice.
Alice mse:knows ?0bj.

}

Step 1: The following elements are checked, to ensure that the
element defined in the policy matches with the one defined in
the request.

o Action. In this case, the action is read, as shown by the

?0bj).

o Requestor. In this case, since the policy does not refer to
a specific requestor’s identity, the variable »req matches
with Bob.

o Resource. In this case, the resource triple (Alice,
mse:knows, ?obJj) matches for the policy and the
request, while the triple (?0bj, mse:belongsTo,
INRIA) needs to checked at the next step.

pattern (p:read, p:performedOn,

Step 2: The output of step 1 is the following SPARQL query:

CONSTRUCT {Alice mse:knows 20bj. }
where { Bob rdf:type p:requestor
Bob mse:belongsTo INRIA
Bob p:allowed p:read.
p:read p:performedOn Alice.
Alice mse:knows ?0bj.
?0bj mse:belongsTo INRIA.

oY U W DN

Temporary data, i.e., RDF statements #1, #3 and #4, are
added to the Knowledge Base. The query is executed over the
knowledge base, which contains both MSE data and temporary
data. From the example we can see that the above query will
succeed only if the MSE knowledge includes triple #2: (Bob,
mse:belongsTo, INRIA), and it will return all RDF triples
(if any) matching the pattern constrained by statements #5 and
#6. In other words, only if Bob is a member of INRIA, he will
be returned the list of her friends who are also members of
INRIA.

III. INTEGRATING THE POLICY FRAMEWORK
WITHIN YARTA MIDDLEWARE ARCHITECTURE

We have integrated our policy framework within Yarta [11],
a middleware architecture providing mobile social application
developers with a set of functionalities that allow them to
easily create, manage and securely exchange MSE data. The
middleware consists of two layers, as shown in Figure 4:
the MSE Management Middleware layer, which is responsible
for storing, managing and allowing access to MSE data, and
the Mobile Middleware layer, which takes care of low level
communication/coordination issues.

Policy Manager

. Knowledge
Data Extraction MSE Manager Storage & Access Base
Manager Manager

Mobile Middleware

‘ Communication Manager ‘ Naming & Discovery Manager ‘

Fig. 4. Yarta Middleware Architecture

In this paper we only focus on components that, by integrat-
ing with the Yarta middleware, implement the policy model
described above, namely the Knowledge Base and the Policy
Manager. More details about the middleware architecture and
its components can be found in [11].

Each user’s social graph is managed by the Knowledge
Base (KB) middleware component. The KB offers a set of
interfaces describing the base concepts needed to manipulate
RDF graphs, i.e., nodes, triples and graphs, as well as rich
application programming interfaces to allow the retrieval,
insertion and removal of data to/from the KB. The KB is
also able to handle the merging of MSE graphs coming from
different users.

To ensure access control enforcement according to the
policies defined in the system, the KB is wrapped by a Policy
Manager (PM). The Policy Manager intercepts any tentative
access action on the KB, and performs reasoning on defined
policies and the access request’s context to determine whether
the action is permitted. In particular, the PM evaluates all
applicable policies with respect to current access conditions
and, if no valid policy to allow access is found, it denies access
to the requested resource (negative default).

In more detail, the PM middleware component, shown
in Figure 5, consists of different subcomponents: the Policy

Access control engine

Policy Manager

Policy
repository

Policy
Extractor

Policy
Evaluator

Policy
editor

Fig. 5. Policy Manager components

Extractor, the Policy Evaluator, the Policy Repository and the
Policy Editor. The Policy Extractor is in charge of extracting
all user policies from the Policy Repository when the applica-
tion is launched or when policies are edited. Extracted policies
will then be ready for evaluation whenever a request for access
is received. User policies are stored in the Policy Repository
as a set of SPARQL queries, with each query representing
a policy. This repository is accessible to the policy manager
only.

The Policy Evaluator is in charge of performing policy
evaluation upon access request. In particular, when a request is
received, the Policy Evaluator receives information including
the requested resource, the requestors identity, the requested
action and a local copy of the user’s MSE knowledge base.
It adds temporary information about the request to its local
knowledge base and combines it with extracted policies, as
described in Section II. By executing the so obtained query
on the local knowledge base, the Policy Evaluator builds a
filtered data model, used to answer the access request.

In particular, the Policy Evaluator provides two main fil-
tering functionalities. In case the input is a specific triple or
set of triples (to be read, added or deleted from the graph),
it returns a positive or negative response that allows or deny,
respectively, access to that triple. In particular, for a set of
triples, access is permitted only if all triples are accessible
based on access control policies. In case the input is a query
on the user’s graph (only for read actions), the PM retrieves
query results and filters them out based on current policies,
thus returning to the KB only those triples that satisfy both
the access request and the policies.

IV. PoLICcY EDITING

A powerful policy framework such as ours may be of little
use unless the (non-technical) end-user is able to employ it to
easily specify access control policies over his data. As seen
in Section II-C, the specification of even a simple policy may
need several lines of SPARQL, a language that itself can be
quite intimidating to the end-user. Also, the end-user might
not be familiar with the RDF representation of the MSE data
model used by the social application in question. Instead, one
would like to use a more natural interface, such as those
used to set filters for incoming messages in email clients.
For this reason, we have designed and implemented a policy
editor that hides the complexity of low level SPARQL queries

and RDF graphs. Users can add new policies, view, edit or
delete existing ones, all via an intuitive graphical interface. The
various categories of resources (e.g., Person, Group, etc.) are
automatically made available in the editor, as are the instances
currently in the knowledge base.

We illustrate the use of the policy editor by using the policy
introduced earlier in the paper. As shown in Figure 6, Alice,
the owner of the data, can specify this policy using our policy
editor to identify the following 4 properties of the policy:

1. Requestor: This can be specified either intensionally —
i.e., by selecting a specific person as the eligible requestor,
or extensionally — i.e., in terms of specific sets that group
people together based on common properties or criteria, such
as members of a group (e.g., “INRIA”) or friends of a person.
The latter method allows the owner to grant access to a set of
users using a single policy.

2. Action: This can be read, add, or remove.

3. Resource to be Accessed: The editor allows the owners
to grant access either to all information in the KB, or very
specific information (e.g., “the list of friends of a person”) by
selecting one of the resource categories in the policy editor.

4. Additional Conditions: Additionally, the owner can specify
resource-related conditions that the result of the query should
satisfy (e.g. “returned set of users must also be members of
INRIA”).

Although the policy editor makes the specification of poli-
cies easy, its content/options differ from application to appli-
cation due to the different MSE data models used by them.
Implementing the code for it for each application manually
can therefore be tedious and error-prone. To alleviate the
above problem, the options in the UI of the policy editor
are generated dynamically, based on the MSE data model
used by the application, as well as the current state of the
owner’s KB. In particular, we use the RDF description of the
former to auto-generate the categories in the policy editor,
while the individual members of the categories are populated
dynamically by querying the KB at policy creation time.
Finally, to allow users to define more complex policies, the
editor also provides them with the raw SPARQL file which
they can edit before it is loaded by the policy manager.

V. IMPLEMENTATION AND EVALUATION
A. Prototype Implementation

The Yarta middleware prototype is written in Java 2 SE and
has been deployed both on laptops running Windows/Mac OS,
and on smart phones running Android. Similarly to Section III,
we mainly focus on Knowledge Base and Policy Manager
components here.

In the laptop prototype, both the Knowledge Base and
the Policy Manager rely on capabilities offered by the Jena
Semantic Web Framework [12], which is at present the most
comprehensive framework to manage RDF and Web Ontology
Language (OWL)® data in Java applications. Jena provides a
set of native APIs for data manipulation and also supports the

3http://www.w3.org/TR/owl-features/

Policy Name
Allow |_Select by category
to perform

read

Select information

Person is also

(save)
C)

__Editor - new|

™ members Of ™ INRIA
) Participates in [} Android
(] friends of

ﬂ [In the same group as
("] has email

T] __friends of ﬂ | Alice T]
M members Of ™ INRIA

(] Participates in [_] Android
(] friends of
[In the same group as

(] has email

(" Cancel)
C)

Fig. 6. Policy editor, with annotations for each step in the policy specification process.

SPARQL query language to retrieve data according to graph
patterns. We also rely on Jena features to handle duplicates due
to the merging of multiple graphs. The KB currently uses the
filesystem as a backing store. For the Android prototype we
exploit Androjena*, an Android-compatible port of the Jena
framework that has been recently released. This allows us to
transparently run Yarta on the laptop and on the mobile phone
by replacing Jena libraries with Androjena ones.

The Policy Editor was written in J2SE using the Swing
graphical framework. We use the RDF description of the data
model to auto-generate the categories in the policy editor using
the Apache Velocity template engine® and RDFReactor®.

B. Experimental Results on Smart Phones

Ideally, the policy management subsystem should be respon-
sive and scale well with KB size, and not depend on the type
of the policy being evaluated. To evaluate the performance
and scalability of the Policy Manager component, we executed
several tests based on the following four parameters.

« size of KB: We increased the size of the knowledge base
for social networks ranging from 400 to 2500 people.

o type of policy: We created three different policy sets.
Each set presents a policy category - Set I for requestor-
related policies, Set 2 for resource-related policies, and
Set 3 for policies with cross-related conditions, i.e.,
constraints binding different elements of policies (e.g.,
the requestor and the resource).

e type of response : Both grant access and deny
access responses were generated

“http://code.google.com/p/androjena/
Shttp://velocity.apache.org/
Shttp://semanticweb.org/wiki/RDFReactor

« type of action: We performed tests for read, add, and
remove operations.

Testbed Setup: The tests were run on a Google Nexus One
mobile phone running Android 2.2 OS, equipped with a 1 GHz
processor and 512 MB of RAM. To provide test cases, we
exploited an anonymized data set that was gathered from
Facebook [13]. We selected 10 sizes ranging from 400 to
2500 people, and for each size value we randomly extracted
10 sub-graphs from the data set using the snowball sampling
algorithm [14], which has been shown to preserve the topo-
logical structure of graphs. For each extracted sub-graph, we
created a KB (in RDF) containing nodes of type Person and
mse : knows relationships between them. For testing purposes
we also added mse:email and mse:homepage attributes
for each person. Then, for each RDF file and each policy
category defined above, we evaluated the following requests:

1y
2)
3)
4)
5)

and calculated the average evaluation time for all graphs per
request for each policy set.

add email

remove email

read email

read friends

read graph with nodes about a person

Experimental Results:The performance results of the Policy
Manager are summarized in Figures 7 and 8. Due to lack of
space, not all results are shown. The time needed to evaluate
requests increases linearly with the size of the knowledge
base. All types of action and policy were seen to show
similar evaluation times (at most 600 milliseconds), except for
the read requests evaluated with policies with cross-related
elements, which took up to 3000 milliseconds for 2500 people,
as shown in Figure 7(a). This is understandable given that

3000 ey =

2500 f V\ ={=Set 2, granted
E 2000 b e=(m=Set 3, granted
£
= Set 2, denied

w=Set 3, denied

g +— T T T T T T g
400 600 800 1000 1400 1600 1800 2000 2500
Number of persons in KB

==set 2, granted

Set 3, granted

Time (ms)

sidmSet 2, denied

we=Set 3, denied

400 600 800 1000 1400 1600 1800 2000 2500
Number of persons in KB

(@) (b)
Fig. 7. Time taken by the Policy Manager to a) read graph b) remove triple
700 100%
600 90%
80%
500 1
& Knowledge Base
E 400 N B | & Without access
E control
g 300 T — — [
 Policy M
& With access control b
200
100
0
400 600 1000 1600 1800 2500
400 600 800 1000 1400 1600 1800 2000 2500
Number of persons in KB . Number of persons in KB
(@ (b)
Fig. 8. a) total time and b) time ratio for add action and policy Set 3

cross-related conditions are more complex than strictly subject
or resource-related ones.

Additionally, the response time was seen to be independent
of the outcome of the evaluation, again with the exception of
the read graph requests evaluated with policies with cross-
related elements. Also, as shown in Figure 7(a), denying read
access to a graph requires less time than allowing to do so.

Regarding the overhead introduced by the PM, we tested
the evaluation times needed to execute requests with and
without policy enforcement in place. The outcome showed that
the overhead due to access control depends on the requested
operation. As shown in Figure 8(a), enforcing access control
on add requests results in a minor overhead unlike read
requests results. This is mainly due to performance limitations
of currently available implementation tools, which in case of
a read have a major impact.

As for the share of work done by the PM, our experiments
showed different behaviors for read/remove requests and
add requests. In the former case, the PM requires more than
90% of the total time needed to execute a request issued to
the KB, while in the latter it takes no more than 30% of
the time. The reason is that, in the current implementation of
read/remove operations, the PM performs time-consuming
filtering operations on the knowledge base, while the KB only
returns or remove triples. On the contrary, to answer add
requests, the Knowledge Base performs more time consuming
operations, such as range and domain checking. Note that add
operations are generally faster than read/remove as they do
not require retrieval of triples from the knowledge base.

VI. RELATED WORK

With the increasing popularity of social applications, differ-
ent solutions have been proposed in recent years to control
access to personal data and content shared via social net-
working applications. In this section we discuss access control
models and frameworks that are specifically targeted to social
applications, possibly mobile.

A first category of solutions extends popular social appli-
cations (e.g., Facebook) to provide enhanced access control
over personal data or added functionalities. For example, [4]
proposes fine-grained access policies to medical data, based
on the purpose of the requested access. The policy model is
SecPAL [15], which however does not provide support for
MSE data modeling nor semantic inference. Authors of [3]
complement Facebook-like applications with support for col-
laborative policy editing, which can be useful when multiple
users have interest in restricting access to a resource (e.g., a
picture). To automatically infer user policies based on user
behavior, authors of [5] propose machine learning techniques.
These are all interesting efforts towards the provisioning of
new functionalities for policy-based access control in social
applications. However, they do not focus on providing expres-
sive policy models nor enforcement infrastructures like Yarta.

Semantic technologies have also emerged as a promising
choice to represent and reason about policies. In particular,
recent work proposed to adopt semantic policies to control
access to resources in social networking applications, such as
Facebook [16] [17]. Both works propose, with some differ-

ences, to represent policies as Semantic Web Rule Language
(SWRL) rules’: by reasoning on the social knowledge base,
represented in OWL, they derive the set of active permissions.
Similarly to us, these approaches provide rich descriptions of
social interactions via semantic modeling. In [16] authors also
introduce the concept of trust in a relationship, which we do
not currently handle. However, since reasoning is performed
on the whole knowledge base to infer the current list of per-
missions, this rule-based approach has two main limitations:
first, forward reasoning requires the whole social knowledge
to be stored in the same node in order to obtain all valid
permissions, thus making the system inherently centralized.
Furthermore, whenever a change in the social knowledge
occurs, all permissions must be re-computed, which may raise
efficiency concerns. Also, existing literature on rule-based
systems reports of extremely critical situations, where the rule-
base size made rule management such a complicated task to
require a team of expert administrators [18].

Authors of [19] propose a relation-based access control
model to support data sharing among large groups of users.
The main idea is to represent permissions as relations between
users and data, thus decoupling them from roles as in role-
based access control. Authors provide a formal representation
of their model, which includes E-R diagrams and their map-
ping to Description Logic, to allow reasoning. They do not,
however, provide any specific social model as this is not their
primary focus. In addition, the framework adopts hierarchies
whose semantics may not always be clearly defined, which
might make the model not easily manageable.

To the best of our knowledge, none of the systems presented
above provide a full policy infrastructure like Yarta does. Some
systems do provide proof-of-concept implementations, which
however are designed for a specific application or resource,
and we are not aware of their availability for reuse. On
the contrary, our policy framework is generic and expressive
enough to be used for any mobile social application, and
it is integrated in a reusable middleware architecture whose
components allow the enforcement of access control. Finally,
only few solutions provide user-interfaces. In particular, [3]
provides a user-interface, which however requires to deal
with concepts like strong/weak conditions that might not be
intuitive to define in practice, while [17] requires to deal
directly with a SWRL editor. Our GUI allows non technical
users to specify policies without dealing with the underlying
SPARQL model.

VII. CONCLUSION

The novel scenarios enabled by emerging mobile social
applications raise serious concerns regarding access control of
users’ contextual and social data. In this paper we presented
a novel semantic policy framework for controlling access to
social data in mobile applications. The framework allows the
representation of expressive policies based on users’ (MSE)
and makes the extension of the policy model with new do-
main data models straightforward, while keeping policy model
compatibility intact. We have integrated the policy framework

Thttp://www.w3.org/Submission/SWRL/

as part of the Yarta middleware architecture and evaluated it
via extensive testing. Finally, we provide a graphical policy
editor to allow easy specification and management of users’
access control policies. Our evaluation shows that our initial
implementation of this novel policy framework scales well,
although the response times have room for improvement in
some cases.

Our current and future work include the validation of our
policy framework in emerging application scenarios, such as
social gatherings and smart city applications. We are also
working on the optimization of the policy evaluation process
and we are planning to test the usability of our interface via
field testing with non-technical users.

REFERENCES

[1] E.E Churchill and C. A. Halverson, “Guest editors’ introduction: Social
networks and social networking,” IEEE Internet Computing, 2005.

[2] Q. Jones and S. A. Grandhi, “P3 systems: Putting the place back into
social networks,” IEEE Internet Computing, vol. 9, no. 5, 2005.

[3] R. Wishart, D. Corapi, S. Marinovic, and M. Sloman, “Collaborative
privacy policy authoring in a social networking context,” 2010.

[4] P. Kodeswaran and E. Viegas, “A policy based infrastructure for social
data access with privacy guarantees,” Policies for Distributed Systems
and Networks (POLICY), 2010 IEEE International Symposium on, 2010.

[5] M. Shehab, G. Cheek, H. Touati, A. C. Squicciarini, and P.-C. Cheng,
“User centric policy management in online social networks,” Policies
for Distributed Systems and Networks, 2010 IEEE Intl. Symp. on, 2010.

[6] L. Lymberopoulos, E. Lupu, and M. Sloman, “An adaptive policy-based
framework for network services management,” Journal of Network and
Systems Management, vol. 11, no. 3, 2003.

[71 A. Uszok, J. M. Bradshaw, R. Jeffers, N. Suri, P. J. Hayes, M. R. Breedy,
L. Bunch, M. Johnson, S. Kulkarni, and J. Lott, “Kaos policy and domain
services: Toward a description-logic approach to policy representation,
deconfliction, and enforcement,” POLICY, 2003.

[8] A. Besmer, H. R. Lipford, M. Shehab, and G. Cheek, “Social
applications: exploring a more secure framework,” 5th Symposium on
Usable Privacy and Security, ser. SOUPS 09.

[9] D. Smetters and R. E. Grinter, “Moving from the design of usable

security technologies to the design of useful secure applications,” New

Security Paradigms Workshop, 2002.

A. Toninelli, R. Montanari, O. Lassila, and D. Khushraj, “What’s on

users’ minds? toward a usable smart phone security model,” Pervasive

Computing, IEEE, vol. 8, no. 2, pp. 32-39, April-June 2009.

A. Toninelli, A. Pathak, and V. Issarny, “Yarta: A middleware for

managing mobile social ecosystems International Conference on Grid

and Pervasive Computing (GPC 2011), 2011.

“Jena,” last visited: May 2010, http://jena.sourceforge.net/.

C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and B. Y. Zhao,

“User interactions in social networks and their implications,” 4th ACM

European conference on Computer systems, 2009.

[14] J. Illenberger, “Estimating properties of snowball-sampled (so-

cial) networks,” “http://matsim.org/uploads/Seminar2008_Illenberger

_SnowballSampling.pdf”, 2008.

A. D. G. Moritz Y. Becker, Cédric Fournet, “Secpal: Design and se-

mantics of a decentralized authorization language,” Journal of Computer

Security, pp. 619-665, june 2010.

B. Carminati, E. Ferrari, R. Heatherly, M. Kantarcioglu, and

B. Thuraisingham, “A semantic web based framework for social

network access control,” I4th ACM symposium on Access control

models and technologies, ser. SACMAT ’09., 2009.

N. Elahi, M. Chowdhury, and J. Noll, “Semantic access control in web

based communities,” Computing in the Global Information Technology,

2008. ICCGI ’08.

J. Bachant and J. McDermott, ‘“Readings from the ai magazine,”

R. Engelmore, Ed. Menlo Park, CA, USA: American Association for

A.L, 1988, ch. R1 Revisited: four years in the trenches.

F. Giunchiglia, R. Zhang, and B. Crispo, “RelBac: Relation based access

control,” Semantics, Knowledge and Grid, Intl. Conf. on, 2008.

[10]

[11]

[12]
[13]

[15]

(16]

[17]

[18]

[19]

