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Abstract

Mobile ad hoc networks have gained more and more
research  attentions by  provisions of wireless
communications without location limitations and pre-built
Jixed infrastructure. Because of the absence of any static
support structure, ad hoc networks are prone to link failure.
This has become the most serious cause of throughput
degradations when using TCP over ad hoc networks. Some
researches chose Dynamic Source Routing (DSR) as the
routing protocol and showed that disabling the assigning
of a route directly from cache gives better performance. In
this paper, we introduce an efficient cache management
mechanism to increase the TCP throughput by replying
with a route directly from the cache of DSR and perform
the cache recovery when a host failure has occurred. We
use simulations to compare the performance of our
algorithm with the original DSR under the link failure
prone environment due to mobility. We also provide the
simulation results when host failures are considered in the
ad hoc networks.

1. Introduction

An ad hoc network is a dynamic network consisted of a
group of mobile devices which communicate with each
other by wireless media. Communications only can be
done when a node is in the wireless transmission region of
another node. Through a group of intermediate nodes
willing to forward packets, a source can send data to a
destination which is not in its communication region. In an
ad hoc network, every node may work as a host or a router
at some time.

There have been a lot of routing protocols proposed for
ad hoc networks [6-11]. The Dynamic Source Routing
(DSR) protocol [7] is an on-demand routing protocol based
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on the concept of source routing. The protocol consists of
two major phases: route discovery and route maintenance.
Whenever a source has a packet to send, it first checks its
routing table to see if there is a route to the destination. If
not found, then the source broadcasts a route request.
When an intermediate node receives a route request, it
again broadcasts this request by appending its address to
the request packet until this packet reaches the destination.
The destination replies to the first arrived request. It sends
a route reply to the source containing the whole route from
source to destination. When this packet reaches the source,
the connection is established and all the subsequent packets
will go through the route with the route in their packet
headers. To reduce the number of route discoveries, each
node maintains a route cache for the routes it has learned.
The cache is updated by route error messages. If the
protocol allows reply to route request from cache, the
intermediate nodes can send route reply to the source with
the route it keeps for that destination and stop broadcasting
the route request.

Because of TCP’s inability to recognize the difference
between link failure and congestion, the link breakage due
to mobility makes the TCP throughput lower. Simulation
was used in [2] to measure the TCP performance while
choosing DSR as the routing protocol. In [2] the authors
also indicated that the better TCP performance achieved
with no reply from cache is due to the fact that there are no
stale routes returned. Because DSR has no mechanism to
immediately respond to dynamic network topology
changes, more routes may be stale when the mobility
becomes high. Under such circumstances, reply from cache
introduces more routing errors.

It is necessary to find an efficient cache management
strategy for DSR. Since DSR is an on-demand source
routing protocol, sending link layer beacons periodically
for getting signal strengths disobeys the protocol’s design
idea. In this paper, we introduce a new cache management



mechanism that incurs no other protocol overhead and can
be easily added to the original DSR. We also extend the use
of route cache to perform the cache recovery from a host
failure.

The paper is organized as follow. Section 2 presents our
algorithm of cache management and demonstrates it under
two circumstances, link failure and host failure. In section
3, the simulation methodology and simulation environment
are described. Section 4 gives simulation results and
analysis. Finally section 5 provides a conclusion.

2. Protocol Description

In this section, we present a detailed description of our
cache management protocol. The goal of the cache
management is to avoid replying with a stale route from the
cache. We try as much as possible to keep the correct
routes in the cache and reflect the dynamic network
changes by a local mechanism. First we state the main idea
and definition of the cache mechanism. Then we describe
how the protocol works in a more detailed way. Finally we
go through some examples under two failure situations -
link failure and host failure. One note must be taken first,
which is that all the broadcasted control messages are sent
only to the neighbors.

2.1. Protocol overview

Since the problem of replying from the cache is due to
the probability of returning stale routes, the first thing we
have to do is to identify whether a route in the cache is
correct or not. When a node receives a route request, it
checks its cache and returns the route which is identified as
correct. By doing so, we can still use the cache to reduce
the number of route requests and incur no throughput
degradation due to reply error.

In this paper, we use a mark to prevent incorrect reply.
A route marked “stale” is a route which is likely broken.
When receiving a route request, we can’t return routes
marked “stale”. Note that while a route marked as “stale”
can not be used for route reply, it can still be used to send
packets. We only determine the neighbor links’ stability by
monitoring the signal strength of received packets from the
neighbor node. If we found some neighbor link is likely
broken, we mark all the routes that go through it as “stale”.
We define a period for each “stale” route to indicate how
long it should be kept in the cache. If we get some
information showing that a “stale” link works again before
it timeouts, then we recover it as a normal one. Otherwise,
discard the expired stale routes. The values of stale route’s
period and signal strength threshold are adjusted
dynamically depending on the network condition.

Before we recover a “stale” route, we must make sure it
is correct. So we define two control messages: “confirm”
message and ‘“route ok” message to achieve this goal.
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These messages are initiated by a stale route which could
be recovered as normal. By using these two messages we
also can do the cache recovery after a host failure. When
discarding a “stale” route, the node checks whether it has
another substitute path in its cache. If not, it broadcasts a
“link broken” message to its neighbors to inform them of
the link error. Each node receiving a “link broken”
message discards the error link and then does the same
thing to find a substitute route. If not found, then it
broadcasts the message again. When a node receives a
“link broken” message and finds that the broken link does
not exist in the cache, then it discards the message and does
nothing.

We assume that a host can realize its failure after it
restarts again. When a host restarts, it broadcasts a “host
needs recovery” message to its neighbors. When receiving
a “host needs recovery” message, a node should work the
same as the signal strength is beyond the threshold again.
So the nodes that received the “host needs recovery”
message send back a “confirm” message with routes. After
checking that the next node in the route is alive, the route
can be stored in the cache of the host who needs recovery.

In the following we describe our protocol in details and
explain how they work.

2.2. Signal strength

A node uses the signal strength of the received packets
to determine the stability of neighbor nodes who pass (or
send) the packets to it. Each node in an ad hoc network
only cares about the stability of neighbor links. We define a
signal strength threshold as a parameter to determine a
neighbor’s condition. When a received packet’s signal
strength is under the threshold, we consider this packet’s
sender to be unstable. When a node realizes that there is a
possibility to lose some of its neighbors, it marks all the
routes that go through that node as stale. We let each node
only monitor its neighbors’ stability to reduce network and
protocol overhead. We mark all the route as unstable to
ensure that no error route could be returned from the route
cache. The value of signal strength threshold can be
adjusted according to mobility patterns or dynamically
adjusted based on the statistical results of network
topology changes. In our implementation we give different
values to the threshold for different node moving speeds.

All the actions of our mechanism are driven by signal
strength determination. When a neighbor’s signal strength
first goes below the threshold, we mark all the routes
passing through it as stale. Within the stale route’s duration,
if there is no matching “confirm” message to the marked
route received, then discard the stale route from the cache.
When a neighbor’s signal strength first goes beyond the
threshold, we send “confirm” message to that node with
the route marked as stale. The signal strength
determination pseudo-code is given in Table 2.1.



Table 2.1. Pseudo-code for signal
strength determination

/* Signal Strength Determination */
if (SS>=Threshold)
{ if ( packet sender does not belong to the neighbors )
{ Add it into the neighbors.
if ( a stale route belongs to packet sender )
{ Send confirm message to it. }

if (SS<Threshold)
{ if ( packet sender is one of the neighbors)
{ Discard it from the neighbors.
if ( a route with packet sender as next node )
{ Mark the route as stale.
Record the marking time.

}

2.3. “Confirm” message

The “confirm” message is used to get validation before
recovering a “stale” route as normal. If a neighbor is
sensed to be alive again and there are some “stale” routes
belonging to it, then there is an opportunity to recover the
routes. Since the signal strength determination only
guarantees that the first link of the path is active now.
Therefore before recovering a “stale” route, the node must

check the status of the route with its neighbors. Look at Fig.

2.1 to consider the situation. Node A senses B’s signal
strength beyond the threshold for the first time and wants
to recover the “stale” route BCX as normal. Node A sends
a “confirm” message to node B to ask whether the route
BCX can work or not. The thing that node A wants to know
is whether it can send packets to B if it has packets with
destination C or X. Therefore the thing that node B has to
provide is the guarantee to answer A’s request.

—P L [P
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BCX CX X

Fig. 2.1. Node A sends confirm message
to node B to validate route.
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2.4. “Route ok” message

This message is used to respond to the “confirm”
message. When a node receives a “confirm” message and
has an active match to the route, it responds with the whole
route to confirm the route which is to be recovered. The
same as the “confirm” message, the “route ok message is
one per route. Use the same example in Fig. 2.1, when B
receives A’s “confirm” message and if B has route CX in
its cache, then B sends “route ok message to A with route
BCX. If B doesn’t have any match with A’s “confirm”
message or the route CX is marked as stale, then B won’t
do anything. Node A can recover the route BCX as normal
only when B’s “route ok” message is received.

2.5. “Link broken” message

We keep “stale” routes in the cache for a while. When
the stale route’s duration expired and no matching “route
ok” message is received, then the route will be discarded.
When a node discards a route from its cache, it broadcasts
“link broken” messages to its neighbors (TTL=1). The
message contains a node id, which is the node that the
message sender has a problem of connecting to. When a
node receives a “link broken” message, it looks up its
cache to find out if there is any route passing through the
message sender and reaching the node included in the
message. If so, then it discards the route and tries to find a
substitute route to that destination (node included in the
“link broken” message). If found, then it stops and does
nothing further. If not found, then it broadcasts “link
message” again with the same node id. If a node receives a
“link broken” message and finds that it does not have any
route to that destination, it can ignore the message.

Look at Fig. 2.2 for example. If C discards a “stale”
route X, then it broadcasts a “link broken” message
including node X to show that the node can not be
connected. Both node B and node D receive C’s “link
broken” message. Because D doesn’t have any route to
destination X, D discards the message. Node. B discards the
route CX and finds that it has no substitute routes for
destination X. So B broadcasts “link broken” message with
node X again. Then both node A and node C receive B’s
“link broken” message. Because C just discards the route X
and has no route to it, C discards the message and does
nothing. Node A discards the route BCX and finds that it
has a substitute route WX to X, so it stops and the process
of discarding a stale route is finished.
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Fig. 2.2. An example for link broken message.

2.6. “Host needs recovery” message

This message is designed for the cache recovery from
host failure. When a node restarts after its failure, it
broadcasts “host needs recovery” message to its neighbors
to inform them it needs some route information for
recovery.

2.7. “Neighbor” message

When receiving a “host needs recovery” message, a
node uses “neighbor” message to show that it is his
neighbor now. This message is used only in the host failure

situation for validation of the route in a “confirm” message.

We use Fig. 2.3 to show the use of a “neighbor” message.
After a short failure due to power shortage or battery
change, node B restarts again and it loses all the routes in
its cache. B broadcasts “host needs recovery” messages to
its neighbors and both A and C receive the messages.
Because A has a route through B, A sends a “confirm”
message to B with the route BCX. On the other hand, C has
no routes through B and therefore C sends a “neighbor”
message to B. For A’s “confirm” route BCX, because B got
C’s “neighbor” message which proves that B can connect
with C, B can store the route BCX in its cache.

P —»

BC X

Fig. 2.3. An example to explain

“neighbor” message's function.

2.8. Advantages and disadvantages

Here we discuss the advantages and disadvantages of
our protocol. Our design goal is to use a simple method
which is also compatible to DSR to avoid replying with
stale routes. We did not add any overhead and just assigned
a mark to a route that could be stale. Since the route
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marked as stale can still be used to send packets and cause
no error, the TCP throughput can be increased. Besides, we
only monitor the neighbor links’ stability and exchange
route information with neighbor nodes, these local
mechanisms will not increase too much overhead to the
network. We don’t send any periodic information or signals
so that we can keep the advantages of the on-demand DSR
protocol. Finally our protocol is designed for fault
tolerance. We can detect link failure in advance to keep the
returned route correct and perform the cache recovery from
a host failure.

The main drawback of our protocol is the method we
determine a link’s stability. We passively wait for packets
and measure their signal strength and use timers to refresh
when we get no packets. Because it can not exactly reflect
the situation about the links, it may cause some
unnecessary actions. For example, a link may be stable but
we discard it since no packets are received from it. Another
is the way we judge a link to be unstable. It is better to use
a more accurate method to do it.

2.9. Route state

Each route has two states. The first is the normal state
and can be used for routing and reply. The second is the
stale state which can be used for sending packets but can
not be used for reply. The transition between these two
states is shown in Fig.2.4.

SS<=Threshold

Stale
Reply keep
learning timeout

“route ok

“confirm” + “neighbor”

Fig. 2.4. Each route has two states.

3. Simulation Environment and
Methodology

The results in this paper are based on simulations using
the ns network simulator from Lawrence Berkeley
National Laboratory (LBNL) [13], with extensions from
the MONARCH project at Carnegie Mellon {4]. At the



physical layer, the extended ns employs a radio
propagation model supporting propagation delay,
omni-directional antennas, and a shared media network
interface. At the link layer the IEEE 802.11 Medium
Access Protocol is provided. All results are simulated on a
network configuration consisting of TCP-Reno over IP on
an 802.11 wireless network, with routing provided by the
Dynamic Source Routing (DSR) protocol and BSD’s ARP
protocol.

Our network model consists of 30 nodes in a 1500x300
meter flat rectangular area. The nodes move according to
random waypoint mobility model. In this model, each node
picks a random destination and speed in the area and then
travels to the destination in a straight line. After it reaches
the destination, it pauses and then picks another destination
and speed to move again. All nodes communicate with
identical, half-duplex wireless radios that are modeled after
the 802.11-based WaveLan wireless radios, which have a
bandwidth of 2Mbps and a nominal transmission radius of
250m. TCP packet size is 1460 bytes and the maximum
window is eight packets.

The simulations are run for mean speeds of 1, 5, 10 and
25 m/s and pause times of 0 and 10 seconds for a period of
150 seconds. We use CMU’s traffic and scenario
generating scripts to create network traffic and mobility
patterns. Each result is the average of 30 patterns. First we
use only a single TCP traffic to simulate under link failure
and host failure situations. Then we simulate all the
patterns in the same way in multiple data connections. The
multiple data connections consist of one TCP traffic and
ten CBR connections across eight nodes, which send 512
byte packets at a mean rate of 5 packets per second. We use
TCP throughput as the performance metric for the
comparison of cache management strategies.

4, Simulation Results and Discussions

4.1. Link Failure

In Fig. 4.1, 4.2, 4.3 and 4.4, we show the variation of
TCP Reno Throughput versus mean speed of nodes for a
pause time of 0 and 10 seconds respectively. We use single
TCP traffic in Fig 4.1 and 4.2 and multiple traffic sources
in Fig 43 and 44. As can be seen, the throughput
decreases with increasing mean speed of nodes. High
mobility results in the increase of link failure frequency
and TCP regards it as network congestion. So it reduces its
window size and' causes the throughput degrade.
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Mean Speed (m/s)

Fig. 4.1. Signal TCP traffic with pause
time = 0 seconds.

Mean Throughput (Kbps

Fig. 4.2. Signal TCP traffic with pause
time = 10 seconds.

Generally, our protocol has good performance in ad hoc
networks under link failure circumstances. At high mean
speed, our method performs better than the original DSR
with reply from the cache. We solve the problem of
replying with stale routes in the cache and get the results
almost equivalent to disallowing route reply from the
cache. Since the ad hoc network in our simulation is not
big, route discovery doesn’t need too much time. At high
mean speed it causes less overhead for route discovery
with no cache reply strategy than for handling link errors
with the cache reply strategy.
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Fig. 4.3. Multiple traffics with pause
time = 0 seconds.
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Fig. 4.4. Muitiple traffics with pause
time = 10 seconds.

4.2. Host Failure

In Fig. 4.5, 4.6, 4.7 and 4.8 we did the same experiment
but add host failures in the simulation. We chose a node
randomly as the failed host and crash its cache. We only
simulated our protocol and DSR with cache reply in this
part since crashing a cache doesn’t have much meaning for
no cache reply strategy. In the host failure simulations, our
protocol has better results than the original DSR with reply
from the cache. This means our method successfully
recovers some crashed caches from host failures.

Mean Throughput (Kbp

Mean Speed (m/s)

Fig. 4.5.Host failure with single TCP
traffic and pause time = 0 seconds.
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Fig. 4.6.Host failure with single TCP
traffic and pause time = 10 seconds.

However, compared to the results in link failure
environment, our protocol is still affected by host failures
(The throughput in link failure environment is higher than
host failure environment). We infer the reasons as
followings. Although we try to recover a cache after it fails,
the throughput still degrades due to the host failure. When
a host fails and it loses all the routes in its cache, the
packets which have been received also have to be
discarded because there is no route to transmit them. In fact -
when a host fails, it loses not only the information in the
cache but also all the data in the buffer.
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Fig. 4.7. Host failure with multiple
traffics and pause time = 0 seconds.
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Fig. 4.8. Host failure with multiple
traffics and pause time = 10 seconds.

5. Conclusions

In this paper we has shown that route cache nmianagement
in an on-demand routing protocol has significant
performance implications for TCP. We proposed a new
protocol to solve the stale route problem with replying a
route from the cache. We performed extensive simulations
under single TCP traffic and multiple traffic situations to
compare the results with other protocols. The simulations
showed that we have improved the performance of reply
from the cache in DSR significantly, which is almost
equivalent to that of no cache reply mechanism. We have
also considered host failure situations in the environment
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and discussed how they affect the TCP throughput. Besides
using the same simulation methodology as link failure
situations, we added host failures in the simulation
environment. From the simulation results we observed that
host failures also make the throughput much smaller and
meanwhile we showed the benefit of our mechanism for
the cache recovery. For future work we suggest that when
designing a routing protocol for ad hoc networks, it is
important to consider the host failures as well as the link
failures. Also for fault tolerance other aspects recovery can
be considered, such as the recovery of packets which have
been received at a failed host, in addition to routing
information recovery.
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