
1

Reliability Evaluation of Multi-state Systems Subject to

Imperfect Coverage using OBDD

Yung-Ruei Chang
1
, Suprasad V. Amari

2
, and Sy-Yen Kuo

1

1
Department of Electrical Engineering

National Taiwan University
Taipei, Taiwan

sykuo@cc.ee.ntu.edu.tw

2
Relex Software Corporation

540 Pellis Road, Greensburg,
PA 15601, USA

suprasad.amari@relexsoftware.com

Abstract

This paper presents an efficient approach based on

OBDD for the reliability analysis of a multi-state system

subject to imperfect fault-coverage with combinatorial

performance requirements. Since there exist dependencies
between combinatorial performance requirements, we

apply the Multi-state Dependency Operation (MDO) of

OBDD to deal with these dependencies in a multi-state

system. In addition, this OBDD-based approach is

combined with the conditional probability methods to find

solutions for the multi-state imperfect coverage models.
Using conditional probabilities, we can also apply this

method for modular structures. The main advantage of this

algorithm is that it will take computational time that is

equivalent to the same problem without assuming imperfect

coverage (i.e. with perfect coverage). This algorithm is very
important for complex systems such as fault-tolerant

computer systems, since it can obtain the complete results

quickly and accurately even when there exist a number of

dependencies such as shared loads (reconfiguration),

degradation and common-cause failures.

1. Introduction

The s-coherent multi-state system theory has been

investigated since 1975 [1]. Many researchers have

analyzed the s-coherent multi-state system reliability

[2][3][4][5]. Most of them extend the concepts and

conclusions for the 2-state s-coherent systems to the

multi-state systems. To describe the dynamic characteristics

of the component state transition, Stochastic process

(Markov process) techniques are combined with the

s-coherent multi-state system theory to analyze the dynamic

multi-state system reliability. The multi-state reliability

theory can handle situations in which the system and its

components have a range of performance levels, e.g. from

perfect operation to complete failure. Because performance

degradation is very common in industrial products, it is

important to develop the multi-state system reliability

theory.

When a multi-state system (MSS) is considered, it is

important to estimate the impact of each element on the

system output/performance. The general definition of MSS

reliability [2] is:

})(Pr{),(LtFLtRMSS (1)

where L is the required performance level for MSS, F(t) is

the MSS output/performance rate. For a multi-state system

that has a finite number of states, there can be H different

levels of output/performance at time t:

}1,{)(HhFtF hF

and the system output/performance distribution can be

defined by two finite vectors F and

)1(},)(Pr{)}({ HhFtFtq hhq

Therefore, the non-repairable MSS reliability is the

probability that the system remains in the states

with LFh during (0, t):

LF
hMSS

h

tqLtR)(),((2)

In addition, systems that are used in life-critical

applications such as flight control, nuclear power plant

monitoring, space missions, etc., are designed with
sufficient redundancy to be tolerant of errors. However, if

the system cannot adequately detect, locate and recover

from faults & errors in the system, then system failure can

still result even when there exists adequate redundancy [6].

An accurate analysis must account for not only the complex
system structure, but also the system fault and error

recovery behavior. Therefore, the fault coverage problem of

a system should be considered. This helps in fixing the

optimal level of redundancy [7].

Most of published works use Markov models

(non-homogenous Markov or semi-Markov model) to solve
multi-state problems [8]. However, it is difficult to find the

correct model of a system and there will be a total of N =

(m+1)n states if there are n modules in the system and each

module has (m+1) states including the imperfect coverage

state. The computational time is proportional to N3 =

[(m+1)n]3. Hence, the computational complexity of the
problem is O(m3n). It is not just an NP problem, there are

NP sub-problems within each step of the NP problem. This

Proceedings of the 2002 Pacific Rim International Symposium on Dependable Computing (PRDC’02)

0-7695-1852-4/02 $17.00 © 2002 IEEE

2

paper provides a new approach to model a multi-state

system and proposes an efficient method combined with

conditional probability concepts and OBDD method to

evaluate the reliability of a multi-state system with
imperfect coverage. This method could also be extended to

use modularization methods for reliability analysis. This

efficient integration of OBDD and modularization method

simplifies the problem further.

Section 2 introduces the concepts of OBDD and

coverage model. Section 3 illustrates a new model and a
new approach to evaluate the reliability of a multi-state

system with imperfect coverage. Section 4 proposes an

OBDD-based algorithm to deal with the dependency

problem in the probability evaluation of a multi-state

system with imperfect coverage. Section 5 gives some
examples. The last section gives the conclusions and future

works.

2. Preliminaries
2.1. Ordered Binary Decision Diagram (OBDD)

This section introduces the representation and

manipulation of Boolean functions based on OBDD.

OBDD [9] is based on a decomposition of Boolean function

called the Shannon expansion. A function f can be
decomposed in terms of a variable x as:

01 xx fxfxf

A node and its descendants in an OBDD represent a

Boolean function f, where for node label x, one outgoing

edge is directed to the subgraph representing 1xf , and the

other to 0xf . Shannon decomposition is the basis for using

OBDD. In order to express Shannon decomposition

concisely, the if-then-else (ite) format [10][11] is defined

as:

),,(01 xx ffxitef

2.2. Manipulation of OBDD

The manipulation of OBDD to represent logical

operations is simple. In practice, the OBDD is generated by

using logical operations on variables. Let Boolean

expressions f and g be:

),,(),,(

),,(),,(

0101

0101

GGyiteggyiteg

FFxiteffxitef

yy

xx

A logic operation between f and g can be represented by

OBDD manipulations as:

)(order)(order),,(

)(order)(order),,(

)(order)(order),,(

),,(),,(

01

01

0011

0101

yxGfGfyite

yxgFgFxite

yxGFGFxite

GGyiteFFxite

(3)

where represnents a logic operation such as AND, OR,

and NOT. Figure 1 illustrates the construction and

manipulation steps of a Boolean function. For more details

on using the operations of OBDD, please refer [9].

F = (x1 and x3) or (x2 and x3)

Variable Ordering: x1<x2<x3

Evaluation Steps:

x1 = declare_var(x1, 1) x2 = declare_var(x2, 1) x3 = declare_var(x3, 1)

T1 = BDD_and(x1, x3) T2 = BDD_and(x2, x3) F = BDD_or(T1, T2)

0 1

x1

0 1

x2

0 1

T1

0 1

x3 T2

0 1

F

0 1

x1

x2

x3

x1

x3

x2

x3

x1

x2

x3 x3

F = (x1 and x3) or (x2 and x3)

Variable Ordering: x1<x2<x3

Evaluation Steps:

x1 = declare_var(x1, 1) x2 = declare_var(x2, 1) x3 = declare_var(x3, 1)

T1 = BDD_and(x1, x3) T2 = BDD_and(x2, x3) F = BDD_or(T1, T2)

0 1

x1

0 1

x2

0 1

T1

0 1

x3 T2

0 1

F

0 1

x1x1

x2x2

x3x3

x1x1

x3x3

x2x2

x3x3

x1x1

x2x2

x3x3 x3x3

Figure 1. The OBDD generated from a Boolean equation.

2.3. Coverage Model

Figure 2(a) shows the general structure of a

fault-coverage model representing a recovery process

[12][13] initiated when a fault occurs. The entry point to the

model signifies the occurrence of a fault, and the three exits

(R, S, C) signify the 3 possible outcomes.

• If the offending fault is transient and can be handled

without discarding any components, then the transient

restoration exit (R) is taken.

• If the fault is determined to be permanent, and the

offending component is discarded, then the permanent

fault-coverage exit (C) is taken.

• If the fault by itself causes a system to fail, then the

single-point failure exit (S) is taken.

Single-point

failure
S exit

Fault occurs

Permanent

Coverage

Transient

Restoration

C exit

R exit

Coverage

Model

Single-point

failure
S exit

Fault occurs

Permanent

Coverage

Transient

Restoration

C exit

R exit

Coverage

Model

Pr{x[i]} = a[i]

Component

not failed

Pr{y[i]} = b[i]

Component failed

& covered

Pr{z[i]} = c[i]

Component failed

& uncovered

Pr{x[i]} = a[i]

Component

not failed

Pr{y[i]} = b[i]

Component failed

& covered

Pr{z[i]} = c[i]

Component failed

& uncovered

 (a) (b)
Figure 2. (a) General structure of a fault coverage model.

(b) The event and probability space of component i.

The exit probabilities r0, c0, s0 are required for the analysis

of system reliability. The exits are a partitioning of the

event space; thus the three exit probabilities sum to one, i.e.

(c0 + s0) = (1 – r0). The r0, c0, s0 can be determined by an

appropriate fault coverage model [13]; for more details, see

[6][8].

For the fault coverage model, each component is always

in one of three states: x[i], y[i], z[i]. To determine the

system reliability (unreliability), it is required to have a[i],
b[i], c[i] which represent the probabilities of component i

associated respectively with the exits of the fault coverage

model. Figure 2(b) shows the event space (and

corresponding probability) representation of a component.

Therefore,

Proceedings of the 2002 Pacific Rim International Symposium on Dependable Computing (PRDC’02)

0-7695-1852-4/02 $17.00 © 2002 IEEE

3

])1(exp[1][

])1(exp[1][

])1(exp[][

00

00

0

00

00

0

00

tr
sc

s
ic

tr
sc

c
ib

tria

ii

ii

i

ii

ii

i

ii

(4)

where (ri0, ci0, si0) are the probabilities of taking (transient

restoration, permanent coverage, single-point failure) exit

in the coverage model, and 0i is the rate of occurrence of

fault of component i. It should be noted that the effective

failure rate i and the effective coverage factor ci of

component i are

)(

)1()(

000

00000

iiii

iiiiii

sccc

rsc

(5)

Amari et al. [12] proposed an efficient algorithm, the

SEA, to calculate the reliability of a system under the

imperfect coverage model. The basic idea is shown in the

following equation and could be easily proved [12] by

using conditional probabilities.

System Unreliability (Us) =

Pr{at least one uncovered failure}×

Pr{system failure | a uncovered failure}

+ Pr{no uncovered failure}×

Pr{system failure | no uncovered failure} (6)

Let Pr{no uncovered failure} uSi
Pibia])[][(, then

Pr{at least one uncovered failure} = 1–Pu . Also let

Pr{system failure | no uncovered failure} = Ucs. Since

Pr{system failure | at least one uncovered failure} is always

equal to 1, we have

csuss

csucsuus

RPUR

RPUPPU

1

1)1(

(7)

where Rs is the system reliability and Rcs is Pr{system

success | no uncovered failure}.

Example 1:

For a terminal-pair network system, Kuo [14] proposed

an efficient approach to determine the terminal-pair (from

source node s to target node t) reliability based on edge

expansion diagrams using OBDD. The main idea, which

makes his approach very efficient, is that the OBDD of a

given network is automatically constructed with mergence

of isomorphic sub-problems during tracing all paths of the

terminal-pair. Therefore, the system reliability is efficiently

derived from OBDD.

Considering a bridge network as shown in Figure 3(a),

Figure 3(b) shows the OBDD of this network system.

Therefore, we get the conditional reliability, Rcs, of the

network system by substituting the conditional reliability/

unreliability (p[i]/q[i]) for the reliability/unreliability of

component i. Then, we can easily obtain the reliability of a

network system subject to imperfect coverage from

Equation (7). By this efficient integration, we don’t need to

solve the whole state’s problem using Markov chains even

when the network system is quite large and complex. In

addition, using conditional probabilities, the computational

complexity of this method is the same as that of the method

for solving perfect coverage problems.

x1

0 1

x2

x3

x2

x3

x4

x5

x4

][][

][
][

ibia

ia
ip

][][

][
][

ibia

ib
iq

x1

x2

x3

x4

x5

ts

x1

0 1

x2

x3

x2

x3

x4

x5

x4

x1x1

0 1

x2x2

x3x3

x2x2

x3x3

x4x4

x5x5

x4x4

][][

][
][

ibia

ia
ip

][][

][
][

ibia

ib
iq

x1

x2

x3

x4

x5

ts

x1

x2

x3

x4

x5

ts

 (a) (b)
Figure 3. (a) A bridge network. (b) The OBDD of (a).

3. Multi-state Coverage Model
3.1. Multi-state Systems with Imperfect Coverage

Assume there are n modules in a system and module i

has mi states (i = 1,…,n). Depending upon the performance

/capacity, we can arrange the states such that state mi is a

perfect state and state 1 is a failed state (the performance

level decreases from state mi to state 1). The ordering is not

a constraint to apply the proposed algorithm, but it helps to

use the existing algorithms for multi-state coherent system

subject to perfect coverage model (PCM) as a part of an

algorithm to solve the MSS problem subject to imperfect

coverage model (IPCM). If imperfect coverage is

introduced in the model, then each module will have an

extra state; i.e. the total number of states in module i

become mi+1. Here, state 0 is the state corresponding to the

uncovered failure of module i. Figure 4 shows the event and

probability space of multi-state module i.

Assumption

A system subject to imperfect coverage will function

satisfactorily as long as there exist system conditions that

satisfy the system success requirements under the condition

of perfect coverage and when there are no uncovered

failures.

State Representation

state mi perfect state of module i (highest performance

level of module i)

state j state of a module at performance level j

state 1 state of a module at zero performance level

(module failed and covered state)

state 0 module failed and uncovered state

Notation
I

ii xx , indicator variable of state of module i for [PCM,

IPCM]; xi = l means modules i of PCM is in state

l.
I

jiji xx :: , represents that module i of [PCM, IPCM] is at

performance level j or above; i.e., I

jiji xx :: , are

Proceedings of the 2002 Pacific Rim International Symposium on Dependable Computing (PRDC’02)

0-7695-1852-4/02 $17.00 © 2002 IEEE

4

equivalent to jxjx I

ii ,

Pi(t, j) Pr{module i of PCM is in state j at time t}

Pi
I(t, j) Pr{module i of IPCM is in state j at time t}

Pi
c(t, j) Pr{module i of IPCM is in state j at time t | no

uncovered failure in module i}

Ri(t, j) Pr{module i of PCM is in state j at time t}

= }Pr{),(: ji

m

jk i xktP

Ri
I
(t, j) Pr{module i of IPCM is in state j at time t}

= }Pr{),(:

I

ji

m

jk

I

i xktP

Ri
c
(t, j) Pr{module i of IPCM is in state j at time t | no

uncovered failure in module i}

Ps(t, j) Pr{system of PCM is in state j at time t}

Ps
I
(t, j) Pr{system of IPCM is in state j at time t}

Ps
c
(t, j) Pr{system of IPCM is in state j at time t | no

uncovered failure in module i}

Rs(t, j) Pr{system of PCM is in state j at time t}

=
m

jk s ktP),(

Rs
I
(t, j) Pr{system of IPCM is in state j at time t}

=
m

jk

I

s ktP),(

Rs
c
(t, j) Pr{system of IPCM is in state j at time t | no

uncovered failure in module i}

Pr{xi = m} = Pi
I(t,m)

…

Pr{xi = 3} = Pi
I(t,3)

Pr{xi = 2} = Pi
I(t,2)

Module at various
performance levels

Pr{xi=1}= Pi
I(t,1)

Module failed &

covered

Pr{xi=0} = Pi
I(t,0)

Module failed &

not covered

Pr{xi = m} = Pi
I(t,m)

…

Pr{xi = 3} = Pi
I(t,3)

Pr{xi = 2} = Pi
I(t,2)

Module at various
performance levels

Pr{xi=1}= Pi
I(t,1)

Module failed &

covered

Pr{xi=0} = Pi
I(t,0)

Module failed &

not covered

Figure 4. The probability space of multi-state module i.

Example 2 :

Figure 5 shows the combinatorial performance

requirements of a system for being operational at

performance level s. It includes three sub-requirement trees

T1, T2, T3. The event, xi:j, of the tree means the minimum

performance requirement for the system to operate at

performance level s. That is, xi:j means module i needs to be

operational at performance level j or above. For example, in

Figure 5, the system will be at performance level s if every

module i (i = 1, 2, 3) is operational at level 2 or above, or if

any module i (i = 1, 2, 3) is operational at level 3 or above,

or if module 1 is operational at level 4 or above, or both

module 2 and module 3 are operational at level 4 or above.

From the definition of MSS [2], the probability of event

xi:j is

),(),(}Pr{ : jtRktPx i

m

jk iji (8)

However, since “module 3 is operational at level 4 or

above” implies “module 3 must be operational at level 3 or

above”, there exists dependency between Pr{x3:3} and

Pr{x3:4}. We need to deal with the dependency problem in

the probability calculation of combinatorial performance

requirements.

system at performance level s

OR

OR

x1:3 x2:3 x3:3

AND

x1:2 x2:2 x3:2

T1
T2

x1:4

AND

OR

x2:4
x3:4

T3

system at performance level s

OROR

OROR

x1:3 x2:3 x3:3

ANDAND

x1:2 x2:2 x3:2

T1
T2

x1:4

ANDAND

OROR

x2:4
x3:4

T3

Figure 5. The combinatorial performance requirements
of a multi-state system being operational at
performance level s.

3.2. Reliability/Availability Evaluation of a Multi-

state System

In this section, an algorithm similar to SEA for

evaluating the system reliability of multi-state imperfect

coverage is proposed. Using this method, the MSS with

IPCM can be solved using the corresponding MSS subject

to PCM.

System Reliability (Rs
I
) =

Pr{no uncovered failure in system} ×

Pr{system success | no uncovered failure in system}

Pr{no uncovered failure in system} (Pu) =

Si Pr{no uncovered failure of module i}

Pr{no uncovered failure of module i} =

Ri
I
(t, 1) = 1 – Pi

I
(t, 0) (9)

Further,

)1,(/),(}0|Pr{),(tRjtRxjxjtR I
i

I
i

I
i

I
i

c
i (10)

This probability represents the conditional probability that

module i of IPCM is in state j (i.e. performance level j).
Therefore, Pr{system success | no uncovered failures in

system} can be obtained by substituting Ri(t, j) with Ri
c
(t, j)

in the corresponding PCM model. Hence, the system

reliability subject to imperfect coverage will be

),(),(),,(),(

 PCM withofyReliabilit

jtPjtPjtRjtR
PR c

ii

c

ii
u

I

s (11)

where
Si

I
iu tRP)1,(, Ri

c
(t, j) = Ri

I
(t, j)/Ri

I
(t, 1), Pi

c
(t, j)

= Pi
I
(t, j)/Ri

I
(t, 1).

It should be noted that the same algorithm is applicable

for availability evaluation, but in this case the input-set to

the algorithm should be derived using components

availability models. Moreover, the state probabilities of

MSS subject to IPCM can be found as follows:

Ps
I
(t, j) = Pu ×Ps

c
(t, j)

Ps
c
(t, j) = Ps(t, j) of PCM with Pi(t, j) = Pi

c
(t, j) (12)

Therefore, the step wise procedure of the proposed

algorithm is as follows:

1. Read the state probabilities of all modules, i.e. Pi
I
(t, j)

for i = 1, …, n; j = 0, 1, …, mi.

2. For all i, find Ri
I
(t, 1) 1- Pi

I
(t, 0)

Proceedings of the 2002 Pacific Rim International Symposium on Dependable Computing (PRDC’02)

0-7695-1852-4/02 $17.00 © 2002 IEEE

5

3. Find
n

i

I
iu tRP

1
)1,(

4. Find the conditional probabilities of each module at

every level;

• Ri
c
(t, j) = Ri

I
(t, j)/Ri

I
(t, 1)

• Pi
c
(t, j) = Pi

I
(t, j)/Ri

I
(t, 1)

5. Use these conditional probabilities to find the system

reliability/availability (or the probability of a system

state) at the required performance level of the

corresponding MSS subject to PCM. Solve modular

structures using modularization method. Use the

proposed OBDD method to solve generic problems. Let

this conditional probability be P.

• Reliability Rs
c
(t, j): Find the reliability of MSS with

PCM by substituting either Pi
c
(t, j) for Pi(t, j) or Ri

c
(t,

j) for Ri(t, j)

• Availability Rs
c
(t, j): Find the availability of MSS

with PCM by substituting either Pi
c
(t, j) for Pi(t, j) or

Ri
c
(t, j) for Ri(t, j) (here Ri

c
(t, j) and Ri(t, j) are

corresponding availabilities).

• System state probability Ps
c
(t, j): Find the

probability of the state of MSS with respect to PCM

by substituting either Pi
c
(t, j) for Pi(t, j) or Ri

c
(t, j) for

Ri(t, j).

6. Find the system reliability/availability (or the

probability of a system state) of MSS with IPCM using:

Reliability/Availability = Pu P

Consider that the problem can be solved using general

multi-state algorithms. The computational time is

proportional to O(m+1)
n
. Hence, the computational

complexity is O(mn
). However, we can’t use modularization

methods in this case. In our method, the advantage of using

conditional probabilities makes it possible to apply this

method for modular structures. Then the problem can be

solved in linear time (in most cases). Without using

conditional probabilities, we can’t apply the solutions of

modular structures.

The percentage reduction (reduction factor) by using

our method is approximately n

m
m)(1

1
. That means the

reduction increases with n and decreases with m. But the

difference (m+1)
n
–mn

 actually increases with m. However,

this is a worst case situation without modular structures in a

system. In general, our method is much more faster than

existing methods.

Figure 6 shows the OBDDs of three sub-requirement

trees in Example 2. As mentioned earlier, there exist some

dependencies between the sub-requirement trees, and it

generates dependency problems for the probability

calculation in step 5 of our algorithm. Next section will

show the methods to deal with the problems.

4. Multi-state OBDD
4.1. Multi-state Dependency Operation (MDO)

In a multi-state system with multi-state modules,

different performance levels for the same module are

represented by different nodes of the OBDD as shown in

Figure 6. The operations on OBDD should be modified to

deal with the dependency problem in probability calculation.

We use of the methods in [15][16] to solve this problem.

For example, xi:k means module i is operational at

performance level k or above and xi:l means the same

module i is operational at performance level l or above. If

level k is greater than level l, then xi:k = 1 implies xi:l = 1,

i.e. liki xx :: . Therefore, there exist dependencies between

xi:k and xi:l. We need to deal with dependency in

constructing the OBDD tree of a multi-state system. It

means some branches should be cut during the multi-state

dependency operation (MDO).

Lemma 1:

If performance level k is greater than performance level

l, i.e. liki xx :: , and the order of xi:k is smaller than xi:l, then

],,[

),,(),,(

011:

01:01:

lki

lk

liki

EKLKxite

EE

LLxiteKKxite

(13)

Proof: Since the two nodes belong to the same module,

module i being operational at performance level k or above

means module i must be operational at performance level l

or above, i.e. xi:k = 1 implies xi:l = 1. Therefore,

],,[

])()(,)()(,[

])(,)(,[

),,(),,(

011:

0:0:1:1::

0:1::

01:01:

lki

kixlkixklixlkixkki

kixlkkixlkki

lk

liki

EKLKxite

EEEExite

EEEExite

EE

LLxiteKKxite

The derivation use the relation lkixl EE 0:
)(since xi:k = 0

is not relevant to El.

For example, in Figure 6, if the ordering of the nodes is

x1:4 < x1:3 < x1:2 < x2:4 < x2:3 < x2:2 < x3:4 < x3:3 < x3:2 , after

applying the MDO on the system, we get the result as

shown in Figure 7. It should be noted that x3:4 is

automatically eliminated during MDO. This is because,

from the sub-requirement tree T2 in Figure 5, when module

3 is operational in performance level 3 or above, it makes

the system meet the required performance level s. Hence,

we don’t need to consider if module 3 is operational in

performance level 4 or above in sub-requirement tree T3, i.e.

the node x3:4 disappears.

x1:4

0 1

x2:4

x3:4

T3

x1:3

0 1

x2:3

x3:3

T2

x1:2

0 1

x2:2

x3:2

T1

x1:4

0 1

x2:4

x3:4

T3

x1:4x1:4

0 1

x2:4x2:4

x3:4x3:4

T3

x1:3

0 1

x2:3

x3:3

T2

x1:3x1:3

0 1

x2:3x2:3

x3:3x3:3

T2

x1:2x1:2

0 1

x2:2x2:2

x3:2x3:2

T1

Figure 6. The OBDD of sub requirement tree T1, T2, T3.

Proceedings of the 2002 Pacific Rim International Symposium on Dependable Computing (PRDC’02)

0-7695-1852-4/02 $17.00 © 2002 IEEE

6

x1:4

x2:4

x1:3

x2:3

x3:3

x1:2

0
1

x2:2

x3:2

x2:4

x2:3

x3:3

x1:4x1:4

x2:4x2:4

x1:3x1:3

x2:3x2:3

x3:3x3:3

x1:2x1:2

0
1

x2:2x2:2

x3:2x3:2

x2:4x2:4

x2:3x2:3

x3:3x3:3

Figure 7. The OBDD of the system in Figure 5.

4.2. Dependency Probability Calculation

The traditional recursive algorithm can efficiently

calculate the probability for an OBDD. However, for the

OBDD tree of a multi-state system as shown in Figure 7,

there exists dependency between a node and its child node

if they belong to the same module but with different

performance levels. Therefore, the traditional recursive

algorithm should be modified to deal with the dependency

problem in probability calculation.

Let k and l be two performance levels (k > l). Table 1

shows the rules of level algebra. The validness of these

relationships can be easily verified. Note that xi:k = w1 w2 …

wk , where wh is the Boolean value (True/False) that

represents module i to be (operational/failed) at

performance h (1 h k).

Table 1. The rules of level algebra (k > l).

operation value

1. liki xx :: kix :

2. liki xx :: 0

3. liki xx :: lix :

4. liki xx :: kili xx ::

Therefore, for the 1st rule,

kiklkliki xwwwwwwwwwxx :212121:: ...)...()...(

The physical meaning of this equation is that the

requirement “module i is operational both at performance

level k and l” is equivalent to the requirement “module i is

operational at performance level k”. For the 2nd rule,

0)...()...(2121:: lkliki wwwwwwxx

The physical meaning of this equation is that the

requirement “module i is operational at performance level k,

but is not operational at performance level l” does not exist.

For the 3rd rule,

lilkliki xwwwwwwxx :2121::)...()...1(

The physical meaning of this equation is that the

requirement “module i is not operational both at

performance level k and l” is equivalent to the requirement

“module i is not operational at performance level l”.

For the 4th rule, liki xx :: means that module i is

operational at performance level l, but failes when the

performance achieves level k, and we have

kililkliki xxwwwwwwxx ::2121::)...()...1(

These rules in Table 1 are only applicable to variables or

nodes belonging to the same module. The ordinary Boolean

relationships hold for the indicator variables belonging to

different modules since module i and j are s-independent.

Looking into the OBDD tree constructed from MDO as

shown in Figure 7, we find that a 1-edge always connects

two nodes that belong to different modules. However, for

the 0-edge, there are two cases that must be treated

differently:

1. The 0-edge linking nodes belong to different module.

2. The 0-edge linking nodes belong to the same module.

In case 1, we calculate the probability of the node using

ordinary OBDD method since the nodes are s-independent

to each other. However, in case 2, we should make some

modifications in probability calculation.

Lemma 2:

For the nodes (xi:k , xj:l) belonging to different modules,

if G = ite (xi:k , G1, G0) and G0 = ite (xj:l , H1, H0), then

}Pr{}]Pr{}[Pr{}Pr{

}Pr{}Pr{

001:

0:1:

GGGx

GxGxG

ki

kiki

(14)

Proof: This is an ordinary OBDD equation of calculation.

Lemma 3:

For the nodes (xi:k , xi:l) belonging to the same module

but with different performance levels, if G = ite (xi:k , G1, G0)

and G0 = ite (xi:l , H1, H0), then

}Pr{}Pr{}Pr{}Pr{}Pr{ 011: GHGxG ki (15)

Proof: Since the 1-edge branch of xi:k always links to the

node which belongs to a different module, Pr{xi:k} is

independent of Pr{G1}, i.e. Pr{xi:kG1} = Pr{xi:k}Pr{G1}.

Therefore, applying the rules of level algebra in Table 1, we

get

}Pr{}]Pr{}[Pr{}Pr{

})Pr{(}Pr{}Pr{

}Pr{}Pr{

}Pr{}Pr{

011:

0:1::1:

0::1::1:

0:1:

GHGx

HxHxxGx

HxxHxxGx

GxGxG

ki

likiliki

likilikiki

kiki

Let us consider the reliability calculation of a multi-state

system with imperfect coverage using OBDD. As depicted

in Section 3, we first find the conditional probability

}Pr{ :kix of each multi-state module i. Second we use

}Pr{ :kix instead of the probability or reliability of module i,

}Pr{ :kix , to calculate the multi-state system conditional

reliability Rcmss from Equations (14) and (15). Therefore, we

have the following lemma.

Lemma 4:

Proceedings of the 2002 Pacific Rim International Symposium on Dependable Computing (PRDC’02)

0-7695-1852-4/02 $17.00 © 2002 IEEE

7

If G = ite (xi:k, G1, G0), G0 = ite (Z, H1, H0), and the

order of node xi:k is smaller than that of node Z, the

probability of G is

module)same the tobelongand(if

modules)different tobelongand(if

:

011:

:

001:

}Pr{}Pr{}Pr{}Pr{

}Pr{}Pr{}Pr{}Pr{

}Pr{

Zx

Zx

ki

ki

ki

ki

GHGx

GGGx

G (16)

where }Pr{ :kix is the conditional reliability of module i

being operational at performance level k or above given that

no uncovered failure occurred in that module (or module i).
Therefore, the probability of the OBDD’s root node

representing the multi-state system conditional reliability

Rcmss is obtained from Equation (16). Hence, we get the

multi-state system reliability RMSS by

RMSS = Rcmss × Pu (17)

5. Examples

Let us consider a bridge network shown in Figure 3(a)

of Example 1. Assuming redundancy techniques are used

such that each link has a fault-tolerance scheme. Therefore,

we can treat a link as a module with various link capacities

or with various performance levels (i.e. a multi-state

network system). Also the fault-coverage condition should

be considered. The path function of the system is

4325241531 xxxxxxxxxxF

Case I– the basic requirement for the system being in a

acceptable performance level is:

2:42:32:22:52:22:42:12:52:32:1 xxxxxxxxxxaccept

Case II– the path x1x4 is the backbone of the network

and most of the dataflow run through the path, and the

limitation of the requirement for the path is more strict.

Therefore if x1 needs to be at least in level 5 and x4 needs to

be at least in level 4 for path x1x4, the requirement for the

system being in a good performance level is:

2:42:32:22:52:24:45:12:52:32:1 xxxxxxxxxxgood

Figure 8(a)(b) show the results of accept and good after

applying MDO. Table 2 shows the parameters of a module

obtained by using Markov techniques and assuming each

module has 6 performance states including failed and

uncovered state. If all modules in Figure 3(a) are identical,

the system reliabilities of accept and good with different

coverage factors are obtained from Equation (16) and (17)

as shown in Figure 9. Figure 9 shows that good is less

reliable than accept. That means we need to pay more on

the system if we want to increase the reliability of good to

be the same as that of accept. Figure 10 illustrates the

system reliability decreases when the required level of path

x1x4 increases. This means the higher the required

performance level of a module, the more difficult the

system satisfying a demand.

6. Conclusions

x1:2

0 1

x2:2

x3:2

x2:2

x3:2

x4:2

x5:2

x4:2

0 1

x4:4

x3:2

x2:2x2:2

x1:2

x1:5

x2:2

x3:2x3:2 x3:2

x4:4 x4:4

x4:2

x5:2

x1:2

0 1

x2:2

x3:2

x2:2

x3:2

x4:2

x5:2

x4:2

x1:2x1:2

0 1

x2:2x2:2

x3:2x3:2

x2:2x2:2

x3:2x3:2

x4:2x4:2

x5:2x5:2

x4:2x4:2

0 1

x4:4

x3:2

x2:2x2:2

x1:2

x1:5

x2:2

x3:2x3:2 x3:2

x4:4 x4:4

x4:2

x5:2

0 1

x4:4x4:4

x3:2x3:2

x2:2x2:2x2:2x2:2

x1:2x1:2

x1:5x1:5

x2:2x2:2

x3:2x3:2x3:2x3:2 x3:2x3:2

x4:4x4:4 x4:4x4:4

x4:2x4:2

x5:2x5:2

(a) The OBDD of accept (b) The OBDD of good

Figure 8. The results of accept and good after MDO.

Table 2: The parameters of individual module with
exponential distribution given t = 20, failure

rate i = 0.015 and coverage factor ci = 0.9.

j PI(t, j) Pc(t, j) Rc(t, j)

0 0.0259 —– —–

1 0.2333 0.2395 1.0000

2 0.0823 0.0845 0.7605

3 0.2469 0.2535 0.6760

4 0.2469 0.2535 0.4225

5 0.1646 0.1690 0.1690

0 10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

T ime

S
y
s

te
m

 R
e

li
a

b
il
it

y

accept (c = 1)

accept (c = 0.9)

accept (c = 0.8)

good (c = 1)

good (c = 0.9)

good (c = 0.8)

Figure 9. The system reliability of accept and good

with different coverage factors c.

0 10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

T ime

S
y
s

te
m

 R
e

li
a

b
il
it

y

level = 2

level = 3

level = 4

level = 5

Figure 10. The system reliabilities of good with differ-

ent required levels of path x1x4 and c = 0.9.

Proceedings of the 2002 Pacific Rim International Symposium on Dependable Computing (PRDC’02)

0-7695-1852-4/02 $17.00 © 2002 IEEE

8

This paper has proposed an OBDD-based approach for

the reliability evaluation of a multi-state system with

combinatorial performance requirements subject to

imperfect fault coverage. A new model for multi-state

systems with imperfect fault coverage has also been

proposed. It was shown that the algorithm used to evaluate

the reliability can also be used to evaluate the availability of

a system subject to imperfect fault coverage if the Markov

process is applied to analyze the state transition behavior.

Further, with the application of conditional probabilities,

the time complexity of this method for reliability evaluation

is the same as that without considering imperfect coverage.

In addition, an efficient integration of OBDD and

modularization simplifies the problem further. The

multi-state dependency operation (MDO) method handles

the dependencies between the combinatorial performance

requirements. Through the MDO method, some of the

redundant nodes in OBDD are automatically eliminated.

This means that we can simplify the combinatorial

performance requirements using MDO. Moreover, our

approach deals with the dependency problem of multi-state

modules in probability calculation.

[2] and [17], with helpful comments from [2], have

presented various performance measures related to

multi-state systems. In order to compute these measures we

need to find the reliability of a system at various

performance levels. Therefore, the result of this paper can

be integrated to find the performance measures of

multi-state systems. This process is straightforward, and

therefore, it is not discussed here explicitly [2].

This algorithm could be applied to complex systems

such as fault-tolerant computer systems, variable link-

capacities network systems, etc., since it generates the

complete results more quickly and accurately even when

there exist a number of dependencies such as shared loads

(reconfiguration), degradation, common- cause failures and

so on. Based on this approach, researches on sensitivity

analysis, importance measures, failure frequency analysis

or optimal design issues of multi-state systems will be the

focus of our future works.

7. Acknowledgement

This research was supported by the National Science

Council, Taiwan, R.O.C. under grant NSC 90-2213-E-002-

113.

8. References

[1] J.D. Murchland, “Fundamental concepts and relations for

reliability analysis of multistate systems”, Reliability and Fault

Tree Analysis, Theoretical and Applied Aspects of System

Reliability, SIAM, 1975, pp. 581-618.

[2] J. Xue and K. Yang, “Dynamic reliability analysis of coherent

multi-state systems”, IEEE Trans. on Reliability, Vol.44, Dec.

1995, pp. 683-688.

[3] G. Levitin, “Incorporating Common-Cause Failure Into

Nonrepairable Multistate Series-Parallel System Analysis”, IEEE

Trans. on Reliability, Vol. 50, No. 4, Dec. 2001, pp. 380-388.

[4] G. Levitin, A. Lisnianski, H. Beh-Haim, and D. Elmakis,

“Redundancy optimization for series-parallel multi-state systems”,

IEEE Trans. on Reliability, Vol. 47, June 1998, pp. 165-172.

[5] J. Xue, “On multistate system analysis”, IEEE Trans. on

Reliability, Vol. R-34, Oct. 1985, pp. 329-337.

[6] J.B. Dugan, “Fault Tree and Imperfect Coverage”, IEEE Trans.

on Reliability, Vol. R-38, June 1989, pp. 177-185.

[7] S.V. Amari, J.B. Dugan, and R.B. Misra, ”Optimal Reliability

of Systems subject to Imperfect Fault-Coverage”, IEEE Trans. on

Reliability, Vol. 48, No. 3, Sep. 1999, pp. 275-284.

[8] S.A. Doyle, J.B. Dugan, F.A. Patterson-Hine, "A

combinatorial Approach to Modeling Imperfect Coverage", IEEE

Trans. on Reliability, Vol. 44, Mar. 1995, pp. 87-94.

[9] R.E. Bryant, “Graph-based algorithms for Boolean function

manipulation”, IEEE Trans. on Computers, Vol. C-35, Aug. 1986,

pp. 677-691.

[10] A. Rauzy, “New algorithms for fault tree analysis”,

Reliability Engineering and System Safety, Vol. 40, 1993, pp.

203-211.

[11] R.M. Sinnamon and J.D. Andrews, “Improved efficiency in

qualitative fault tree analysis”, Quality and Reliability

Engineering Int’l., Vol. 13, 1997, pp. 293-298.

[12] S.V. Amari, J.B. Dugan, and R.B. Misra, "A separable method

for incorporating imperfect fault-coverage into combinatorial

models", IEEE Trans. on Reliability, Sep. 1999, pp. 267-274.

[13] J.B. Dugan and K.S. Trivedi, “Coverage modeling for

dependability analysis of fault-coverage systems”, IEEE Trans. on

Computers, Vol. 38, June 1989, pp. 775-787.

[14] S.Y. Kuo, S.K. Lu, and F.M. Yeh, ”Determining Terminal-

Pair Reliability Based on Edge Expansion Diagrams Using

OBDD”, IEEE Trans. on Reliability, Vol. 48, Sep. 1999, pp.

234-246.

[15] X. Zang, H. Sun, and K.S. Trivedi, “Dependability Analysis

of Distributed Computer Systems with Imperfect Coverage”,

Proceedings of the Twenty-Ninth Annual International Symposium

on Fault-Tolerant Computing, 1999, pp. 330-337.

[16] X. Zang, H. Sun, and K.S. Trivedi, “A bdd-based algorithm

for analysis of multi-state systems with multi-state components”,

Technical Report, 1998.

[17] S.V. Amari and R.B. Misra, “Comment on: Dynamic

Reliability Analysis of Coherent Multistate Systems”, IEEE Trans.

on Reliability, Vol. 46, No. 4, Dec. 1997, pp. 460-461.

Proceedings of the 2002 Pacific Rim International Symposium on Dependable Computing (PRDC’02)

0-7695-1852-4/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

