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Abstract

This paper presents an efficient approach based on 

OBDD for the reliability analysis of a multi-state system 

subject to imperfect fault-coverage with combinatorial 

performance requirements. Since there exist dependencies 
between combinatorial performance requirements, we 

apply the Multi-state Dependency Operation (MDO) of 

OBDD to deal with these dependencies in a multi-state 

system. In addition, this OBDD-based approach is 

combined with the conditional probability methods to find 

solutions for the multi-state imperfect coverage models. 
Using conditional probabilities, we can also apply this 

method for modular structures. The main advantage of this 

algorithm is that it will take computational time that is 

equivalent to the same problem without assuming imperfect 

coverage (i.e. with perfect coverage). This algorithm is very 
important for complex systems such as fault-tolerant 

computer systems, since it can obtain the complete results 

quickly and accurately even when there exist a number of 

dependencies such as shared loads (reconfiguration), 

degradation and common-cause failures. 

1. Introduction 

The s-coherent multi-state system theory has been 

investigated since 1975 [1]. Many researchers have 

analyzed the s-coherent multi-state system reliability 

[2][3][4][5]. Most of them extend the concepts and 

conclusions for the 2-state s-coherent systems to the 

multi-state systems. To describe the dynamic characteristics 

of the component state transition, Stochastic process 

(Markov process) techniques are combined with the 

s-coherent multi-state system theory to analyze the dynamic 

multi-state system reliability. The multi-state reliability 

theory can handle situations in which the system and its 

components have a range of performance levels, e.g. from 

perfect operation to complete failure. Because performance 

degradation is very common in industrial products, it is 

important to develop the multi-state system reliability 

theory. 

When a multi-state system (MSS) is considered, it is 

important to estimate the impact of each element on the 

system output/performance. The general definition of MSS 

reliability [2] is: 

})(Pr{),( LtFLtRMSS         (1) 

where L is the required performance level for MSS, F(t) is 

the MSS output/performance rate. For a multi-state system 

that has a finite number of states, there can be H different 

levels of output/performance at time t:

}1,{)( HhFtF hF

and the system output/performance distribution can be 

defined by two finite vectors F and  

)1(},)(Pr{)}({ HhFtFtq hhq

Therefore, the non-repairable MSS reliability is the 

probability that the system remains in the states 

with LFh during (0, t):

LF
hMSS

h

tqLtR )(),(          (2) 

In addition, systems that are used in life-critical 

applications such as flight control, nuclear power plant 

monitoring, space missions, etc., are designed with 
sufficient redundancy to be tolerant of errors. However, if 

the system cannot adequately detect, locate and recover 

from faults & errors in the system, then system failure can 

still result even when there exists adequate redundancy [6]. 

An accurate analysis must account for not only the complex 
system structure, but also the system fault and error 

recovery behavior. Therefore, the fault coverage problem of 

a system should be considered. This helps in fixing the 

optimal level of redundancy [7]. 

Most of published works use Markov models 

(non-homogenous Markov or semi-Markov model) to solve 
multi-state problems [8]. However, it is difficult to find the 

correct model of a system and there will be a total of N =

(m+1)n states if there are n modules in the system and each 

module has (m+1) states including the imperfect coverage 

state. The computational time is proportional to N3 = 

[(m+1)n]3. Hence, the computational complexity of the 
problem is O(m3n). It is not just an NP problem, there are 

NP sub-problems within each step of the NP problem. This 
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paper provides a new approach to model a multi-state 

system and proposes an efficient method combined with 

conditional probability concepts and OBDD method to 

evaluate the reliability of a multi-state system with 
imperfect coverage. This method could also be extended to 

use modularization methods for reliability analysis. This 

efficient integration of OBDD and modularization method 

simplifies the problem further. 

Section 2 introduces the concepts of OBDD and 

coverage model. Section 3 illustrates a new model and a 
new approach to evaluate the reliability of a multi-state 

system with imperfect coverage. Section 4 proposes an 

OBDD-based algorithm to deal with the dependency 

problem in the probability evaluation of a multi-state 

system with imperfect coverage. Section 5 gives some 
examples. The last section gives the conclusions and future 

works. 

2. Preliminaries 
2.1. Ordered Binary Decision Diagram (OBDD) 

This section introduces the representation and 

manipulation of Boolean functions based on OBDD. 

OBDD [9] is based on a decomposition of Boolean function 

called the Shannon expansion. A function f can be 
decomposed in terms of a variable x as: 

01 xx fxfxf

A node and its descendants in an OBDD represent a 

Boolean function f, where for node label x, one outgoing 

edge is directed to the subgraph representing 1xf , and the 

other to 0xf . Shannon decomposition is the basis for using 

OBDD. In order to express Shannon decomposition 

concisely, the if-then-else (ite) format [10][11] is defined 

as: 

),,( 01 xx ffxitef

2.2. Manipulation of OBDD 

The manipulation of OBDD to represent logical 

operations is simple. In practice, the OBDD is generated by 

using logical operations on variables. Let Boolean 

expressions f and g be: 

),,(),,(

),,(),,(

0101

0101

GGyiteggyiteg

FFxiteffxitef

yy

xx

A logic operation between f and g can be represented by 

OBDD manipulations as: 

)(order)(order),,(

)(order)(order),,(

)(order)(order),,(

),,(),,(

01

01

0011

0101

yxGfGfyite

yxgFgFxite

yxGFGFxite

GGyiteFFxite

(3)

where  represnents a logic operation such as AND, OR, 

and NOT. Figure 1 illustrates the construction and 

manipulation steps of a Boolean function. For more details 

on using the operations of OBDD, please refer [9]. 

F = (x1 and x3) or (x2 and x3)

Variable Ordering: x1<x2<x3

Evaluation Steps:

x1 = declare_var(x1, 1) x2 = declare_var(x2, 1) x3 = declare_var(x3, 1)

T1 = BDD_and(x1, x3) T2 = BDD_and(x2, x3) F = BDD_or(T1, T2)

0 1

x1

0 1

x2

0 1

T1
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x3 T2

0 1

F

0 1
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x2

x3

x1

x3
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x3
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x2

x3 x3

F = (x1 and x3) or (x2 and x3)

Variable Ordering: x1<x2<x3

Evaluation Steps:

x1 = declare_var(x1, 1) x2 = declare_var(x2, 1) x3 = declare_var(x3, 1)

T1 = BDD_and(x1, x3) T2 = BDD_and(x2, x3) F = BDD_or(T1, T2)

0 1

x1
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x3x3 x3x3

Figure 1. The OBDD generated from a Boolean equation. 

2.3. Coverage Model

Figure 2(a) shows the general structure of a 

fault-coverage model representing a recovery process 

[12][13] initiated when a fault occurs. The entry point to the 

model signifies the occurrence of a fault, and the three exits 

(R, S, C) signify the 3 possible outcomes. 

• If the offending fault is transient and can be handled 

without discarding any components, then the transient 

restoration exit (R) is taken. 

• If the fault is determined to be permanent, and the 

offending component is discarded, then the permanent 

fault-coverage exit (C) is taken. 

• If the fault by itself causes a system to fail, then the 

single-point failure exit (S) is taken. 

Single-point 

failure
S exit

Fault occurs

Permanent 

Coverage

Transient

Restoration

C exit

R exit

Coverage

Model

Single-point 

failure
S exit

Fault occurs

Permanent 

Coverage

Transient

Restoration

C exit

R exit

Coverage

Model

Pr{x[i]} = a[i]

Component

not failed

Pr{y[i]} = b[i]

Component failed 

& covered

Pr{z[i]} = c[i]

Component failed 

&  uncovered

Pr{x[i]} = a[i]

Component

not failed

Pr{y[i]} = b[i]

Component failed 

& covered

Pr{z[i]} = c[i]

Component failed 

&  uncovered

    (a)        (b) 
Figure 2. (a) General structure of a fault coverage model. 

(b) The event and probability space of component i.

The exit probabilities r0, c0, s0 are required for the analysis 

of system reliability. The exits are a partitioning of the 

event space; thus the three exit probabilities sum to one, i.e. 

(c0 + s0) = (1 – r0). The r0, c0, s0 can be determined by an 

appropriate fault coverage model [13]; for more details, see 

[6][8]. 

For the fault coverage model, each component is always 

in one of three states: x[i], y[i], z[i]. To determine the 

system reliability (unreliability), it is required to have a[i],
b[i], c[i] which represent the probabilities of component i

associated respectively with the exits of the fault coverage 

model. Figure 2(b) shows the event space (and 

corresponding probability) representation of a component. 

Therefore, 

Proceedings of the 2002 Pacific Rim International Symposium on Dependable Computing (PRDC’02) 

0-7695-1852-4/02 $17.00 © 2002 IEEE 



3

])1(exp[1][

])1(exp[1][

])1(exp[][

00

00

0

00

00

0

00

tr
sc

s
ic

tr
sc

c
ib

tria

ii

ii

i

ii

ii

i

ii

    

(4)

where (ri0, ci0, si0) are the probabilities of taking (transient 

restoration, permanent coverage, single-point failure) exit 

in the coverage model, and 0i is the rate of occurrence of 

fault of component i. It should be noted that the effective 

failure rate i and the effective coverage factor ci of 

component i are 

)(

)1()(

000

00000

iiii

iiiiii

sccc

rsc
      

(5)

Amari et al. [12] proposed an efficient algorithm, the 

SEA, to calculate the reliability of a system under the 

imperfect coverage model. The basic idea is shown in the 

following equation and could be easily proved [12] by 

using conditional probabilities. 

System Unreliability (Us) = 

Pr{at least one uncovered failure}× 

Pr{system failure | a uncovered failure} 

+ Pr{no uncovered failure}× 

Pr{system failure | no uncovered failure}   (6) 

Let Pr{no uncovered failure} uSi
Pibia ])[][( , then 

Pr{at least one uncovered failure} = 1–Pu . Also let 

Pr{system failure | no uncovered failure} = Ucs. Since 

Pr{system failure | at least one uncovered failure} is always 

equal to 1, we have 

csuss

csucsuus

RPUR

RPUPPU

1

1)1(
     

(7)

where Rs is the system reliability and Rcs is Pr{system 

success | no uncovered failure}. 

Example 1:

For a terminal-pair network system, Kuo [14] proposed 

an efficient approach to determine the terminal-pair (from 

source node s to target node t) reliability based on edge 

expansion diagrams using OBDD. The main idea, which 

makes his approach very efficient, is that the OBDD of a 

given network is automatically constructed with mergence 

of isomorphic sub-problems during tracing all paths of the 

terminal-pair. Therefore, the system reliability is efficiently 

derived from OBDD. 

Considering a bridge network as shown in Figure 3(a), 

Figure 3(b) shows the OBDD of this network system. 

Therefore, we get the conditional reliability, Rcs, of the 

network system by substituting the conditional reliability/ 

unreliability (p[i]/q[i]) for the reliability/unreliability of 

component i. Then, we can easily obtain the reliability of a 

network system subject to imperfect coverage from 

Equation (7). By this efficient integration, we don’t need to 

solve the whole state’s problem using Markov chains even 

when the network system is quite large and complex. In 

addition, using conditional probabilities, the computational 

complexity of this method is the same as that of the method 

for solving perfect coverage problems.      
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     (a)      (b) 
Figure 3. (a) A bridge network. (b) The OBDD of (a).

3. Multi-state Coverage Model
3.1. Multi-state Systems with Imperfect Coverage 

Assume there are n modules in a system and module i

has mi states (i = 1,…,n). Depending upon the performance 

/capacity, we can arrange the states such that state mi is a 

perfect state and state 1 is a failed state (the performance 

level decreases from state mi to state 1). The ordering is not 

a constraint to apply the proposed algorithm, but it helps to 

use the existing algorithms for multi-state coherent system 

subject to perfect coverage model (PCM) as a part of an 

algorithm to solve the MSS problem subject to imperfect 

coverage model (IPCM). If imperfect coverage is 

introduced in the model, then each module will have an 

extra state; i.e. the total number of states in module i

become mi+1. Here, state 0 is the state corresponding to the 

uncovered failure of module i. Figure 4 shows the event and 

probability space of multi-state module i.

Assumption 

A system subject to imperfect coverage will function 

satisfactorily as long as there exist system conditions that 

satisfy the system success requirements under the condition 

of perfect coverage and when there are no uncovered 

failures. 

State Representation 

state mi perfect state of module i (highest performance 

level of module i)

state j state of a module at performance level j

state 1 state of a module at zero performance level 

(module failed and covered state) 

state 0 module failed and uncovered state 

Notation
I

ii xx ,  indicator variable of state of module i for [PCM, 

IPCM]; xi = l means modules i of PCM is in state 

l.
I

jiji xx :: ,  represents that module i of [PCM, IPCM] is at 

performance level j or above; i.e., I

jiji xx :: ,  are 
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equivalent to jxjx I

ii ,

Pi(t, j) Pr{module i of PCM is in state j at time t}

Pi
I(t, j) Pr{module i of IPCM is in state j at time t}

Pi
c(t, j) Pr{module i of IPCM is in state j at time t | no 

uncovered failure in module i}

Ri(t, j) Pr{module i of PCM is in state j at time t}

= }Pr{),( : ji

m

jk i xktP

Ri
I
(t, j) Pr{module i of IPCM is in state j at time t}

= }Pr{),( :

I

ji

m

jk

I

i xktP

Ri
c
(t, j) Pr{module i of IPCM is in state j at time t | no 

uncovered failure in module i}

Ps(t, j) Pr{system of PCM is in state j at time t}

Ps
I
(t, j) Pr{system of IPCM is in state j at time t}

Ps
c
(t, j) Pr{system of IPCM is in state j at time t | no 

uncovered failure in module i}

Rs(t, j) Pr{system of PCM is in state j at time t}

=
m

jk s ktP ),(

Rs
I
(t, j) Pr{system of IPCM is in state j at time t}

=
m

jk

I

s ktP ),(

Rs
c
(t, j) Pr{system of IPCM is in state j at time t | no 

uncovered failure in module i}

Pr{xi = m} = Pi
I(t,m)

…

Pr{xi = 3} = Pi
I(t,3) 

Pr{xi = 2} = Pi
I(t,2)

Module at various 
performance levels

Pr{xi=1}= Pi
I(t,1)

Module failed & 

covered

Pr{xi=0} = Pi
I(t,0)

Module failed & 

not covered

Pr{xi = m} = Pi
I(t,m)

…

Pr{xi = 3} = Pi
I(t,3) 

Pr{xi = 2} = Pi
I(t,2)

Module at various 
performance levels

Pr{xi=1}= Pi
I(t,1)

Module failed & 

covered

Pr{xi=0} = Pi
I(t,0)

Module failed & 

not covered

Figure 4. The probability space of multi-state module i.

Example 2 : 

Figure 5 shows the combinatorial performance 

requirements of a system for being operational at 

performance level s. It includes three sub-requirement trees 

T1, T2, T3. The event, xi:j, of the tree means the minimum 

performance requirement for the system to operate at 

performance level s. That is, xi:j means module i needs to be 

operational at performance level j or above. For example, in 

Figure 5, the system will be at performance level s if every 

module i (i = 1, 2, 3) is operational at level 2 or above, or if 

any module i (i = 1, 2, 3) is operational at level 3 or above, 

or if module 1 is operational at level 4 or above, or both 

module 2 and module 3 are operational at level 4 or above. 

From the definition of MSS [2], the probability of event 

xi:j is 

),(),(}Pr{ : jtRktPx i

m

jk iji       (8) 

However, since “module 3 is operational at level 4 or 

above” implies “module 3 must be operational at level 3 or 

above”, there exists dependency between Pr{x3:3} and 

Pr{x3:4}. We need to deal with the dependency problem in 

the probability calculation of combinatorial performance 

requirements. 

system at performance level s

OR

OR

x1:3 x2:3 x3:3

AND

x1:2 x2:2 x3:2

T1
T2

x1:4

AND

OR

x2:4
x3:4

T3

system at performance level s

OROR

OROR

x1:3 x2:3 x3:3

ANDAND

x1:2 x2:2 x3:2

T1
T2

x1:4

ANDAND

OROR

x2:4
x3:4

T3

Figure 5. The combinatorial performance requirements 
of a multi-state system being operational at 
performance level s.

3.2. Reliability/Availability Evaluation of a Multi- 

state System 

In this section, an algorithm similar to SEA for 

evaluating the system reliability of multi-state imperfect 

coverage is proposed. Using this method, the MSS with 

IPCM can be solved using the corresponding MSS subject 

to PCM. 

System Reliability (Rs
I
) = 

Pr{no uncovered failure in system} ×

Pr{system success | no uncovered failure in system}

Pr{no uncovered failure in system} (Pu) = 

Si Pr{no uncovered failure of module i}

Pr{no uncovered failure of module i} =  

Ri
I
(t, 1) = 1 – Pi

I
(t, 0)         (9) 

Further, 

)1,(/),(}0|Pr{),( tRjtRxjxjtR I
i

I
i

I
i

I
i

c
i   (10) 

This probability represents the conditional probability that 

module i of IPCM is in state j (i.e. performance level j).
Therefore, Pr{system success | no uncovered failures in 

system} can be obtained by substituting Ri(t, j) with Ri
c
(t, j)

in the corresponding PCM model. Hence, the system 

reliability subject to imperfect coverage will be 

),(),(),,(),(

 PCM withofyReliabilit

jtPjtPjtRjtR
PR c

ii

c

ii
u

I

s   (11) 

where
Si

I
iu tRP )1,( , Ri

c
(t, j) = Ri

I
(t, j)/Ri

I
(t, 1), Pi

c
(t, j)

= Pi
I
(t, j)/Ri

I
(t, 1). 

It should be noted that the same algorithm is applicable 

for availability evaluation, but in this case the input-set to 

the algorithm should be derived using components 

availability models. Moreover, the state probabilities of 

MSS subject to IPCM can be found as follows: 

Ps
I
(t, j) = Pu ×Ps

c
(t, j)

Ps
c
(t, j) = Ps(t, j) of PCM with Pi(t, j) = Pi

c
(t, j)  (12) 

Therefore, the step wise procedure of the proposed 

algorithm is as follows: 

1. Read the state probabilities of all modules, i.e. Pi
I
(t, j)

for i = 1, …, n; j = 0, 1, …, mi.

2. For all i, find Ri
I
(t, 1)  1- Pi

I
(t, 0)
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3. Find
n

i

I
iu tRP

1
)1,(

4. Find the conditional probabilities of each module at 

every level; 

• Ri
c
(t, j) = Ri

I
(t, j)/Ri

I
(t, 1) 

• Pi
c
(t, j) = Pi

I
(t, j)/Ri

I
(t, 1) 

5. Use these conditional probabilities to find the system 

reliability/availability (or the probability of a system 

state) at the required performance level of the 

corresponding MSS subject to PCM. Solve modular 

structures using modularization method. Use the 

proposed OBDD method to solve generic problems. Let 

this conditional probability be P.

• Reliability Rs
c
(t, j): Find the reliability of MSS with 

PCM by substituting either Pi
c
(t, j) for Pi(t, j) or Ri

c
(t,

j) for Ri(t, j)

• Availability Rs
c
(t, j): Find the availability of MSS 

with PCM by substituting either Pi
c
(t, j) for Pi(t, j) or 

Ri
c
(t, j) for Ri(t, j) (here Ri

c
(t, j) and Ri(t, j) are 

corresponding availabilities). 

• System state probability Ps
c
(t, j): Find the 

probability of the state of MSS with respect to PCM 

by substituting either Pi
c
(t, j) for Pi(t, j) or Ri

c
(t, j) for 

Ri(t, j).

6. Find the system reliability/availability (or the 

probability of a system state) of MSS with IPCM using:

Reliability/Availability = Pu P

Consider that the problem can be solved using general 

multi-state algorithms. The computational time is 

proportional to O(m+1)
n
. Hence, the computational 

complexity is O(mn
). However, we can’t use modularization 

methods in this case. In our method, the advantage of using 

conditional probabilities makes it possible to apply this 

method for modular structures. Then the problem can be 

solved in linear time (in most cases). Without using 

conditional probabilities, we can’t apply the solutions of 

modular structures. 

The percentage reduction (reduction factor) by using 

our method is approximately n

m
m )(1

1
. That means the 

reduction increases with n and decreases with m. But the 

difference (m+1)
n
–mn

 actually increases with m. However, 

this is a worst case situation without modular structures in a 

system. In general, our method is much more faster than 

existing methods. 

Figure 6 shows the OBDDs of three sub-requirement 

trees in Example 2. As mentioned earlier, there exist some 

dependencies between the sub-requirement trees, and it 

generates dependency problems for the probability 

calculation in step 5 of our algorithm. Next section will 

show the methods to deal with the problems. 

4. Multi-state OBDD 
4.1. Multi-state Dependency Operation (MDO) 

In a multi-state system with multi-state modules, 

different performance levels for the same module are 

represented by different nodes of the OBDD as shown in 

Figure 6. The operations on OBDD should be modified to 

deal with the dependency problem in probability calculation. 

We use of the methods in [15][16] to solve this problem. 

For example, xi:k means module i is operational at 

performance level k or above and xi:l means the same 

module i is operational at performance level l or above. If 

level k is greater than level l, then xi:k = 1 implies xi:l = 1, 

i.e. liki xx :: . Therefore, there exist dependencies between 

xi:k and xi:l. We need to deal with dependency in 

constructing the OBDD tree of a multi-state system. It 

means some branches should be cut during the multi-state 

dependency operation (MDO). 

Lemma 1: 

If performance level k is greater than performance level 

l, i.e. liki xx :: , and the order of xi:k is smaller than xi:l, then 

],,[

),,(),,(

011:

01:01:

lki

lk

liki

EKLKxite

EE

LLxiteKKxite

      

(13)

Proof: Since the two nodes belong to the same module, 

module i being operational at performance level k or above 

means module i must be operational at performance level l

or above, i.e. xi:k = 1 implies xi:l = 1. Therefore, 

],,[

])()(,)()(,[

])(,)(,[

),,(),,(

011:

0:0:1:1::

0:1::

01:01:

lki

kixlkixklixlkixkki

kixlkkixlkki

lk

liki

EKLKxite

EEEExite

EEEExite

EE

LLxiteKKxite

The derivation use the relation lkixl EE 0:
)( since xi:k = 0 

is not relevant to El.

For example, in Figure 6, if the ordering of the nodes is 

x1:4 < x1:3 < x1:2 < x2:4 < x2:3 < x2:2 < x3:4 < x3:3 < x3:2 , after 

applying the MDO on the system, we get the result as 

shown in Figure 7. It should be noted that x3:4 is 

automatically eliminated during MDO. This is because, 

from the sub-requirement tree T2 in Figure 5, when module 

3 is operational in performance level 3 or above, it makes 

the system meet the required performance level s. Hence, 

we don’t need to consider if module 3 is operational in 

performance level 4 or above in sub-requirement tree T3, i.e. 

the node x3:4 disappears. 

x1:4

0 1

x2:4

x3:4

T3

x1:3

0 1

x2:3

x3:3

T2

x1:2

0 1

x2:2

x3:2

T1

x1:4

0 1

x2:4

x3:4

T3

x1:4x1:4

0 1

x2:4x2:4

x3:4x3:4

T3

x1:3

0 1

x2:3

x3:3

T2

x1:3x1:3

0 1

x2:3x2:3

x3:3x3:3

T2

x1:2x1:2

0 1

x2:2x2:2

x3:2x3:2

T1

Figure 6. The OBDD of sub requirement tree T1, T2, T3.
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Figure 7. The OBDD of the system in Figure 5. 

4.2. Dependency Probability Calculation 

The traditional recursive algorithm can efficiently 

calculate the probability for an OBDD. However, for the 

OBDD tree of a multi-state system as shown in Figure 7, 

there exists dependency between a node and its child node 

if they belong to the same module but with different 

performance levels. Therefore, the traditional recursive 

algorithm should be modified to deal with the dependency 

problem in probability calculation. 

Let k and l be two performance levels (k > l). Table 1 

shows the rules of level algebra. The validness of these 

relationships can be easily verified. Note that xi:k = w1 w2 …

wk , where wh is the Boolean value (True/False) that 

represents module i to be (operational/failed) at 

performance h (1 h k).

Table 1. The rules of level algebra (k > l).

operation value 

1. liki xx :: kix :

2. liki xx :: 0

3. liki xx :: lix :

4. liki xx :: kili xx ::

Therefore, for the 1st rule, 

kiklkliki xwwwwwwwwwxx :212121:: ...)...()...(

The physical meaning of this equation is that the 

requirement “module i is operational both at performance 

level k and l” is equivalent to the requirement “module i is 

operational at performance level k”. For the 2nd rule, 

0)...()...( 2121:: lkliki wwwwwwxx

The physical meaning of this equation is that the 

requirement “module i is operational at performance level k,

but is not operational at performance level l” does not exist. 

For the 3rd rule, 

lilkliki xwwwwwwxx :2121:: )...()...1(

The physical meaning of this equation is that the 

requirement “module i is not operational both at 

performance level k and l” is equivalent to the requirement 

“module i is not operational at performance level l”.

For the 4th rule, liki xx ::  means that module i is 

operational at performance level l, but failes when the 

performance achieves level k, and we have 

kililkliki xxwwwwwwxx ::2121:: )...()...1(

These rules in Table 1 are only applicable to variables or 

nodes belonging to the same module. The ordinary Boolean 

relationships hold for the indicator variables belonging to 

different modules since module i and j are s-independent. 

Looking into the OBDD tree constructed from MDO as 

shown in Figure 7, we find that a 1-edge always connects 

two nodes that belong to different modules. However, for 

the 0-edge, there are two cases that must be treated 

differently: 

1. The 0-edge linking nodes belong to different module. 

2. The 0-edge linking nodes belong to the same module. 

In case 1, we calculate the probability of the node using 

ordinary OBDD method since the nodes are s-independent 

to each other. However, in case 2, we should make some 

modifications in probability calculation. 

Lemma 2:  

For the nodes (xi:k , xj:l) belonging to different modules, 

if G = ite (xi:k , G1, G0) and G0 = ite (xj:l , H1, H0), then  

}Pr{}]Pr{}[Pr{}Pr{

}Pr{}Pr{

001:

0:1:

GGGx

GxGxG

ki

kiki

(14)

Proof: This is an ordinary OBDD equation of calculation. 

Lemma 3:  

For the nodes (xi:k , xi:l) belonging to the same module 

but with different performance levels, if G = ite (xi:k , G1, G0)

and G0 = ite (xi:l , H1, H0), then  

}Pr{}Pr{}Pr{}Pr{}Pr{ 011: GHGxG ki    (15) 

Proof: Since the 1-edge branch of xi:k always links to the 

node which belongs to a different module, Pr{xi:k} is 

independent of Pr{G1}, i.e. Pr{xi:kG1} = Pr{xi:k}Pr{G1}.

Therefore, applying the rules of level algebra in Table 1, we 

get 

}Pr{}]Pr{}[Pr{}Pr{

})Pr{(}Pr{}Pr{

}Pr{}Pr{

}Pr{}Pr{

011:

0:1::1:

0::1::1:

0:1:

GHGx

HxHxxGx

HxxHxxGx

GxGxG

ki

likiliki

likilikiki

kiki

Let us consider the reliability calculation of a multi-state 

system with imperfect coverage using OBDD. As depicted 

in Section 3, we first find the conditional probability 

}Pr{ :kix of each multi-state module i. Second we use 

}Pr{ :kix instead of the probability or reliability of module i,

}Pr{ :kix , to calculate the multi-state system conditional 

reliability Rcmss from Equations (14) and (15). Therefore, we 

have the following lemma. 

Lemma 4: 
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If G = ite (xi:k, G1, G0), G0 = ite (Z, H1, H0), and the 

order of node xi:k is smaller than that of node Z, the 

probability of G is 

module)same the tobelongand(if

modules)different tobelongand(if

:

011:

:

001:

}Pr{}Pr{}Pr{}Pr{

}Pr{}Pr{}Pr{}Pr{

}Pr{

Zx

Zx

ki

ki

ki

ki

GHGx

GGGx

G   (16) 

where }Pr{ :kix  is the conditional reliability of module i

being operational at performance level k or above given that 

no uncovered failure occurred in that module (or module i). 
Therefore, the probability of the OBDD’s root node 

representing the multi-state system conditional reliability 

Rcmss is obtained from Equation (16). Hence, we get the 

multi-state system reliability RMSS by 

RMSS = Rcmss × Pu           (17) 

5. Examples

Let us consider a bridge network shown in Figure 3(a) 

of Example 1. Assuming redundancy techniques are used 

such that each link has a fault-tolerance scheme. Therefore, 

we can treat a link as a module with various link capacities 

or with various performance levels (i.e. a multi-state 

network system). Also the fault-coverage condition should 

be considered. The path function of the system is 

4325241531 xxxxxxxxxxF

Case I– the basic requirement for the system being in a 

acceptable performance level is: 

2:42:32:22:52:22:42:12:52:32:1 xxxxxxxxxxaccept

Case II– the path x1x4 is the backbone of the network 

and most of the dataflow run through the path, and the 

limitation of the requirement for the path is more strict. 

Therefore if x1 needs to be at least in level 5 and x4 needs to 

be at least in level 4 for path x1x4, the requirement for the 

system being in a good performance level is: 

2:42:32:22:52:24:45:12:52:32:1 xxxxxxxxxxgood

Figure 8(a)(b) show the results of accept and good after 

applying MDO. Table 2 shows the parameters of a module 

obtained by using Markov techniques and assuming each 

module has 6 performance states including failed and 

uncovered state. If all modules in Figure 3(a) are identical, 

the system reliabilities of accept and good with different 

coverage factors are obtained from Equation (16) and (17) 

as shown in Figure 9. Figure 9 shows that good is less 

reliable than accept. That means we need to pay more on 

the system if we want to increase the reliability of good to 

be the same as that of accept. Figure 10 illustrates the 

system reliability decreases when the required level of path 

x1x4 increases. This means the higher the required 

performance level of a module, the more difficult the 

system satisfying a demand. 

6. Conclusions 
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(a) The OBDD of accept  (b) The OBDD of good

Figure 8. The results of accept and good after MDO.

Table 2: The parameters of individual module with 
exponential distribution given t = 20, failure 

rate i = 0.015 and coverage factor ci = 0.9. 

j PI(t, j) Pc(t, j) Rc(t, j)

0 0.0259 —– —– 

1 0.2333 0.2395 1.0000 

2 0.0823 0.0845 0.7605 

3 0.2469 0.2535 0.6760 

4 0.2469 0.2535 0.4225 

5 0.1646 0.1690 0.1690 
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Figure 9. The system reliability of accept and good

with different coverage factors c.
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ent required levels of path x1x4 and c = 0.9.
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This paper has proposed an OBDD-based approach for 

the reliability evaluation of a multi-state system with 

combinatorial performance requirements subject to 

imperfect fault coverage. A new model for multi-state 

systems with imperfect fault coverage has also been 

proposed. It was shown that the algorithm used to evaluate 

the reliability can also be used to evaluate the availability of 

a system subject to imperfect fault coverage if the Markov 

process is applied to analyze the state transition behavior. 

Further, with the application of conditional probabilities, 

the time complexity of this method for reliability evaluation 

is the same as that without considering imperfect coverage. 

In addition, an efficient integration of OBDD and 

modularization simplifies the problem further. The 

multi-state dependency operation (MDO) method handles 

the dependencies between the combinatorial performance 

requirements. Through the MDO method, some of the 

redundant nodes in OBDD are automatically eliminated. 

This means that we can simplify the combinatorial 

performance requirements using MDO. Moreover, our 

approach deals with the dependency problem of multi-state 

modules in probability calculation. 

[2] and [17], with helpful comments from [2], have 

presented various performance measures related to 

multi-state systems. In order to compute these measures we 

need to find the reliability of a system at various 

performance levels. Therefore, the result of this paper can 

be integrated to find the performance measures of 

multi-state systems. This process is straightforward, and 

therefore, it is not discussed here explicitly [2]. 

This algorithm could be applied to complex systems 

such as fault-tolerant computer systems, variable link- 

capacities network systems, etc., since it generates the 

complete results more quickly and accurately even when 

there exist a number of dependencies such as shared loads 

(reconfiguration), degradation, common- cause failures and 

so on. Based on this approach, researches on sensitivity 

analysis, importance measures, failure frequency analysis 

or optimal design issues of multi-state systems will be the 

focus of our future works. 
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