
Abstract

System reliability evaluation, sensitivity analysis, im-

portance measures, failure frequency analysis and optimal

design have become important issues for distributed de-

pendable computing. Finding all the Minimal File Span-

ning Trees (MFST) and avoiding repeatedly computing the

redundant MFSTs is the key technique for evaluating the

reliability of a distributed computing system (DCS) in pre-

vious works. However, identifying all the disjoint MFSTs

is difficult and very time consuming for large-scale net-

works. Although existing algorithms have been demon-

strated that they work fine on medium-scale networks, they

have two inherent drawbacks. First, they do not support

efficient manipulation of Boolean algebra. The

sum-of-disjoint-products method used by them is ineffi-

cient in dealing with large Boolean functions. Second, the

tree-based partitioning algorithm does not merge isomor-

phic sub-problems and therefore, redundant computations

cannot be avoided. In this paper, we propose a new effi-

cient algorithm for the reliability evaluation of a DCS

based on recursive merge and binary decision diagram

(BDD). Using the BDD substitution technique, we can

easily apply our algorithm to a network with imperfect

nodes. The experimental results show a significant im-

provement on the execution time compared to previous

works.

1. Introduction

The development of computer networking and embed-

ded VLSI processing devices has led to an increasing in-

terest in distributed computing systems (DCS) in which

the computations are distributed among many processing

elements (PEs). Distributed computing involves coopera-

† Y.R. Chang is also with Institute of Nuclear Energy Research, Atomic

Energy Council, Taiwan.

Acknowledgment: This research was supported by the National Science
Council, Taiwan, R.O.C. under Grant NSC 92-2213-E-002-011.

tion among several loosely coupled computers communi-

cating over a network. Distributed systems provide cost-

effective means for resource sharing and extensibility, and

obtain potential increases in performance, reliability, and

fault tolerance. A distributed program usually requires one

or more of the resources for successful execution, such as

PEs, data files, etc. For successful completion of a pro-

gram, the local host (the PEs that contain the required files)

and the interconnection links must all function correctly.

Therefore, the distribution of data files can affect the over-

all reliability of the system. Thus, an important problem in

distributed system design and analysis is to define and

evaluate various reliability measures as well as estimate

the effect of program and resource distributions on the re-

liability of a system efficiently. This analysis is crucially

important for building a reliable distributed computing

system.

There were many researchers studying the distributed

program reliability (DPR) and distributed system reliabil-

ity (DSR). Kumar et al. [1] seems to be the first to present

the definition of the DPR and DSR. They constructed a

distributed model including edges, nodes and resource

files and proposed the Minimal File Spanning Trees

(MFST)-based algorithm to evaluate the DPR and DSR.

Later, based on MFST, Raghavendra [2] addressed two

measures, distributed program-user reliability and distrib-

uted system-user reliability, and proposed an algorithm for

their evaluations. Kumar [3] also developed a fast algo-

rithm to evaluate the DPR and DSR. These methods are

2-step algorithms. First, they need to find all the MFSTs.

Second, they convert these MFSTs to a symbolic reliability

expression using an existing reliability evaluation algo-

rithm like SYREL [4] to compute the disjoint probability.

The major drawback with these methods is that finding all

the MFSTs has high computational complexity; and prior

knowledge about multi-terminal connections is required in

order to compute the reliability expression, thereby mak-

ing them inapplicable to large systems. To overcome these

problems, Kumar [5] proposed a 1-step algorithm GEAR

that can avoid computing the redundant MFSTs and reduce

Reliability Evaluation of Dependable Distributed Computing Systems

Based on Recursive Merge and BDD

Yung-Ruei Chang
†
, Hung-Yau Lin, and Sy-Yen Kuo

Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

sykuo@cc.ee.ntu.edu.tw

Proceedings of the 10th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC’04)

0-7695-2076-6/04 $20.00 © 2004 IEEE

computational time. To further improve the efficiency of

reliability assessment, Chen [6][7] proposed FST-SPR and

HRFST algorithm based on the cut-set methods for reduc-

ing the reliability evaluation complexity. However, apply-

ing their methods to the network with imperfect nodes is

not easy. Taking the existence of faulty nodes into account,

Ke [8] proposed the ENR/KW algorithm to compute the

reliability of a distributed computing network with imper-

fect nodes. ENR/KW algorithm needs to find the set of

mandatory nodes and does not converge the isomorphic

subproblems. Later, based on the model of [1], Zang [9]

proposed a Binary Decision Diagram (BDD)-based algo-

rithm to analyze the dependability of a DCS with imper-

fect fault-coverage. The researches in [10][11][12] contin-

ued with the study of the DPR and DSR based on the

model of Kumar [1].

Finding all the MFSTs and avoiding the computation of

generating the redundant MFSTs is the key technique to

evaluate the reliability of a DCS in previous works. How-

ever, identifying all the disjoint MFSTs is difficult and is

very time consuming. Although the algorithms in previous

works have been demonstrated with reasonable efficiency

on medium-scale networks, they have two inherent draw-

backs. First, they do not support efficient manipulation of

Boolean algebra. The sum-of-disjoint-products method

used by them is inefficient in dealing with larger Boolean

functions. Second, the tree-based partitioning algorithm

does not consider the convergence of isomorphic sub-

problems and therefore, redundant computations cannot be

exactly avoided.

Recent literature [13][14][15][16][17][18][19] show

that BDD is a very efficient approach for reliability

evaluation. In this paper, we propose a BDD-based algo-

rithm, named CLK, to compute the reliability of a DCS

with both perfect and imperfect nodes. The main idea,

which makes the CLK algorithm more efficient than the

previous works, is that the BDD representing the Boolean

reliability expression of a DCS can be constructed by

avoiding the redundant computation of the isomorphic

sub-problems during the merging process. Therefore, the

reliability can be quickly derived from the BDD. In addi-

tion, our method can be integrated with the methodologies

that use the BDD to analyze the dependability of a system,

such as system availability, system failure frequency, im-

portance measures and sensitivity analysis [19].

Section 2 introduces the concepts of BDD and distrib-

uted computing systems. Section 3 illustrates an efficient

algorithm based on recursive merge and BDD to evaluate

the DPR and DSR of a distributed computing system.

Based on the BDD substitution technique, our algorithm is

applicable to not only a system with perfect nodes but also

a system with imperfect nodes. The experimental results

on various benchmark networks are shown in Section 4.

Section 5 gives the conclusions and future works.

2. Preliminaries

2.1. Binary decision diagram (BDD)

BDD [13] is based on a disjoint decomposition of a

Boolean function called the Shannon expansion. Given a

Boolean function),,(1 nxxf , then for any },,1{ ni ;

iii xxx 1 :

01 ii xixi fxfxf (1)

In order to express the Shannon decomposition concisely,

the if-then-else (ite) format [20][21] is defined as:

),,(01 ii xxi ffxitef

The way that BDDs are used to represent logical opera-

tions is simple. In practice, the BDD is generated by using

logical operations on variables. Let Boolean expressions f

and g be:

),,(),,(

),,(),,(

0101

0101

GGxiteggxiteg

FFxiteffxitef

jxxj

ixxi

jj

ii

A logic operation between f and g can be represented by

BDD manipulations as:

)(ordering)(ordering),,(

)(ordering)(ordering),,(

)(ordering)(ordering),,(

),,(),,(

01

01

0011

0101

jij

jii

jii

ji

xxGfGfxite

xxgFgFxite

xxGFGFxite

GGxiteFFxite

 (2)

where represents a logic operation such as AND or OR.

Fig. 1 illustrates the construction and manipulation steps

of a Boolean function. For more details on using the op-

F = (x1 and x3) or (x2 and x3)

Variable Ordering: x1<x2<x3

Evaluation Steps:

x1 = declare_var(x1, 1) x2 = declare_var(x2, 1) x3 = declare_var(x3, 1)

T1 = BDD_and(x1, x3) T2 = BDD_and(x2, x3) F = BDD_or(T1, T2)

0 1

x1

0 1

x2

0 1

T1

0 1

x3 T2

0 1

F

0 1

x1

x2

x3

x1

x3

x2

x3

x1

x2

x3 x3

F = (x1 and x3) or (x2 and x3)

Variable Ordering: x1<x2<x3

Evaluation Steps:

x1 = declare_var(x1, 1) x2 = declare_var(x2, 1) x3 = declare_var(x3, 1)

T1 = BDD_and(x1, x3) T2 = BDD_and(x2, x3) F = BDD_or(T1, T2)

0 1

x1

0 1

x2

0 1

T1

0 1

x3 T2

0 1

F

0 1

x1x1

x2x2

x3x3

x1x1

x3x3

x2x2

x3x3

x1x1

x2x2

x3x3 x3x3

Figure 1. The BDD generated from a Boolean equation.

Proceedings of the 10th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC’04)

0-7695-2076-6/04 $20.00 © 2004 IEEE

erations of BDD, please refer to [13].

A useful property of BDD is that all the paths from the

root to the leaves are mutually disjoint. If f represents the

Boolean expression of the system availability, based on

the property of the disjoint decomposition of BDD, the re-

liability (or availability) of a system can be recursively

evaluated by (1) as

}Pr{}Pr{}Pr{}Pr{}Pr{ 01 ii xixi fxfxf (3)

where Pr{·} means Pr{·=1} for simplification. For exam-

ple, if Pr{xi} is the availability Ai of component i and Ui is

the unavailability of component i, then the system avail-

ability A is:

0101)1(}Pr{ iiii xixixixi AAAAAUAAfA (4)

where 1ixA and 0ixA represent }Pr{ 1ixf and }Pr{ 0ixf

respectively. Similarly, the unavailability of a system can

be calculated as:

01}Pr{ ii xixi UAUUgU (5)

where g is the system unavailability expression and the

dual of f ; i.e. ,,1,1(1),,,(2121 xxgxxxf n

),,,(1)1 21 nn xxxgx , 1ixU and 0ixU represent

}Pr{ 1ixg and }Pr{ 0ixg respectively.

2.2. Distributed computing system (DCS)

In [1], Kumar et al. modeled a DCS as an undirected

graph G[V, E] in which the nodes represent the hosts and

the edges represent the communication links, where V is a

set of nodes and E is a set of edges. Fig. 2 shows an exam-

ple of a six-node DCS. FAi represents the set of files that

could be obtained at node i. PRGi represents the set of

programs that could be run at node i. FNj represents the set

of required files for the successful execution of program j.

For example, program P2 could be executed on either n3 or

n4. According to FN2 = {F2, F4}, program P2 can run suc-

cessfully on n3 due to the successful access of the data files

{F2, F4}. However, program P2 could not be run success-

fully on n4 without the successful access of the data {F4}

since only the data {F2} is provided at node n4. A

file-spanning tree (FST) is defined as a spanning tree that

connects the root node (the host node that runs the pro-

gram under consideration) to some other nodes such that

its nodes contain all the required files for the successful

execution of the program. An FST is a minimal

file-spanning tree (MFST) if there exists no other FST that

is a subset of this FST. For instance, program P2 in Fig. 2

will function if it can run at node n3 or n4, and can access

files {F2, F4}. Therefore, {n3} and {n4, x4, n2, x3, n3} are

two FSTs of P2, but the later one is not a MFST since {n3}

is a subset of {n4, x4, n2, x3, n3}. The set of MFSTs of pro-

gram P2 in Fig. 2 are: {n3}, {n4, x4, n2, x5, n5}, {n4, x7, n5},

{n4, x8, n6, x9, n5}.

By the definition of MFST [1], the distributed program

reliability (DPR) for program j and the distributed system

reliability (DSR) are defined respectively as:

 }1Pr{
1

mfstn

i

ij MFSTDPR (6)

 }1Pr{
1

mfstm

i

iMFSTDSR (7)

where nmfst is the number of MFSTs belonging to program j

and mmfst is the number of MFSTs over all programs.

3. The CLK algorithm

Finding FSTs and using MFSTs to compute the DPR by

the disjoint method in the previous works is difficult when

the DCS network becomes large and complex. In this sec-

tion, we will develop an efficient algorithm, named CLK,

based on the convergence of the isomorphic sub-problems

to compute the DPR and the DSR of a distributed com-

puting system. With this method, redundant computations

can be avoided. The experimental results presented later

will show the effectiveness of our approach compared to

the previous works [1][6][7][8][9][22]. Moreover, the

CLK algorithm has the capability of dealing with large

number of Boolean variables using BDD. Therefore, the

CLK algorithm is applicable to a large-scale DCS. In this

section, we will first discuss the algorithm for a DCS net-

work with perfect nodes. Then, using the BDD substitution

technique, the algorithm can be easily and efficiently ap-

plied to a DCS network with imperfect nodes.

3.1. Algorithm for perfect nodes

Based on the model in [1], a distributed program can be

run successfully on a host node if all the required files in

the DCS network can be correctly accessed. The basic idea

of the CLK algorithm for computing the DPR is to begin

Node 1

FA1: F1

PRG1: P1

Node 3

FA3: F2F4

PRG3: P2

Node 2

FA2: F1F2

PRG2: Ø

Node 4

FA4: F2F3

PRG4: P2P3

Node 5

FA5: F4

PRG5: P3

Node 6

FA6: F3

PRG6: Ø

FN1 = F1F2F3

FN2 = F2F4

FN3 = F1F3

x1

x2

x3

x4

x5

x6

x7

x8

x9

Node 1

FA1: F1

PRG1: P1

Node 1

FA1: F1

PRG1: P1

Node 3

FA3: F2F4

PRG3: P2

Node 3

FA3: F2F4

PRG3: P2

Node 2

FA2: F1F2

PRG2: Ø

Node 2

FA2: F1F2

PRG2: Ø

Node 4

FA4: F2F3

PRG4: P2P3

Node 4

FA4: F2F3

PRG4: P2P3

Node 5

FA5: F4

PRG5: P3

Node 5

FA5: F4

PRG5: P3

Node 6

FA6: F3

PRG6: Ø

Node 6

FA6: F3

PRG6: Ø

FN1 = F1F2F3

FN2 = F2F4

FN3 = F1F3

x1

x2

x3

x4

x5

x6

x7

x8

x9

Figure 2. An example of a six-node DCS.

Proceedings of the 10th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC’04)

0-7695-2076-6/04 $20.00 © 2004 IEEE

the merging procedure from a host node s where the pro-

gram can run and produce subgraphs by recursively merg-

ing the adjacent nodes one by one into the source set (SS).

Each subgraph has its corresponding SS. An SS is the set of

nodes such that the host node s SS and SS are connected.

Therefore, if the SS of a subgraph satisfies the requirement

(i.e. contains all the required files), then the merging with

adjacent nodes stops. Fig. 3 illustrates the procedure of

recursive merge in the CLK algorithm for evaluating the

DPR1 in Fig. 2. The traversed path, which includes the

branches from the top-root graph to any one of the bot-

tom-leaf subgraphs in Fig. 3, represents a FST. It can be

transformed into the BDD representation by the CLK al-

gorithm. Then taking the advantage of the disjoint property

of BDD, the DPR can be efficiently calculated.

Based on the above idea, let each graph have its own

x1

SS = n1

x1

x2

x4

x5

x6
x9

x8

x7x3

n4

n1

n2

n3 n5

n6

x6

x4

x2 x5

x9

x8

x7x3

n4

n3 n5

n6

SS = n1 n2

x4

x5

x6

x9

x8

x7

n4

n5

n6

SS = n1 n2 n3

x1

x4

x5

x6
x9

x8

x7
x3

n4n2

n5

n6

SS = n1 n3

n3

x2 x3
x5 x7

x6
x9

x8

n5

n6

SS = n1 n2 n4

x2 x3 x6 x9

x8x4 x7

n4

n3

n6

SS = n1 n2 n5

x4

x1 x3 x5

x9

x8

x7

n4n2

n6

SS = n1 n3 n5

x9

x8

x5 x6 x7

n5

n6

SS = n1 n2 n3 n4

n3

x8

x2 x3 x6

x9
n6

SS = n1 n2 n4 n5

x4 x7

x9

x8

n4

n6

SS = n1 n2 n3 n5

x2 x3 x6

x4 x7 x8

n4

n3

SS = n1 n2 n5 n6

x9

x8

n6

SS = n1 n2 n3 n4 n5

x4

x1 x3 x5

x7 x8

n4n2

SS = n1 n3 n5 n6

x1 x3 x4 x5
x9

x8

n2

n6

SS = n1 n3 n4 n5

x4 x7 x8

n4

SS = n1 n2 n3 n5 n6

x2

x2+x3 x1+x3x4 x5 x6

x4 x5+x6 x2+x3+x6

x4+x7 x9

x1+x3+x5 x7 x9

x4+x7 x9

#

#

represents an isomorphic graph.

+ represents a Boolean operation OR.

G1

G2 G3 G4

x1

SS = n1

x1

x2

x4

x5

x6
x9

x8

x7x3

n4

n1

n2

n3 n5

n6

SS = n1

x1

x2

x4

x5

x6
x9

x8

x7x3

n4

n1

n2

n3 n5

n6

SS = n1

x1

x2

x4

x5

x6
x9

x8

x7x3

n4

n1

n2

n3 n5

n6

x6

x4

x2 x5

x9

x8

x7x3

n4

n3 n5

n6

SS = n1 n2

x6

x4

x2 x5

x9

x8

x7x3

n4

n3 n5

n6

SS = n1 n2

x6

x4

x2 x5

x9

x8

x7x3

n4

n3 n5

n6

SS = n1 n2

x4

x5

x6

x9

x8

x7

n4

n5

n6

SS = n1 n2 n3

x4

x5

x6

x9

x8

x7

n4

n5

n6

SS = n1 n2 n3

x4

x5

x6

x9

x8

x7

n4

n5

n6

SS = n1 n2 n3

x1

x4

x5

x6
x9

x8

x7
x3

n4n2

n5

n6

SS = n1 n3

x1

x4

x5

x6
x9

x8

x7
x3

n4n2

n5

n6

SS = n1 n3

x1

x4

x5

x6
x9

x8

x7
x3

n4n2

n5

n6

SS = n1 n3

n3

x2 x3
x5 x7

x6
x9

x8

n5

n6

SS = n1 n2 n4

n3

x2 x3
x5 x7

x6
x9

x8

n5

n6

SS = n1 n2 n4

n3

x2 x3
x5 x7

x6
x9

x8

n5

n6

SS = n1 n2 n4

x2 x3 x6 x9

x8x4 x7

n4

n3

n6

SS = n1 n2 n5

x2 x3 x6 x9

x8x4 x7

n4

n3

n6

SS = n1 n2 n5

x2 x3 x6 x9

x8x4 x7

n4

n3

n6

SS = n1 n2 n5

x4

x1 x3 x5

x9

x8

x7

n4n2

n6

SS = n1 n3 n5

x4

x1 x3 x5

x9

x8

x7

n4n2

n6

SS = n1 n3 n5

x4

x1 x3 x5

x9

x8

x7

n4n2

n6

SS = n1 n3 n5

x9

x8

x5 x6 x7

n5

n6

SS = n1 n2 n3 n4

x9

x8

x5 x6 x7

n5

n6

SS = n1 n2 n3 n4

x9

x8

x5 x6 x7

n5

n6

SS = n1 n2 n3 n4

n3

x8

x2 x3 x6

x9
n6

SS = n1 n2 n4 n5

n3

x8

x2 x3 x6

x9
n6

SS = n1 n2 n4 n5

n3

x8

x2 x3 x6

x9
n6

SS = n1 n2 n4 n5

x4 x7

x9

x8

n4

n6

SS = n1 n2 n3 n5

x4 x7

x9

x8

n4

n6

SS = n1 n2 n3 n5

x4 x7

x9

x8

n4

n6

SS = n1 n2 n3 n5

x2 x3 x6

x4 x7 x8

n4

n3

SS = n1 n2 n5 n6

x2 x3 x6

x4 x7 x8

n4

n3

SS = n1 n2 n5 n6

x2 x3 x6

x4 x7 x8

n4

n3

SS = n1 n2 n5 n6

x9

x8

n6

SS = n1 n2 n3 n4 n5

x9

x8

n6

SS = n1 n2 n3 n4 n5

x9

x8

n6

SS = n1 n2 n3 n4 n5

x4

x1 x3 x5

x7 x8

n4n2

SS = n1 n3 n5 n6

x4

x1 x3 x5

x7 x8

n4n2

SS = n1 n3 n5 n6

x4

x1 x3 x5

x7 x8

n4n2

SS = n1 n3 n5 n6

x1 x3 x4 x5
x9

x8

n2

n6

SS = n1 n3 n4 n5

x1 x3 x4 x5
x9

x8

n2

n6

SS = n1 n3 n4 n5

x1 x3 x4 x5
x9

x8

n2

n6

SS = n1 n3 n4 n5

x4 x7 x8

n4

SS = n1 n2 n3 n5 n6

x4 x7 x8

n4

SS = n1 n2 n3 n5 n6

x4 x7 x8

n4

SS = n1 n2 n3 n5 n6

x2

x2+x3 x1+x3x4 x5 x6

x4 x5+x6 x2+x3+x6

x4+x7 x9

x1+x3+x5 x7 x9

x4+x7 x9

#

#

represents an isomorphic graph.

+ represents a Boolean operation OR.

G1

G2 G3 G4

Figure 3. Recursive merge for evaluating DPR1 in Fig. 2.

Proceedings of the 10th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC’04)

0-7695-2076-6/04 $20.00 © 2004 IEEE

Boolean reliability expression BF(·), i.e. BF(G) represents

the Boolean reliability expression of G. Therefore, we get

the recursive relationship of BF(·) between graph G and its

subgraph G*n as:

)]()*([)(
:

i
EiNn

xnGBFGBF
nssss

 (8)

where n is a node of G, Nss is the set of nodes that are ad-

jacently connected to SS, Ess:n is the set of edges that con-

nect n and SS, G*n is the subgraph of G obtained by

merging adjacent node ssNn into SS and deleting any

edge connecting n and SS, ii xx / is the Boolean edge

variable representing edge i is functional/failed (i.e.

1/1 ii xx), is the Boolean OR operation

BDD_or(), and is the Boolean AND operation

BDD_and(). For example, in Fig. 3,)()(21 GBFGBF

544332)()()(xGBFxGBFxx . If BF(·) is im-

plemented by a BDD, then each graph has its own BDD

and the manipulation technique of BDD in (2) could be

used recursively for performing Boolean operations on

edge variables during the merging procedure. Finally, by

the bottom-up procedure, we construct the BDD of the

top-root graph representing the Boolean reliability expres-

sion of the DPR.

In addition, the CLK algorithm can avoid the redundant

computations of isomorphic sub-problems. An SS of a sub-

graph implies a certain set of files can be obtained no

mater how the nodes in SS are connected. During the

merging procedure, the rest of edges outside SS in a sub-

graph will not be changed. Therefore, the Boolean reliabil-

ity expression representing the traversing path outward SS

of the subgraph will not be changed. This means two sub-

graphs derived from different merging procedures are

isomorphic if their SS are the same since the follow-up

traversing path for the rest of the required files will be the

same. Therefore, the isomorphic subgraphs have the same

Boolean reliability expression BF(·), i.e. the same BDD.

We can use the property to avoid redundant computations.

According to the above idea, a hash table is built in the

CLK algorithm to record these isomorphic subgraphs and

their own BDD. When we traverse into an isomorphic

subgraph, we can just retrieve the BDD belonging to the

isomorphic subgraph from the hash table and use the BDD

for Boolean operations in the merging procedure. There-

fore, the redundant computations on isomorphic subgraphs

can be avoided. This will save significant execution time.

The algorithm is depicted by the pseudo-code in Fig. 4

and is executed by initializing G to the original graph, SS

to empty, and n to the node at which the program can be

executed. The algorithm can recursively merge the nodes

in the distributed network and build up the BDD that

represents the Boolean reliability expression of a DPR.

The hash table in the algorithm can avoid the redundant

computations from isomorphic sub-problems. Fig. 3 illus-

trates the procedure for the evaluation of the DPR1 in Fig.

2. The diagram contains 8 terminal subgraphs, 6 interme-

diate subgraphs, and 2 isomorphic subgraphs marked with

#. The larger the scale of a distributed computing system

becomes, the larger the number of isomorphic subgraphs is.

Therefore, the scheme of using the hash table will bring a

significant improvement on the efficiency of the CLK al-

gorithm. By the manipulations of BBD_and() and

BBD_or() during the merging procedure, the BDD repre-

senting the disjoint terms of the Boolean reliability ex-

pression of the DPR can be obtained from (8). Thus, the

DPR can be recursively derived from the BDD by (4).

3.2. Ordering strategy

One of the key issues in getting full advantage out of

BDD is to find a good variable-ordering. The size of BDD

and therefore, the efficiency of the whole methodology,

strongly depends on the chosen ordering. Unfortunately,

the problem of determining the ordering is NP-Complete.

However, approximate solutions are relatively easy to find

by a local-search algorithm [18]. For fault trees, the order-

ing obtained by a depth-first left-most traversal of the tree

is often good enough. For terminal-pair reliability net-

works, the ordering obtained by a breadth-first traversal of

the network starting from its source is a good candidate

[14][15][18].

In our experimental results, the following ordering heu-

ristics is good for a distributed computing network. We

order the variables by the ordering that we use for BDD

RecursiveMerage(G, SS, n)

{

BDD result, tmp1, tmp2;

SS = SS + {n};

if (SS gets all the required files) return BDD_one;

if (SS contains all the nodes) return BDD_zero;

if (SS gets a hit in the hash table)

{

result = getBDD_computed_table(SS);

}

else

{

result = BDD_zero;

for each node ni adjacent to SS

{

Sub_G = G * ni;

tmp1 = RecursiveMerage(Sub_G, SS, ni);

tmp2 = BDD_or(all the edge connected to ni);

tmp2 = BDD_and(tmp2, tmp1);

result = BDD_or(result, tmp2);

}

insert_computed_table(SS, result);

}

return result;

}

Figure 4. The recursive merge algorithm for constructing
the BDD with perfect nodes.

Proceedings of the 10th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC’04)

0-7695-2076-6/04 $20.00 © 2004 IEEE

manipulation in the algorithm shown in Fig. 4 during

building up the BDD, i.e. we put the variables in the or-

dered list if we need a new variable to represent a compo-

nent for BDD manipulation. Therefore, the prior ordering

of the variables is used for the BDD manipulation in the

algorithm and the prior ordering is in the BDD. For exam-

ple, in Fig. 3, the ordering is as following:

813265974 xxxxxxxxx

The final BDD representing the Boolean reliability ex-

pression of DPR1 is obtained as shown in Fig. 5. In the

latter section of experimental results, we will make a

comparison between the size of BDD generated with our

ordering strategy and that with the breadth-first ordering

strategy. The experiments show that the CLK algorithm

has a great improvement on the size of BDD and is more

efficient about 20% in execution time.

3.3. Algorithm for directed graph

The above algorithm is also applicable to directed

graphs without modification. But care must be taken as

which nodes can be merged to and which nodes can be

absorbed into SS. In the directed graph, a node v can be

merged into SS only if there is a node SSu such that <u,

v> is an edge connecting from u to v. The other part of the

algorithm for directed graph is the same as that for undi-

rected graph.

3.4. Algorithm for imperfect nodes

A simple but efficient method dealing with node fail-

ures is proposed in [23] and can be embedded in any algo-

rithm. That approach is based on a simple concept: “the

failure of a node implies the failure of its incident edges”.

Therefore, after deriving the BDD of a DCS with perfect

nodes in Section 3.1, we can apply the BDD substitution

technique on it to solve the problems of a DCS with im-

perfect nodes. The BDD substitution technique is a useful

property in BDD manipulation. The BDD derived in Sec-

tion 3.1 consists of only edge variables. In order to reckon

the effects of imperfect nodes, the node variables should

be included. Because one edge connects two nodes, the

Boolean edge variable in the BDD can be replaced by the

Boolean edge variable and the other two Boolean node

variables. Table 1 illustrates the rules of variable substitu-

tion in our example. The substitution approach in our al-

gorithm can be implemented by BDD_and() and BDD_or()

in the following:

)()()(0|1| GBFnxnGBFnxnGIBF ii xkijxkij

 (9)

where ii xx / is the Boolean edge variable representing

whether edge i is functional/failed (i.e. 1/1 ii xx),

ii nn / is the Boolean node variable representing node i

functional/failed (i.e. 1/1 ii nn), IBF(G) is the

BDD-based reliability function for a network G with im-

perfect nodes, two end nodes j and k represented by nj and

nk respectively are connected by the edge i represented by

xi, and)(/)(0|1| GBFGBF ii xx is the BDD-based reliabil-

ity function for a network G with perfect nodes given that

edge i is functional/failed. Therefore, we can evaluate the

reliability of a DCS with imperfect nodes very efficiently.

One thing we need to take care is the BDD ordering of the

nodes and edges. Applying the ordering heuristic described

in Section 3.2, the variable ordering for Fig. 3 becomes

81123

2365596744

xnxnx

xnxxnxnxxn

It should be noted that the number of Boolean manipu-

lations in the procedure of network merging and BDD con-

structing significantly affects the performance of the

algorithm. Therefore, we first consider the problem case

with perfect nodes to construct the BDD representing a

DCS. We manipulate the Boolean operations with only

edge variables but no node variables are included to reduce

the number of BDD variables. The smaller the size of

BDD variables is, the smaller the number of Boolean ma-

x7

x4

x6

x2

1

x1

0

x2

x3

x9

x5

x7

x5

x6

x2

x3

x9

x7

x4

x6

x2

1

x1

0

x2

x3

x9

x5

x7

x5

x6

x2

x3

x9

Figure 5. The BDD generated by the CLK algorithm for
DPR1 in Fig. 2 with perfect nodes.

Table 1. Rules of Boolean variable substitution for Fig. 2.

The rules of Boolean variable substitution

x1 n1x1n2 x4 n2x4n4 x7 n4x7n5

x2 n1x2n3 x5 n2x5n5 x8 n4x8n6

x3 n2x3n3 x6 n3x6n5 x9 n5x9n6

Proceedings of the 10th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC’04)

0-7695-2076-6/04 $20.00 © 2004 IEEE

nipulations is and thus the faster the algorithm can run.

After deriving the BDD representing the Boolean reliabil-

ity expression of a DCS with perfect nodes, we apply the

BDD substitution technique to take the effect of imperfect

nodes into consideration and then obtain the final BDD.

This scheme reduces the number of Boolean manipula-

tions during the network merging procedure and can save

about 20% of the execution time in average.

4. Reliability evaluation of a distributed

program running at more than one node

If distributed program j can run at more than one host

node in the system, we can separately construct each indi-

vidual BDDj:i corresponding to the host node i where dis-

tributed program j can run. Then, by the Boolean OR op-

eration BDD_or() with the BDDj:i for each node i, the

BDDj representing the Boolean reliability expression of

distributed program j can be derived as:

ij

h

i
j BDDBDD

j

:
1

 (10)

where represents the Boolean OR operation BDD_or(),

hj is the number of host nodes in the system where distrib-

uted program j can run, and BDDj:i is the BDD represent-

ing the Boolean reliability expression for successfully run-

ning distributed program j at node i. Therefore, the DPRj

of distributed program j running at more than one site can

be easily evaluated from the BDDj .

4.1. Distributed system reliability (DSR)

In the last section, we can get the BDD of a given dis-

tributed program. For reliability analysis of two or more

programs executed simultaneously, we use the Boolean

AND operation BDD_and() with the BDDj for each pro-

gram j included in the system.

j
j

BDDBDD (11)

where represents the Boolean AND operation

BDD_and(). Similarly, the DSR of a distributed computing

system can be derived by (11) and (4).

4.2. K-terminal network reliability

The evaluation of k-terminal network reliability is a

special case of the evaluation of DPR in a DCS. The only

difference is that the k terminals are already identified an-

tecedently for evaluating the k-terminal network reliability.

Therefore, it is easy to use the algorithm for DCS to com-

pute the k-terminal network reliability. However, it will be

difficult to use the algorithm developed for evaluating the

k-terminal network reliability to compute a DPR in a DCS

since the priori knowledge that the k nodes in a DCS

should be antecedently identified is not given. For com-

puting the reliability of a k-terminal network with perfect

or imperfect nodes using the CLK algorithm, all we need

to do is to distribute the different k required files on the k

nodes correspondingly, and empty the set of FA at the rest

of nodes. Then, the DPR of such distribution of the re-

source files in the DCS will be the k-terminal network

reliability.

Similarly, the evaluation of terminal-pair network reli-

ability is a special case of the evaluation of k-terminal

network reliability where k = 2. For computing the reli-

ability of a terminal-pair network with either perfect nodes

or imperfect nodes, we locate a required file at the source

node as well as another required file at the destination

node, and empty the set of FA in the rest of nodes. There-

fore, the DPR of such distribution of the resource files will

be the terminal-pair network reliability.

5. Experimental results

The efficiency of the CLK algorithm is compared with

the algorithms in [1][6][7][8][9][22]. The implementation

of the CLK algorithm is done with the C/C++ language on

a primary-type SUN UltraSPARC workstation. Although

the running times were measured on different platforms,

the capabilities of data processing are roughly equivalent.

The reliabilities of all the edges and nodes are assumed to

be 0.9. First, we compare the CLK algorithm with the al-

gorithms in [6][7] that were developed based on the cut-set

method. Fig. 6 illustrates a complex DCS with eight proc-

essing elements in [6][7]. Table 2 shows a comparison

between the CLK algorithm and the algorithms in [6][7].

Although they do not provide the execution time in [6][7],

we can still compare the complexity by the number of

subgraphs generated from different algorithms. The num-

ber of subgraphs produced by the CLK algorithm is about

29.09% less than previous results. That means the CLK

algorithm has higher computational efficiency. In addition,

the CLK algorithm can avoid the redundant computation

of isomorphic sub-problems. The high average hit ratio,

about 58.85%, of the hash table also makes the CLK algo-

rithm very efficient. Further, by the use of the BDD sub-

stitution technique, we can efficiently compute the reli-

ability of each individual distributed program even with

imperfect nodes, while it will be difficult for the algo-

rithms in [6][7].

Moreover, for considering the imperfect nodes, we use

the benchmarks Gi:j given in [8][9], ij , where i is the

number of nodes in the network, and j represents that

nodes n1, n2, …, nj are fully connected in network G. For

example, Fig. 7 shows the benchmark network G8:6. The

Proceedings of the 10th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC’04)

0-7695-2076-6/04 $20.00 © 2004 IEEE

program is located at n1, and files F1, F3, F5 are required to

execute it. Table 3 gives the location of the files. Table 4

shows the comparison of the number of subgraphs and the

execution time among the CLK algorithm, KHR [1],

ENR/KW [8], and the algorithm in [9]. Due to the conver-

gence of isomorphic sub-problems, the CLK algorithm

generates far less subgraphs than other algorithms, espe-

cially for G10:9. Although Zang et al. [9] provides a method

to analyze the dependability of a DCS with imperfect

fault-coverage using BDD, however, the BDD represent-

ing the structure function of the DPR is generated via the

traditional MFST-searching method.

The CLK algorithm employs the merging method and a

hash table to record the isomorphic subgraphs and the

corresponding BDDs. Hence the redundant computations

of isomorphic subgraphs can be avoided by looking up in

the hash table. The average hit rate is about 28.03%. The

larger the scale of the DCS becomes, the higher the hit rate

is. This makes the CLK algorithm much more efficient. In

addition, we apply the BDD substitution technique only

after the BDD representation of the DCS with perfect

nodes has been constructed. This technique can reduce the

time spent in BDD manipulation and therefore, improve

the performance of the CLK algorithm.

To compute the terminal-pair network reliability (TPR)

for a network with perfect or imperfect nodes, we distrib-

ute a required file on the source node as well as another

required file on the destination node, and empty the set of

FA in the rest of nodes. Then, the DPR of such distribution

of the resource files will be the TPR. Table 5 shows a com-

parison of the CLK algorithm with TPR/NF [22] and

ENR/KW [8] for evaluating the TPR with imperfect nodes.

The average hit rate is about 55.92%. The results show a

great improvement on the execution time, especially for

benchmark G10:9.

Node 1

FA1: F1F6

PRG1: P4

Node 3

FA3: F3F5

PRG3: P3

Node 2

FA2: F2

PRG2: Ø

Node 5

FA5: F4F5

PRG5: Ø

Node 6

FA6: F6

PRG6: P1

Node 8

FA8: F3F8

PRG8: Ø

FN1 = F1F2F5F7F8

FN2 = F1F3F5F8

FN3 = F1F2F4F6F8

FN4 = F2F3F4F5F7F8

Node 4

FA4: F4F8

PRG4: Ø

Node 7

FA7: F2F7

PRG7: P2

Node 1

FA1: F1F6

PRG1: P4

Node 1

FA1: F1F6

PRG1: P4

Node 3

FA3: F3F5

PRG3: P3

Node 3

FA3: F3F5

PRG3: P3

Node 2

FA2: F2

PRG2: Ø

Node 2

FA2: F2

PRG2: Ø

Node 5

FA5: F4F5

PRG5: Ø

Node 5

FA5: F4F5

PRG5: Ø

Node 6

FA6: F6

PRG6: P1

Node 6

FA6: F6

PRG6: P1

Node 8

FA8: F3F8

PRG8: Ø

Node 8

FA8: F3F8

PRG8: Ø

FN1 = F1F2F5F7F8

FN2 = F1F3F5F8

FN3 = F1F2F4F6F8

FN4 = F2F3F4F5F7F8

Node 4

FA4: F4F8

PRG4: Ø

Node 4

FA4: F4F8

PRG4: Ø

Node 7

FA7: F2F7

PRG7: P2

Node 7

FA7: F2F7

PRG7: P2

Figure 6. A complex DPS with eight processing elements.

Table 2. The comparison of the number of subgraphs generated from different algorithms.

 FST_SPR [6] HRFST [7] CLK

Distributed

program

DPR with

perfect

nodes

of

subgraphs

of

subgraphs

of

subgraphs

DPR with

imperfect

nodes

of SS

hash hits

Hit ratio

(%)

Execution

Time

in seconds

P1 0.9961182 445 113 95 0.700269 165 63.46 0.08

P2 0.9963265 334 124 85 0.766953 107 55.73 0.05

P3 0.9984532 309 118 95 0.777947 141 59.75 0.07

P4 0.9963256 389 140 76 0.761795 89 53.94 0.06

n4

n1 n2

n3

n5n6

n7

n8

n4

n1 n2

n3

n5n6

n7

n8

Figure 7. Benchmark network G8:6.

Table 3. File distribution.

Node Files Node Files

n1 F1 F2 F3 n6 F6 F7 F8

n2 F2 F3 F4 n7 F1 F7 F8

n3 F3 F4 F5 n8 F1 F2 F8

n4 F4 F5 F6 n9 F3 F7 F8

n5 F5 F6 F7 n10 F1 F4 F7

Proceedings of the 10th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC’04)

0-7695-2076-6/04 $20.00 © 2004 IEEE

Table 6 shows a comparison of the sizes of BDD and

the execution times with different ordering strategies.

CLK_BFS represents the CLK algorithm with breadth-first

searching ordering strategy. CLK_ISO represents the CLK

algorithm with the ordering strategy as described in Sec-

tion 3.2. The result shows that a breadth-first vari-

able-ordering obtained in [14][15][18] is not good enough

for distributed computing networks. However, the heuristic

ordering strategy depicted in Section 3.2 is a good candi-

date for DCS, especially in G10:9.

6. Conclusions

In this paper, we have proposed an efficient algorithm

for evaluating the reliability of a distributed computing

system. The CLK algorithm can avoid redundant computa-

tions during the evaluation by converging isomorphic sub

problems. The experimental results show that the CLK al-

gorithm has a great improvement on the execution time

compared to the previous works. Based on BDD, the CLK

algorithm has the capability to support a large amount of

Boolean manipulations and therefore, is applicable to

large-scale distributed computing networks. In addition,

using the BDD substitution technique, the CLK algorithm

can be efficiently applied to a DCS network with imperfect

nodes. Moreover, the BDD-based methodologies in [19]

for the dependability analysis of systems can be integrated

with the CLK algorithm. Based on this approach, re-

searches on sensitivity analysis, importance measures,

failure frequency analysis or optimal design issues of dis-

Table 4. The comparison of different algorithms for evaluating DPR.

 # of subgraphs Time in seconds # of SS Hit ratio

Network KHR [1] ENR/KW [8] CLK KHR [1] ENR/KW [8] ZST [9] CLK hash hits (%) DPR

G8:4 37 16 25 0.030 0.005 0.05 0.02 3 10.71 0.891551

G10:4 55 20 37 0.037 0.014 0.05 0.04 5 11.90 0.889355

G8:6 306 72 55 0.412 0.015 0.06 0.05 12 17.91 0.898896

G8:7 1159 289 63 4.280 0.055 0.07 0.06 17 21.25 0.899061

G10:7 3443 462 175 9.850 0.148 0.08 0.11 65 27.08 0.899057

G8:8 3225 1196 63 36.300 0.222 0.15 0.09 17 21.25 0.899090

G10:8 20464 2556 223 230.000 0.817 0.25 0.21 101 31.17 0.899092

G10:9 131899 17832 255 8000.000 5.640 1.83 0.42 129 33.59 0.899099

Table 5. The comparison of different algorithms for evaluating TPR.

 # of subgraphs Time in seconds # of SS Hit ratio

Network TPR/NF [22] ENR/KW [8] CLK TPR/NF [22] ENR/KW [8] CLK hash hits (%) TPR

G8:4 157 48 39 0.039 0.012 0.03 17 30.36 0.806942

G10:4 365 226 75 0.157 0.065 0.05 65 46.43 0.701621

G8:6 2823 1839 111 2.083 0.438 0.09 101 47.64 0.809823

G8:7 33085 11883 127 26.000 2.900 0.23 129 50.39 0.809967

G10:7 36513 27077 351 40.700 10.100 0.49 433 55.23 0.809964

G8:8 383563 69918 127 230.000 18.800 0.84 129 50.39 0.809992

G10:8 553431 234847 447 663.000 100.000 1.69 625 58.30 0.809993

G10:9 10405589 2245128 511 13300.000 990.000 16.03 769 60.08 0.809999

Table 6. Different ordering strategies of CLK.

 # of Nodes in BDD Time in seconds

Network CLK_BFS CLK_ISO CLK_BFS CLK_ISO

G8:4 56 28 0.03 0.02

G10:4 60 36 0.04 0.04

G8:6 416 74 0.07 0.05

G8:7 1420 164 0.09 0.06

G10:7 1424 192 0.17 0.11

G8:8 3237 445 0.14 0.09

G10:8 5327 535 0.39 0.21

G10:9 22240 2177 1.10 0.42

Proceedings of the 10th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC’04)

0-7695-2076-6/04 $20.00 © 2004 IEEE

tributed processing systems will be the focus of our future

works.

References

[1] V.K.P. Kumar, S. Hariri, and C.S. Raghavendra, “Distrib-

uted Program reliability analysis”, IEEE Trans. Software Engi-

neering, vol. 12, pp. 42-50, Jan. 1986.

[2] C.S. Raghavendra, V.K.P. Kumar, and S. Hariri, “Reliability

analysis in distributed systems”, IEEE Trans. Computers, vol. 37,

no. 3, pp. 352-358, Mar. 1988.

[3] A. Kumar, S. Rai, and D.P. Agrawal, “On computer com-

munication network reliability under program execution con-

straints”, IEEE Journal of Selected Areas in Communications,

vol. 6, pp. 1393-1400, Oct. 1988.

[4] S. Hariri and C.S. Ragavendra, “SYREL: A symbolic reli-

ability algorithm based on path and cut set methods”, IEEE Trans.

Computers, vol. 36, pp. 1224-1232, Oct. 1987.

[5] A. Kumar and D.P. Agrawal, “A generalized algorithm for

evaluating distributed-program reliability”, IEEE Trans. Reliabil-

ity, vol. 42, no. 3, pp. 416-426, Sept. 1993.

[6] D.J. Chen and T.H. Huang, “Reliability analysis of distrib-

uted systems based on a fast reliability algorithm”, IEEE Trans.

Parallel and Distributed Systems, vol. 3, no. 2, pp. 139-154, Mar.

1992.

[7] D.J. Chen, R.S. Chen, and T.H. Huang, “A heuristic ap-

proach to generating file spanning trees for reliability analysis of

distributed computing systems”, Computers and Mathematics

with Application, vol. 34, pp. 115-131, Nov. 1997.

[8] W.J. Ke and S.D. Wang “Reliability evaluation for distrib-

uted computing networks with imperfect nodes”, IEEE Trans.

Reliability, vol. 46, no. 3, pp. 342-349, Sept. 1997.

[9] X. Zang, H. Sun, and K.S. Trivedi, “Dependability analysis

of distributed computer systems with imperfect coverage”, Proc.

29th Ann. Int’l Conf. Fault-Tolerant Computing, (FTCS-29),

1999, pp. 330-337.

[10] M.S. Lin, M.S. Chang, and D.J. Chen, “Efficient algorithms

for reliability analysis of distributed computing systems”, Infor-

mation Sciences, vol. 117, pp. 89-106, July 1999.

[11] C.D. Lai, M. Xie, K.L. Poh, Y.S. Dai, and P. Yang, “A

model for availability analysis of distributed software/hardware

systems”, Information and Software Technology, vol. 44, no. 6,

pp. 343-350, 2002.

[12] Y.S. Dai, M. Xie, and K.L. Poh, “Reliability analysis of grid

computing systems”, Proc. 2002 Pacific Rim Int’l Symp. De-

pendable Computing (PRDC’02), 2002, pp. 97-104.

[13] R.E. Bryant, “Graph-based algorithms for Boolean function

manipulation”, IEEE Trans. Computers, vol. 35, pp. 677-691,

Aug. 1986.

[14] S.Y. Kuo, S.K. Lu, and F.M. Yeh, “Determining termi-

nal-pair reliability based on edge expansion diagrams using

OBDD”, IEEE Trans. Reliability, vol. 48, no. 3, pp. 234-246,

Sept. 1999.

[15] F.M. Yeh, S.K. Lu, and S.Y. Kuo, “OBDD-based evaluation

of k-terminal network reliability”, IEEE Trans. Reliability, vol.

51, no. 4, pp. 443-451, Dec. 2002.

[16] S. Minato, “Streaming BDD manipulation”, IEEE Trans.

Computers, vol. 51, no. 5, pp. 474-485, May 2002.

[17] Hung-Yau Lin, Sy-Yen Kuo, and Fu-Min Yeh, “Minimal

cutset enumeration and network reliability evaluation by recur-

sive merge and BDD”, Proc. 8th IEEE Symp. Computers and

Communications (ISCC’03), 2003, pp. 1341-1346.

[18] A. Rauzy, “A new methodology to handle Boolean models

with loops”, IEEE Trans. Reliability, vol. 52, no. 1, pp. 96-105,

Mar. 2003.

[19] Y.R. Chang, S.V. Amari, and S.Y. Kuo, “Computing sys-

tem failure frequencies and reliability importance measures using

OBDD,” IEEE Trans. Computers, Jan. 2004, (accepted).

[20] A. Rauzy, “New algorithms for fault tree analysis”, Reli-

ability Engineering and System Safety, vol. 40, pp. 203-211,

1993.

[21] R.M. Sinnamon, J.D. Andrews, “Improved efficiency in

qualitative fault tree analysis”, Quality and Reliability Engineer-

ing Int’l, vol. 13, pp. 293-298, 1997.

[22] V.A. Netes and B.P. Filin, “Consideration of node failures

in network-reliability calculation”, IEEE Trans. Reliability, vol.

45, no. 1, pp. 127-128, Mar. 1996.

[23] K.K Aggarwal, J.S. Gupta, and K.B. Misra, “A simple

method for evaluation of a communication system,” IEEE Trans.

Communications, vol. 23, pp. 563-566, May 1975.

Proceedings of the 10th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC’04)

0-7695-2076-6/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

