
Abstract 

System reliability evaluation, sensitivity analysis, im-

portance measures, failure frequency analysis and optimal 

design have become important issues for distributed de-

pendable computing. Finding all the Minimal File Span-

ning Trees (MFST) and avoiding repeatedly computing the 

redundant MFSTs is the key technique for evaluating the 

reliability of a distributed computing system (DCS) in pre-

vious works. However, identifying all the disjoint MFSTs 

is difficult and very time consuming for large-scale net-

works. Although existing algorithms have been demon-

strated that they work fine on medium-scale networks, they 

have two inherent drawbacks. First, they do not support 

efficient manipulation of Boolean algebra. The 

sum-of-disjoint-products method used by them is ineffi-

cient in dealing with large Boolean functions. Second, the 

tree-based partitioning algorithm does not merge isomor-

phic sub-problems and therefore, redundant computations 

cannot be avoided. In this paper, we propose a new effi-

cient algorithm for the reliability evaluation of a DCS 

based on recursive merge and binary decision diagram 

(BDD). Using the BDD substitution technique, we can 

easily apply our algorithm to a network with imperfect 

nodes. The experimental results show a significant im-

provement on the execution time compared to previous 

works.

1. Introduction 

The development of computer networking and embed-

ded VLSI processing devices has led to an increasing in-

terest in distributed computing systems (DCS) in which 

the computations are distributed among many processing 

elements (PEs). Distributed computing involves coopera-
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tion among several loosely coupled computers communi-

cating over a network. Distributed systems provide cost- 

effective means for resource sharing and extensibility, and 

obtain potential increases in performance, reliability, and 

fault tolerance. A distributed program usually requires one 

or more of the resources for successful execution, such as 

PEs, data files, etc. For successful completion of a pro-

gram, the local host (the PEs that contain the required files) 

and the interconnection links must all function correctly. 

Therefore, the distribution of data files can affect the over-

all reliability of the system. Thus, an important problem in 

distributed system design and analysis is to define and 

evaluate various reliability measures as well as estimate 

the effect of program and resource distributions on the re-

liability of a system efficiently. This analysis is crucially 

important for building a reliable distributed computing 

system. 

There were many researchers studying the distributed 

program reliability (DPR) and distributed system reliabil-

ity (DSR). Kumar et al. [1] seems to be the first to present 

the definition of the DPR and DSR. They constructed a 

distributed model including edges, nodes and resource 

files and proposed the Minimal File Spanning Trees 

(MFST)-based algorithm to evaluate the DPR and DSR. 

Later, based on MFST, Raghavendra [2] addressed two 

measures, distributed program-user reliability and distrib-

uted system-user reliability, and proposed an algorithm for 

their evaluations. Kumar [3] also developed a fast algo-

rithm to evaluate the DPR and DSR. These methods are 

2-step algorithms. First, they need to find all the MFSTs. 

Second, they convert these MFSTs to a symbolic reliability 

expression using an existing reliability evaluation algo-

rithm like SYREL [4] to compute the disjoint probability. 

The major drawback with these methods is that finding all 

the MFSTs has high computational complexity; and prior 

knowledge about multi-terminal connections is required in 

order to compute the reliability expression, thereby mak-

ing them inapplicable to large systems. To overcome these 

problems, Kumar [5] proposed a 1-step algorithm GEAR 

that can avoid computing the redundant MFSTs and reduce 
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computational time. To further improve the efficiency of 

reliability assessment, Chen [6][7] proposed FST-SPR and 

HRFST algorithm based on the cut-set methods for reduc-

ing the reliability evaluation complexity. However, apply-

ing their methods to the network with imperfect nodes is 

not easy. Taking the existence of faulty nodes into account, 

Ke [8] proposed the ENR/KW algorithm to compute the 

reliability of a distributed computing network with imper-

fect nodes. ENR/KW algorithm needs to find the set of 

mandatory nodes and does not converge the isomorphic 

subproblems. Later, based on the model of [1], Zang [9] 

proposed a Binary Decision Diagram (BDD)-based algo-

rithm to analyze the dependability of a DCS with imper-

fect fault-coverage. The researches in [10][11][12] contin-

ued with the study of the DPR and DSR based on the 

model of Kumar [1]. 

Finding all the MFSTs and avoiding the computation of 

generating the redundant MFSTs is the key technique to 

evaluate the reliability of a DCS in previous works. How-

ever, identifying all the disjoint MFSTs is difficult and is 

very time consuming. Although the algorithms in previous 

works have been demonstrated with reasonable efficiency 

on medium-scale networks, they have two inherent draw-

backs. First, they do not support efficient manipulation of 

Boolean algebra. The sum-of-disjoint-products method 

used by them is inefficient in dealing with larger Boolean 

functions. Second, the tree-based partitioning algorithm 

does not consider the convergence of isomorphic sub- 

problems and therefore, redundant computations cannot be 

exactly avoided. 

Recent literature [13][14][15][16][17][18][19] show 

that BDD is a very efficient approach for reliability 

evaluation. In this paper, we propose a BDD-based algo-

rithm, named CLK, to compute the reliability of a DCS 

with both perfect and imperfect nodes. The main idea, 

which makes the CLK algorithm more efficient than the 

previous works, is that the BDD representing the Boolean 

reliability expression of a DCS can be constructed by 

avoiding the redundant computation of the isomorphic 

sub-problems during the merging process. Therefore, the 

reliability can be quickly derived from the BDD. In addi-

tion, our method can be integrated with the methodologies 

that use the BDD to analyze the dependability of a system, 

such as system availability, system failure frequency, im-

portance measures and sensitivity analysis [19]. 

Section 2 introduces the concepts of BDD and distrib-

uted computing systems. Section 3 illustrates an efficient 

algorithm based on recursive merge and BDD to evaluate 

the DPR and DSR of a distributed computing system. 

Based on the BDD substitution technique, our algorithm is 

applicable to not only a system with perfect nodes but also 

a system with imperfect nodes. The experimental results 

on various benchmark networks are shown in Section 4. 

Section 5 gives the conclusions and future works. 

2. Preliminaries 

2.1. Binary decision diagram (BDD) 

BDD [13] is based on a disjoint decomposition of a 

Boolean function called the Shannon expansion. Given a 

Boolean function ),,( 1 nxxf , then for any },,1{ ni ;

iii xxx 1 : 

01 ii xixi fxfxf  (1) 

In order to express the Shannon decomposition concisely, 

the if-then-else (ite) format [20][21] is defined as: 

 ),,( 01 ii xxi ffxitef

The way that BDDs are used to represent logical opera-

tions is simple. In practice, the BDD is generated by using 

logical operations on variables. Let Boolean expressions f

and g be: 

),,(),,(

),,(),,(

0101

0101

GGxiteggxiteg

FFxiteffxitef

jxxj

ixxi

jj

ii
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BDD manipulations as: 
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where  represents a logic operation such as AND or OR. 

Fig. 1 illustrates the construction and manipulation steps 

of a Boolean function. For more details on using the op-
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Figure 1. The BDD generated from a Boolean equation.

Proceedings of the 10th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC’04) 

0-7695-2076-6/04 $20.00 © 2004 IEEE



erations of BDD, please refer to [13]. 

A useful property of BDD is that all the paths from the 

root to the leaves are mutually disjoint. If f represents the 

Boolean expression of the system availability, based on 

the property of the disjoint decomposition of BDD, the re-

liability (or availability) of a system can be recursively 

evaluated by (1) as 

}Pr{}Pr{}Pr{}Pr{}Pr{ 01 ii xixi fxfxf  (3) 

where Pr{·} means Pr{·=1} for simplification. For exam-

ple, if Pr{xi} is the availability Ai of component i and Ui is 

the unavailability of component i, then the system avail-

ability A is: 

0101 )1(}Pr{ iiii xixixixi AAAAAUAAfA  (4) 

where 1ixA and 0ixA represent }Pr{ 1ixf and }Pr{ 0ixf

respectively. Similarly, the unavailability of a system can 

be calculated as: 

01}Pr{ ii xixi UAUUgU  (5) 

where g is the system unavailability expression and the 

dual of f ; i.e. ,,1,1(1),,,( 2121 xxgxxxf n

),,,(1)1 21 nn xxxgx , 1ixU and 0ixU represent 

}Pr{ 1ixg and }Pr{ 0ixg respectively. 

2.2. Distributed computing system (DCS) 

In [1], Kumar et al. modeled a DCS as an undirected 

graph G[V, E] in which the nodes represent the hosts and 

the edges represent the communication links, where V is a 

set of nodes and E is a set of edges. Fig. 2 shows an exam-

ple of a six-node DCS. FAi represents the set of files that 

could be obtained at node i. PRGi represents the set of 

programs that could be run at node i. FNj represents the set 

of required files for the successful execution of program j.

For example, program P2 could be executed on either n3 or 

n4. According to FN2 = {F2, F4}, program P2 can run suc-

cessfully on n3 due to the successful access of the data files 

{F2, F4}. However, program P2 could not be run success-

fully on n4 without the successful access of the data {F4}

since only the data {F2} is provided at node n4. A 

file-spanning tree (FST) is defined as a spanning tree that 

connects the root node (the host node that runs the pro-

gram under consideration) to some other nodes such that 

its nodes contain all the required files for the successful 

execution of the program. An FST is a minimal 

file-spanning tree (MFST) if there exists no other FST that 

is a subset of this FST. For instance, program P2 in Fig. 2 

will function if it can run at node n3 or n4, and can access 

files {F2, F4}. Therefore, {n3} and {n4, x4, n2, x3, n3} are 

two FSTs of P2, but the later one is not a MFST since {n3}

is a subset of {n4, x4, n2, x3, n3}. The set of MFSTs of pro-

gram P2 in Fig. 2 are: {n3}, {n4, x4, n2, x5, n5}, {n4, x7, n5}, 

{n4, x8, n6, x9, n5}.

By the definition of MFST [1], the distributed program 

reliability (DPR) for program j and the distributed system 

reliability (DSR) are defined respectively as: 

 }1Pr{
1

mfstn

i

ij MFSTDPR  (6) 

 }1Pr{
1

mfstm

i

iMFSTDSR  (7) 

where nmfst is the number of MFSTs belonging to program j

and mmfst is the number of MFSTs over all programs. 

3. The CLK algorithm 

Finding FSTs and using MFSTs to compute the DPR by 

the disjoint method in the previous works is difficult when 

the DCS network becomes large and complex. In this sec-

tion, we will develop an efficient algorithm, named CLK, 

based on the convergence of the isomorphic sub-problems 

to compute the DPR and the DSR of a distributed com-

puting system. With this method, redundant computations 

can be avoided. The experimental results presented later 

will show the effectiveness of our approach compared to 

the previous works [1][6][7][8][9][22]. Moreover, the 

CLK algorithm has the capability of dealing with large 

number of Boolean variables using BDD. Therefore, the 

CLK algorithm is applicable to a large-scale DCS. In this 

section, we will first discuss the algorithm for a DCS net-

work with perfect nodes. Then, using the BDD substitution 

technique, the algorithm can be easily and efficiently ap-

plied to a DCS network with imperfect nodes. 

3.1. Algorithm for perfect nodes 

Based on the model in [1], a distributed program can be 

run successfully on a host node if all the required files in 

the DCS network can be correctly accessed. The basic idea 

of the CLK algorithm for computing the DPR is to begin 
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Figure 2. An example of a six-node DCS. 
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the merging procedure from a host node s where the pro-

gram can run and produce subgraphs by recursively merg-

ing the adjacent nodes one by one into the source set (SS). 

Each subgraph has its corresponding SS. An SS is the set of 

nodes such that the host node s SS and SS are connected. 

Therefore, if the SS of a subgraph satisfies the requirement 

(i.e. contains all the required files), then the merging with 

adjacent nodes stops. Fig. 3 illustrates the procedure of 

recursive merge in the CLK algorithm for evaluating the 

DPR1 in Fig. 2. The traversed path, which includes the 

branches from the top-root graph to any one of the bot-

tom-leaf subgraphs in Fig. 3, represents a FST. It can be 

transformed into the BDD representation by the CLK al-

gorithm. Then taking the advantage of the disjoint property 

of BDD, the DPR can be efficiently calculated. 

Based on the above idea, let each graph have its own 
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Figure 3. Recursive merge for evaluating DPR1 in Fig. 2. 
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Boolean reliability expression BF(·), i.e. BF(G) represents 

the Boolean reliability expression of G. Therefore, we get 

the recursive relationship of BF(·) between graph G and its 

subgraph G*n as: 

)]()*([)(
:

i
EiNn

xnGBFGBF
nssss

 (8) 

where n is a node of G, Nss is the set of nodes that are ad-

jacently connected to SS, Ess:n is the set of edges that con-

nect n and SS, G*n is the subgraph of G obtained by 

merging adjacent node ssNn  into SS and deleting any 

edge connecting n and SS, ii xx /  is the Boolean edge 

variable representing edge i is functional/failed (i.e. 

1/1 ii xx ),  is the Boolean OR operation 

BDD_or(), and  is the Boolean AND operation 

BDD_and(). For example, in Fig. 3, )()( 21 GBFGBF

544332 )()()( xGBFxGBFxx . If BF(·) is im-

plemented by a BDD, then each graph has its own BDD 

and the manipulation technique of BDD in (2) could be 

used recursively for performing Boolean operations on 

edge variables during the merging procedure. Finally, by 

the bottom-up procedure, we construct the BDD of the 

top-root graph representing the Boolean reliability expres-

sion of the DPR. 

In addition, the CLK algorithm can avoid the redundant 

computations of isomorphic sub-problems. An SS of a sub-

graph implies a certain set of files can be obtained no 

mater how the nodes in SS are connected. During the 

merging procedure, the rest of edges outside SS in a sub-

graph will not be changed. Therefore, the Boolean reliabil-

ity expression representing the traversing path outward SS

of the subgraph will not be changed. This means two sub-

graphs derived from different merging procedures are 

isomorphic if their SS are the same since the follow-up 

traversing path for the rest of the required files will be the 

same. Therefore, the isomorphic subgraphs have the same 

Boolean reliability expression BF(·), i.e. the same BDD. 

We can use the property to avoid redundant computations. 

According to the above idea, a hash table is built in the 

CLK algorithm to record these isomorphic subgraphs and 

their own BDD. When we traverse into an isomorphic 

subgraph, we can just retrieve the BDD belonging to the 

isomorphic subgraph from the hash table and use the BDD 

for Boolean operations in the merging procedure. There-

fore, the redundant computations on isomorphic subgraphs 

can be avoided. This will save significant execution time. 

The algorithm is depicted by the pseudo-code in Fig. 4 

and is executed by initializing G to the original graph, SS

to empty, and n to the node at which the program can be 

executed. The algorithm can recursively merge the nodes 

in the distributed network and build up the BDD that 

represents the Boolean reliability expression of a DPR. 

The hash table in the algorithm can avoid the redundant 

computations from isomorphic sub-problems. Fig. 3 illus-

trates the procedure for the evaluation of the DPR1 in Fig. 

2. The diagram contains 8 terminal subgraphs, 6 interme-

diate subgraphs, and 2 isomorphic subgraphs marked with 

#. The larger the scale of a distributed computing system 

becomes, the larger the number of isomorphic subgraphs is. 

Therefore, the scheme of using the hash table will bring a 

significant improvement on the efficiency of the CLK al-

gorithm. By the manipulations of BBD_and() and 

BBD_or() during the merging procedure, the BDD repre-

senting the disjoint terms of the Boolean reliability ex-

pression of the DPR can be obtained from (8). Thus, the 

DPR can be recursively derived from the BDD by (4). 

3.2. Ordering strategy 

One of the key issues in getting full advantage out of 

BDD is to find a good variable-ordering. The size of BDD 

and therefore, the efficiency of the whole methodology, 

strongly depends on the chosen ordering. Unfortunately, 

the problem of determining the ordering is NP-Complete. 

However, approximate solutions are relatively easy to find 

by a local-search algorithm [18]. For fault trees, the order-

ing obtained by a depth-first left-most traversal of the tree 

is often good enough. For terminal-pair reliability net-

works, the ordering obtained by a breadth-first traversal of 

the network starting from its source is a good candidate 

[14][15][18]. 

In our experimental results, the following ordering heu-

ristics is good for a distributed computing network. We 

order the variables by the ordering that we use for BDD 

RecursiveMerage( G, SS, n )

{

BDD result, tmp1, tmp2;

SS = SS + {n}; 

if ( SS gets all the required files) return BDD_one;

if ( SS contains all the nodes) return BDD_zero;

if ( SS gets a hit in the hash table ) 

{

result = getBDD_computed_table(SS);

}

else 

{

result = BDD_zero;

for each node ni adjacent to SS

{

Sub_G = G * ni;

tmp1 = RecursiveMerage( Sub_G, SS, ni );

tmp2 = BDD_or( all the edge connected to ni );

tmp2 = BDD_and( tmp2, tmp1);

result = BDD_or( result, tmp2);

}

insert_computed_table( SS, result);

}

return result;

}

Figure 4. The recursive merge algorithm for constructing 
the BDD with perfect nodes. 
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manipulation in the algorithm shown in Fig. 4 during 

building up the BDD, i.e. we put the variables in the or-

dered list if we need a new variable to represent a compo-

nent for BDD manipulation. Therefore, the prior ordering 

of the variables is used for the BDD manipulation in the 

algorithm and the prior ordering is in the BDD. For exam-

ple, in Fig. 3, the ordering is as following: 

813265974 xxxxxxxxx

The final BDD representing the Boolean reliability ex-

pression of DPR1 is obtained as shown in Fig. 5. In the 

latter section of experimental results, we will make a 

comparison between the size of BDD generated with our 

ordering strategy and that with the breadth-first ordering 

strategy. The experiments show that the CLK algorithm 

has a great improvement on the size of BDD and is more 

efficient about 20% in execution time. 

3.3. Algorithm for directed graph 

The above algorithm is also applicable to directed 

graphs without modification. But care must be taken as 

which nodes can be merged to and which nodes can be 

absorbed into SS. In the directed graph, a node v can be 

merged into SS only if there is a node SSu such that <u,

v> is an edge connecting from u to v. The other part of the 

algorithm for directed graph is the same as that for undi-

rected graph. 

3.4. Algorithm for imperfect nodes 

A simple but efficient method dealing with node fail-

ures is proposed in [23] and can be embedded in any algo-

rithm. That approach is based on a simple concept: “the 

failure of a node implies the failure of its incident edges”. 

Therefore, after deriving the BDD of a DCS with perfect 

nodes in Section 3.1, we can apply the BDD substitution 

technique on it to solve the problems of a DCS with im-

perfect nodes. The BDD substitution technique is a useful 

property in BDD manipulation. The BDD derived in Sec-

tion 3.1 consists of only edge variables. In order to reckon 

the effects of imperfect nodes, the node variables should 

be included. Because one edge connects two nodes, the 

Boolean edge variable in the BDD can be replaced by the 

Boolean edge variable and the other two Boolean node 

variables. Table 1 illustrates the rules of variable substitu-

tion in our example. The substitution approach in our al-

gorithm can be implemented by BDD_and() and BDD_or() 

in the following: 

)()()( 0|1| GBFnxnGBFnxnGIBF ii xkijxkij

  (9) 

where ii xx /  is the Boolean edge variable representing 

whether edge i is functional/failed (i.e. 1/1 ii xx ),

ii nn /  is the Boolean node variable representing node i

functional/failed (i.e. 1/1 ii nn ), IBF(G) is the 

BDD-based reliability function for a network G with im-

perfect nodes, two end nodes j and k represented by nj and 

nk respectively are connected by the edge i represented by 

xi, and )(/)( 0|1| GBFGBF ii xx  is the BDD-based reliabil-

ity function for a network G with perfect nodes given that 

edge i is functional/failed. Therefore, we can evaluate the 

reliability of a DCS with imperfect nodes very efficiently. 

One thing we need to take care is the BDD ordering of the 

nodes and edges. Applying the ordering heuristic described 

in Section 3.2, the variable ordering for Fig. 3 becomes 

81123

2365596744

xnxnx

xnxxnxnxxn

It should be noted that the number of Boolean manipu-

lations in the procedure of network merging and BDD con-

structing significantly affects the performance of the 

algorithm. Therefore, we first consider the problem case 

with perfect nodes to construct the BDD representing a 

DCS. We manipulate the Boolean operations with only 

edge variables but no node variables are included to reduce 

the number of BDD variables. The smaller the size of 

BDD variables is, the smaller the number of Boolean ma-

x7

x4

x6

x2

1

x1

0

x2

x3

x9

x5

x7

x5

x6

x2

x3

x9

x7

x4

x6

x2

1

x1

0

x2

x3

x9

x5

x7

x5

x6

x2

x3

x9

Figure 5. The BDD generated by the CLK algorithm for 
DPR1 in Fig. 2 with perfect nodes. 

Table 1. Rules of Boolean variable substitution for Fig. 2. 

The rules of Boolean variable substitution 

x1 n1x1n2 x4 n2x4n4 x7 n4x7n5

x2 n1x2n3 x5 n2x5n5 x8 n4x8n6

x3 n2x3n3 x6 n3x6n5 x9 n5x9n6
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nipulations is and thus the faster the algorithm can run. 

After deriving the BDD representing the Boolean reliabil-

ity expression of a DCS with perfect nodes, we apply the 

BDD substitution technique to take the effect of imperfect 

nodes into consideration and then obtain the final BDD. 

This scheme reduces the number of Boolean manipula-

tions during the network merging procedure and can save 

about 20% of the execution time in average. 

4. Reliability evaluation of a distributed 

program running at more than one node 

If distributed program j can run at more than one host 

node in the system, we can separately construct each indi-

vidual BDDj:i corresponding to the host node i where dis-

tributed program j can run. Then, by the Boolean OR op-

eration BDD_or() with the BDDj:i for each node i, the 

BDDj representing the Boolean reliability expression of 

distributed program j can be derived as: 

ij

h

i
j BDDBDD

j

:
1

 (10) 

where represents the Boolean OR operation BDD_or(), 

hj is the number of host nodes in the system where distrib-

uted program j can run, and BDDj:i is the BDD represent-

ing the Boolean reliability expression for successfully run-

ning distributed program j at node i. Therefore, the DPRj

of distributed program j running at more than one site can 

be easily evaluated from the BDDj . 

4.1. Distributed system reliability (DSR) 

In the last section, we can get the BDD of a given dis-

tributed program. For reliability analysis of two or more 

programs executed simultaneously, we use the Boolean 

AND operation BDD_and() with the BDDj for each pro-

gram j included in the system. 

j
j

BDDBDD  (11) 

where represents the Boolean AND operation 

BDD_and(). Similarly, the DSR of a distributed computing 

system can be derived by (11) and (4). 

4.2. K-terminal network reliability 

The evaluation of k-terminal network reliability is a 

special case of the evaluation of DPR in a DCS. The only 

difference is that the k terminals are already identified an-

tecedently for evaluating the k-terminal network reliability. 

Therefore, it is easy to use the algorithm for DCS to com-

pute the k-terminal network reliability. However, it will be 

difficult to use the algorithm developed for evaluating the 

k-terminal network reliability to compute a DPR in a DCS 

since the priori knowledge that the k nodes in a DCS 

should be antecedently identified is not given. For com-

puting the reliability of a k-terminal network with perfect 

or imperfect nodes using the CLK algorithm, all we need 

to do is to distribute the different k required files on the k

nodes correspondingly, and empty the set of FA at the rest 

of nodes. Then, the DPR of such distribution of the re-

source files in the DCS will be the k-terminal network 

reliability. 

Similarly, the evaluation of terminal-pair network reli-

ability is a special case of the evaluation of k-terminal 

network reliability where k = 2. For computing the reli-

ability of a terminal-pair network with either perfect nodes 

or imperfect nodes, we locate a required file at the source 

node as well as another required file at the destination 

node, and empty the set of FA in the rest of nodes. There-

fore, the DPR of such distribution of the resource files will 

be the terminal-pair network reliability. 

5. Experimental results 

The efficiency of the CLK algorithm is compared with 

the algorithms in [1][6][7][8][9][22]. The implementation 

of the CLK algorithm is done with the C/C++ language on 

a primary-type SUN UltraSPARC workstation. Although 

the running times were measured on different platforms, 

the capabilities of data processing are roughly equivalent. 

The reliabilities of all the edges and nodes are assumed to 

be 0.9. First, we compare the CLK algorithm with the al-

gorithms in [6][7] that were developed based on the cut-set 

method. Fig. 6 illustrates a complex DCS with eight proc-

essing elements in [6][7]. Table 2 shows a comparison 

between the CLK algorithm and the algorithms in [6][7]. 

Although they do not provide the execution time in [6][7], 

we can still compare the complexity by the number of 

subgraphs generated from different algorithms. The num-

ber of subgraphs produced by the CLK algorithm is about 

29.09% less than previous results. That means the CLK 

algorithm has higher computational efficiency. In addition, 

the CLK algorithm can avoid the redundant computation 

of isomorphic sub-problems. The high average hit ratio, 

about 58.85%, of the hash table also makes the CLK algo-

rithm very efficient. Further, by the use of the BDD sub-

stitution technique, we can efficiently compute the reli-

ability of each individual distributed program even with 

imperfect nodes, while it will be difficult for the algo-

rithms in [6][7]. 

Moreover, for considering the imperfect nodes, we use 

the benchmarks Gi:j given in [8][9], ij , where i is the 

number of nodes in the network, and j represents that 

nodes n1, n2, …, nj are fully connected in network G. For 

example, Fig. 7 shows the benchmark network G8:6. The 
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program is located at n1, and files F1, F3, F5 are required to 

execute it. Table 3 gives the location of the files. Table 4 

shows the comparison of the number of subgraphs and the 

execution time among the CLK algorithm, KHR [1], 

ENR/KW [8], and the algorithm in [9]. Due to the conver-

gence of isomorphic sub-problems, the CLK algorithm 

generates far less subgraphs than other algorithms, espe-

cially for G10:9. Although Zang et al. [9] provides a method 

to analyze the dependability of a DCS with imperfect 

fault-coverage using BDD, however, the BDD represent-

ing the structure function of the DPR is generated via the 

traditional MFST-searching method. 

The CLK algorithm employs the merging method and a 

hash table to record the isomorphic subgraphs and the 

corresponding BDDs. Hence the redundant computations 

of isomorphic subgraphs can be avoided by looking up in 

the hash table. The average hit rate is about 28.03%. The 

larger the scale of the DCS becomes, the higher the hit rate 

is. This makes the CLK algorithm much more efficient. In 

addition, we apply the BDD substitution technique only 

after the BDD representation of the DCS with perfect 

nodes has been constructed. This technique can reduce the 

time spent in BDD manipulation and therefore, improve 

the performance of the CLK algorithm. 

To compute the terminal-pair network reliability (TPR) 

for a network with perfect or imperfect nodes, we distrib-

ute a required file on the source node as well as another 

required file on the destination node, and empty the set of 

FA in the rest of nodes. Then, the DPR of such distribution 

of the resource files will be the TPR. Table 5 shows a com-

parison of the CLK algorithm with TPR/NF [22] and 

ENR/KW [8] for evaluating the TPR with imperfect nodes. 

The average hit rate is about 55.92%. The results show a 

great improvement on the execution time, especially for 

benchmark G10:9.

Node 1

FA1: F1F6

PRG1: P4

Node 3

FA3: F3F5

PRG3: P3

Node 2

FA2: F2

PRG2: Ø

Node 5

FA5: F4F5

PRG5: Ø

Node 6

FA6: F6

PRG6: P1

Node 8

FA8: F3F8

PRG8: Ø

FN1 = F1F2F5F7F8

FN2 = F1F3F5F8

FN3 = F1F2F4F6F8

FN4 = F2F3F4F5F7F8

Node 4

FA4: F4F8

PRG4: Ø

Node 7

FA7: F2F7

PRG7: P2

Node 1

FA1: F1F6

PRG1: P4

Node 1

FA1: F1F6

PRG1: P4

Node 3

FA3: F3F5

PRG3: P3

Node 3

FA3: F3F5

PRG3: P3

Node 2

FA2: F2

PRG2: Ø

Node 2

FA2: F2

PRG2: Ø

Node 5

FA5: F4F5

PRG5: Ø

Node 5

FA5: F4F5

PRG5: Ø

Node 6

FA6: F6

PRG6: P1

Node 6

FA6: F6

PRG6: P1

Node 8

FA8: F3F8

PRG8: Ø

Node 8

FA8: F3F8

PRG8: Ø

FN1 = F1F2F5F7F8

FN2 = F1F3F5F8

FN3 = F1F2F4F6F8

FN4 = F2F3F4F5F7F8

Node 4

FA4: F4F8

PRG4: Ø

Node 4

FA4: F4F8

PRG4: Ø

Node 7

FA7: F2F7

PRG7: P2

Node 7

FA7: F2F7

PRG7: P2

Figure 6. A complex DPS with eight processing elements. 

Table 2. The comparison of the number of subgraphs generated from different algorithms. 

  FST_SPR [6] HRFST [7] CLK 

Distributed 

program

DPR with 

perfect 

nodes 

# of 

subgraphs 

# of 

subgraphs

# of 

subgraphs

DPR with

imperfect 

nodes 

# of SS

hash hits

Hit ratio 

(%) 

Execution 

Time 

in seconds

P1 0.9961182 445 113 95 0.700269 165 63.46 0.08 

P2 0.9963265 334 124 85 0.766953 107 55.73 0.05 

P3 0.9984532 309 118 95 0.777947 141 59.75 0.07 

P4 0.9963256 389 140 76 0.761795 89 53.94 0.06 

n4

n1 n2

n3

n5n6

n7

n8

n4

n1 n2

n3

n5n6

n7

n8

Figure 7. Benchmark network G8:6.

Table 3. File distribution. 

Node Files Node Files 

n1 F1 F2 F3 n6 F6 F7 F8

n2 F2 F3 F4 n7 F1 F7 F8

n3 F3 F4 F5 n8 F1 F2 F8

n4 F4 F5 F6 n9 F3 F7 F8

n5 F5 F6 F7 n10 F1 F4 F7
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Table 6 shows a comparison of the sizes of BDD and 

the execution times with different ordering strategies. 

CLK_BFS represents the CLK algorithm with breadth-first 

searching ordering strategy. CLK_ISO represents the CLK 

algorithm with the ordering strategy as described in Sec-

tion 3.2. The result shows that a breadth-first vari-

able-ordering obtained in [14][15][18] is not good enough 

for distributed computing networks. However, the heuristic 

ordering strategy depicted in Section 3.2 is a good candi-

date for DCS, especially in G10:9.

6. Conclusions 

In this paper, we have proposed an efficient algorithm 

for evaluating the reliability of a distributed computing 

system. The CLK algorithm can avoid redundant computa-

tions during the evaluation by converging isomorphic sub 

problems. The experimental results show that the CLK al-

gorithm has a great improvement on the execution time 

compared to the previous works. Based on BDD, the CLK 

algorithm has the capability to support a large amount of 

Boolean manipulations and therefore, is applicable to 

large-scale distributed computing networks. In addition, 

using the BDD substitution technique, the CLK algorithm 

can be efficiently applied to a DCS network with imperfect 

nodes. Moreover, the BDD-based methodologies in [19] 

for the dependability analysis of systems can be integrated 

with the CLK algorithm. Based on this approach, re-

searches on sensitivity analysis, importance measures, 

failure frequency analysis or optimal design issues of dis-

Table 4. The comparison of different algorithms for evaluating DPR. 

 # of subgraphs Time in seconds # of SS Hit ratio  

Network KHR [1]  ENR/KW [8] CLK KHR [1] ENR/KW [8] ZST [9] CLK hash hits (%) DPR 

G8:4 37 16 25 0.030 0.005 0.05 0.02 3 10.71 0.891551

G10:4 55 20 37 0.037 0.014 0.05 0.04 5 11.90 0.889355

G8:6 306 72 55 0.412 0.015 0.06 0.05 12 17.91 0.898896

G8:7 1159 289 63 4.280 0.055 0.07 0.06 17 21.25 0.899061

G10:7 3443 462 175 9.850 0.148 0.08 0.11 65 27.08 0.899057

G8:8 3225 1196 63 36.300 0.222 0.15 0.09 17 21.25 0.899090

G10:8 20464 2556 223 230.000 0.817 0.25 0.21 101 31.17 0.899092

G10:9 131899 17832 255 8000.000 5.640 1.83 0.42 129 33.59 0.899099

Table 5. The comparison of different algorithms for evaluating TPR. 

 # of subgraphs Time in seconds # of SS Hit ratio  

Network TPR/NF [22] ENR/KW [8] CLK TPR/NF [22] ENR/KW [8] CLK hash hits (%) TPR 

G8:4 157 48 39 0.039 0.012 0.03 17 30.36 0.806942

G10:4 365 226 75 0.157 0.065 0.05 65 46.43 0.701621

G8:6 2823 1839 111 2.083 0.438 0.09 101 47.64 0.809823

G8:7 33085 11883 127 26.000 2.900 0.23 129 50.39 0.809967

G10:7 36513 27077 351 40.700 10.100 0.49 433 55.23 0.809964

G8:8 383563 69918 127 230.000 18.800 0.84 129 50.39 0.809992

G10:8 553431 234847 447 663.000 100.000 1.69 625 58.30 0.809993

G10:9 10405589 2245128 511 13300.000 990.000 16.03 769 60.08 0.809999

Table 6. Different ordering strategies of CLK. 

 # of Nodes in BDD Time in seconds 

Network CLK_BFS CLK_ISO CLK_BFS CLK_ISO 

G8:4 56 28 0.03 0.02 

G10:4 60 36 0.04 0.04 

G8:6 416 74 0.07 0.05 

G8:7 1420 164 0.09 0.06 

G10:7 1424 192 0.17 0.11 

G8:8 3237 445 0.14 0.09 

G10:8 5327 535 0.39 0.21 

G10:9 22240 2177 1.10 0.42 
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tributed processing systems will be the focus of our future 

works. 
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