
Improving Fast Paxos:
being optimistic with no overhead∗

Bernadette Charron-Bost
Ecole polytechnique

91128 Palaiseau, France

André Schiper†

EPFL
1015 Lausanne, Switzerland

Abstract

The paper addresses the cost of consensus algorithms.
It has been shown that in the best case, consensus can be
solved in two communication steps withf < n/2, and
in one communication step withf < n/3 (f is the maxi-
mum number of faulty processes). This leads to a dilemma
when choosing a consensus algorithm: greater efficiency or
higher resiliency degree. Recently Lamport has proposed
a solution calledFast Paxos, for partly escaping from this
dilemma. The idea is to combine two types of rounds in
a single consensus algorithm: fast rounds and rounds of
the ordinaryPaxosalgorithm. In the best case,Fast Paxos
solves consensus in one fast round, that is it requires only
one communication step. Unfortunately, the combination
induces some time overhead, and soFast Paxosbecomes
more expensive than ordinaryPaxoswhen fast rounds do
not succeed. In this paper we go one step further: we show
that it is possible to tentatively execute a fast round before a
classical round without any time overhead if the fast round
does not succeed.

1 Introduction

Consensus is one of the most fundamental problems in
fault tolerant distributed computing, a problem related to
state machine replication [19]. This importance explains
why consensus has attracted so much attention. Solving
consensus goes back to the early eighties with the FLP im-
possibility result, stating that the problem is not solvable by
a deterministic algorithm in an asynchronous system if one
single process may crash [8]. Since this result, many pro-
gresses have been accomplished. In the context of system
models, the major results are the definition of the partially

∗ c© 2006 IEEE; Proc. of the 12th IEEE Pacific Rim Int. Symp. on
Dependable Computing (PRDC), Riverside, CA, USA, December 2006,
pp 287–295.
†Research funded by the Swiss National Science Foundation under

grant number 200021-111701.

synchronous system in which consensus is solvable [6, 7],
and the definition of failure detectors as an augmentation of
the asynchronous model that makes consensus solvable [4].
In the context of algorithms, two major contributions were
the DLS algorithm in [7] and thePaxosalgorithm [10, 11],
which both have the property that the agreement property
of consensus is never violated even if messages are lost
and the system is asynchronous. The latter feature (no
agreement violation despite asynchronism) holds for the
Chandra-Toueg (CT) consensus algorithm based on the fail-
ure detector3S [4]. As shown in [5], thePaxosand theCT
algorithms have strong similarities (both are based on the
samelast votingscheme), but also have significant differ-
ences: (1)Paxostolerates link failures whileCT requires
reliable links, (2)CT requires a majority of correct pro-
cesses not to block, butPaxosonly requires that at some
point in the computation, a majority of processes behave
correctly, and (3)CT is based on the static rotating coordi-
nator paradigm, whilePaxosallows the leader to be deter-
mined dynamically.

Once solving consensus became well understood, the
cost of consensus algorithms started to become a hot topic.
One of the cost criteria that received a lot of attention is the
number of communication steps (also calledtime complex-
ity) to reach a decision in the best case, which corresponds
to nice runs of the algorithm.PaxosandCT have a time
complexity of 3 in the best case. This value can be reduced
to 2, as shown initially by the early consensus algorithm
in [18]. Later Brasileiroet al. [3] and Pedoneet al. [15] 1

have shown that this value can be reduced to 1 under two
conditions: (1) 2/3 correct processes and (2) all consensus
initial values identical. This leads to the following dilemma
when choosing a consensus algorithm: is it better to choose
(1) an algorithm with a resiliency degreef less thann/2 and
two communication steps, or (2) an algorithm withf < n/3
and one communication steps if all initial values are identi-
cal. Note that identical initial values are typically obtained

1In the context of atomic broadcast, which adds one communication
step wrt. consensus.

when, using consensus to solve atomic broadcast, messages
that are to be broadcast are spontaneously ordered (e.g., on a
LAN). So it is a quite realistic assumption in some contexts
such as atomic broadcast.

Recently Lamport has proposed a solution for partly
escaping from this dilemma. The algorithm, calledFast
Paxos [13], combines rounds of two algorithms:classic
rounds andfastrounds. Classic rounds are similar to rounds
in the Paxos algorithm, while fast rounds allow processes
to make a decision in one communication step if all initial
values are equal. If a fast round does not succeed, the algo-
rithm switches to classical rounds. The algorithm depends
on various parameters, and we can adjust the latter so that
(1) if termination in a classical round requiresf < n/2,
then termination in a fast round requiresf ≤ bn/4c, and (2)
if termination in a classical round requiresf < n/3, then
termination in a fast round also requiresf < n/3. Note
that Fast Paxos achieves the time complexity and resilience
bounds given in [12]. However, there is no free lunch with
Fast Paxos: switching from a fast round to a classical round
has a cost. So, if fast rounds do not succeed often enough in
a sequence of consensus, then it is more efficient to use only
classical rounds. In other words,Paxosmay sometimes be
better thanFast Paxos, as recognized by Lamport in [13]:
“ If collisions are too frequent, then classicPaxosmight be
better thanFast Paxos.” (a “collision” corresponds to the
case where the initial values of consensus are not all equal,
which prevents fast rounds to be successful).

In this paper we go one step further. We show that con-
trary toFast Paxos, it is possible to combine rounds of two
consensus algorithms without any overhead (and without
contradicting [13]). In other words, we show that tentatively
executing a fast round before a classical round (in case the
fast round does not succeed) is not more costly than only
executing a classical round.

The rest of the paper is structured as follows. Section 2
introduces the model that we use to express our consensus
algorithms. Section 3 gives the two algorithms that we later
combine: one is basically thePaxosalgorithm, and the other
one consists in some derandomization of the Rabin con-
sensus algorithm [16]. Section 4 presents our contribution,
namely a consensus algorithm in which the execution of un-
successful fast rounds does not penalize the time complex-
ity of the overall algorithm. Finally, Section 5 concludes the
paper.

2 Model for expressing algorithms and con-
sensus

We express below our algorithms in the new HO model
(HO = Heard Of) that we have defined in [5]. It is inspired
by the asynchronous round model defined by Dwork, Lynch
and Stockmeyer [7], extended by Gafni [9], and by the work

of Santoro and Widmayer [17]. In the HO model, computa-
tion consist ofasynchronouscommunication-closed rounds
(a message sent but not received in roundr is lost). Con-
sider a setΠ of processes. At each round, any process first
sends a message to all (send phase), then receives a subset of
the messages sent (receive phase), and finally does some lo-
cal computation (transition phase). We denote byHO(p, r)
the set of processes thatp hears ofat roundr, i.e., the pro-
cesses (including itself) from whichp receives a message
at roundr. There can be various reasons for not receiving
a message: the message may have been lost by the chan-
nel (link failure), the sender might not have sent the mes-
sage (send omission), the receiver might not have received
the message (receive omission). The key point is that the
model describes just transmission faults at each round with-
out attributing these faults to some components (process,
channel).

For any roundr, its kernel is defined as the set of processes

K(r) =
⋂

p∈Π

HO(p, r).

The kernelK(φ) of a setφ of rounds is defined as

K(φ) =
⋂

∀r∈φ

K(r).

An HO modelis defined by the predicate — over the col-
lection of sets(HO(p, r))p∈Π,r>0 — that it guarantees for
all computations. For example, we shall consider the HO
model in which at least one round isuniform, that is the HO
model defined by the predicate:

∃r0 > 0, ∀p, q ∈ Π2 : HO(p, r0) = HO(q, r0).

A problem is solvable in an HO model defined by pred-
icateP if there exists an (round-based) algorithmA, such
that all runs ofA satisfyingP meet the problem specifi-
cation. In this paper, we focus on theConsensusproblem,
specified in our approach by the following properties:

• Integrity: Any decision value is the initial value of
some process.

• Agreement:No two processes decide differently.

• Termination:All processes eventually decide.

Since there is no notion of faulty process in an HO model, a
process is never exempted from making a decision (see Ter-
mination). Such a strong liveness requirement may seem
unreasonable in two basic respects. First, it may make Con-
sensus needlessly unsolvable in the sense that the resulting
Consensus specification might not be solvable in the HO
counterpart of a system in which the classical Consensus
problem is solvable (termination requirement holds only for
correct processes). In [5] we show that this objection does

2

not hold for all the classical types of systems where Consen-
sus is solvable. The second question is the applicability of
algorithms in whichall processes decide, for systems with
real crash failures. The fundamental point here is that a
process that has crashed can take no step, and so is no more
heard by any process. Consequently, what actually happens
on this process has no impact on the rest of the computa-
tion. This is why there is no problem to implement an HO
algorithm solving the Consensus specification given above,
in a system with possible crash failures: the capability of
making a decision provided by the HO algorithm is just not
implemented by processes that have crashed.

Besides, the HO approach has many advantages. First,
it leads to very concise and simple algorithms. Second, the
high abstraction level provided by HO models allows us to
interpret predicates on theHO’s in multiple ways, includ-
ing link failures: two different types of system may have the
same HO counterpart. Third, predicates allow us to identify
synthetic conditions under which consensus algorithms are
correct. In particular, [5] rigorously establishes some weak
conditions that are sufficient to ensure termination of the
Paxosalgorithm. More generally, correctness proofs in HO
models are much more direct and elegant since they are no
more smothered by the analysis of the causes of transmis-
sion faults.

Round vs. phase: In several papers (e.g., [10, 4]) con-
sensus algorithms are structured intorounds, where a round
consists of severalphases. This terminology conflicts with
the notion of rounds in HO models. We swap the words
round andphaseto use classical terminology [14]: in the
paper, a consensus algorithm is structured intophases,
where each phase consists of one or more consecutive
rounds. With this terminology, time complexity simply cor-
responds to the number of rounds.

Fast decision from some initial configurationvs. global
fast decision: In the paper we are interested in thefast
decisionof consensus algorithms. Given some initial con-
figurationC,2 fast decision fromC corresponds to the “best
case” forC, that is, the minimum number of rounds re-
quired for all processes to decide fromC. Global fast de-
cisionof a consensus algorithm corresponds to the “global
best case”, that is the minimum number of rounds required
for all processes to decide over the set of all the runs of the
algorithm.

3 The two consensus algorithms

Now we describe the two consensus algorithms that we
want to combine. In the first algorithm fast decision requires

2Recall that an initial configuration is a collection of initial values, one
per process.

two rounds, whereas the second algorithm allows fast deci-
sion in just one round.

3.1 Algorithm Pa: consensus algorithm à
la Paxos

The first algorithm (see Algorithm 1), which we denote
Pa, is a direct derivation of thePaxosalgorithm [11] for
HO models, which includes two optimizations already de-
scribed in the literature [2], allowing us to reduce the num-
ber of communication steps in “nice” runs.

The algorithm is decomposed into phases, where each
phaseφ consists of three rounds, namely rounds3φ − 2,
3φ− 1, and3φ. Each roundr starts with thesendpart de-
noted bySr (see line 7). Each processp then receives mes-
sages from every process inHO(p, r). Finally, processes
execute thestate transitionpart denoted byT r (see line 10).
Note that the conditions at lines 11, 20 and 27 should not be
misinterpreted.These are not conditions that define when
the state transition partT r starts: the start of theT r part
is defined by the predicates over the HOs.If the conditions
at lines 11, 20 and 27 are false in some roundr for process
p, thenp skips the correspondingT r part; processp is not
blocked!

The notationcoordp(φ) in Algorithm 1 denotes the pro-
cess thatp considers to be the coordinator in phaseφ. As
in Paxos, the procedure for selecting coordinators is outside
of the algorithm. As inPaxos, we can have multiple coor-
dinators in the same phase, i.e., for two processesp, q and
phaseφ, we can havecoordp(φ) 6= coordq(φ). Note that if
two coordinators coexist in phaseφ, because of line 9, the
condition of line 11 can be true for at most one coordinator,
i.e., at most one coordinator can send a proposal in phaseφ
at line 18.

Two optimizations, allowing fast decision in two rounds,
are included inPa. The first optimization consists in mod-
ifying Sr so that each process sends a〈ack〉 message at
round3φ to all processes, rather than only to its coordinator
(see line 25). The second optimization consists in skipping
the first round of every phase whenever the round is not
needed, that is whenever the coordinator is the same as in
the previous phase. To keep the algorithm simple, only the
first optimization is implemented here.

Table 1 gives the conditions under which the algorithm
is correct: safety is always guaranteed and liveness requires
the existence of some phaseφ0 in which (1) all theHO’s
contain more thann/2 elements, (2) all processes agree on
the same coordinator denotedcoord(φ0), and (3) all pro-
cesses hear ofcoord(φ0), i.e.,coord(φ0) ∈ K(φ0).

Fast decision: No decision is possible in less than 2
rounds. Moreover, fast decision does not depend on some

3

Algorithm 1 Algorithm Pa: the consensus algorithm̀a la
Paxos.
1: Initialization:
2: xp ∈ V , initially vp {vp is the initial value ofp}
3: votep ∈ V ∪ {?}, initially vp

4: voteToSendp a Boolean,
initially true if ∀q : Coord(q, 1) = p elsefalse

5: tsp ∈ IN, initially 0

6: Round r = 3φ− 2 :
7: Sr :
8: if φ > 1 then
9: send〈xp , tsp〉 to coordp(φ)

10: T r :
11: if p = coordp(φ) and (φ > 1) and (#〈x , ts〉 received> n/2) then
12: let θ be the largestθ from 〈−, θ〉 received
13: votep := onex such that〈x , θ〉 is received
14: voteToSendp := true

15: Round r = 3φ− 1 :
16: Sr :
17: if p = coordp(φ) and voteToSendp then
18: send〈votep〉 to all processes

19: T r :
20: if received〈v〉 from coordp(φ) then
21: xp := v ; tsp := φ

22: Round r = 3φ :
23: Sr :
24: if tsp = φ then
25: send〈ack, xp〉 to all processes

26: T r :
27: if ∃v such that#〈ack, v〉 received> n/2 then
28: DECIDE(v)
29: voteToSendp := false

particular initial configurations: it depends on the cardinal-
ity of the setsHO and the coordinators in the first phase
(see Table 3).

3.2 Algorithm Ra(R): consensus algorithm
à la Rabin

The second algorithm (see Algorithm 2), which we de-
note Ra, can be viewed as a deterministic version of the
Rabin consensus algorithm [16, 15]. A similar scheme is
used in [3] and in the fast rounds ofFast Paxos[13].

Each phase of theRa algorithm, parameterized with a
constantR, consists of one single round. The interesting
feature of the algorithm is that making a decision is possi-
ble in one round if all the initial values are identical (the
practical relevance of this case is discussed in Section 1).
Table 2 gives precise conditions under which the algorithm
is correct. Safety requiresn > 3R: the latter condition en-
sures that if some process decidesv at line 13 of roundr,
then in any roundr′ ≥ r, only v can be assigned to any
xp. To ensure liveness, we proceed in two steps. First, we
require that there exists some roundφ0

3 such that inφ0 all

3Since a phase consists here of one single round,phaseandroundare
equivalent.

COND.
FOR CONDITION FOR LIVENESS

SAFETY

none ∃φ0>0 ,

8
>>>>>>>>>><
>>>>>>>>>>:

∀p ∈ Π :
|HO(p, φ0)| > n/2

∀p, q ∈ Π2 :
coordp(φ0) = coordq(φ0)

∀p ∈ Π :
coordp(φ0) ∈ K(φ0)

Table 1. Conditions for the correctness of al-
gorithm Pa.

processes hear of the same setHO and |HO| ≥ n − R.
This makes the system “space uniform” in the sense that at
the end of phaseφ0, all processes have the same value for
xp. Secondly, if there exists a roundφp greater thanφ0 and
such that|HO(p, φp)| ≥ n − R, thenp makes a decision
at the end of roundφp. This discussion is summarized in
Table 2. Note that we obtain the weakest correctness condi-
tion (safety and liveness) for algorithmRa(R)for the value
R = bn−1

3 c.

Algorithm 2 TheRa(R)algorithm: the consensus algorithm
à la Rabin.

1: Initialization:
2: xp := vp { vp is the initial value ofp }
3: Round r:
4: Sr :
5: send〈 xp 〉 to all processes

6: T r :
7: if |HO(p, r)| ≥ n− R then
8: if the values received, except at mostR, are equal tox then
9: xp := x
10: else
11: xp := smallestx received
12: if n− R values received are equal tox then
13: DECIDE(x)

Fast decision: If all initial values are identical, a decision
is possible in one round. Besides, a decision is possible in
two rounds from other initial configurations (see Table 3).
The above discussion aboutRa’s correctness shows that fast
decision requires that the setsHO contain at leastn − R
elements withn > 3R, which corresponds to the weak-
est requirement|HO| > 2n/3 for parameterR = bn−1

3 c.
Note this necessary condition for fast decision is also suf-
ficient from initial configurations with identical values, i.e.,
for global fast decision.

4

COND.
FOR CONDITION FOR LIVENESS

SAFETY

∃φ0 > 0, ∃HO, |HO| ≥ n−R :
n > 3R 8

<
:

∀p : HO(p, φ0) = HO
∧

∀p, ∃φp > φ0 : |HO(p, φp)| ≥ n−R

Table 2. Conditions for the Ra(R)algorithm.

3.3 Summary

Table 3 summarizes the features of the two algorithms
Pa andRa(R). For fast decision, the best algorithm isRa.
However the algorithm has a stronger requirement on the
cardinalities of theHO’s.

COND. GLOBAL FAST

ALG. ON |HO| FAST DECISION

FOR FAST DECISION FROM OTHER

DECISION INIT CONFIG

Pa > n/2 2 2
Ra (bn−1

3 c) > 2n/3 1 2

Table 3. Fast decision of the two consensus
algorithms.

4 Combining the Ra(R)and Pa consensus al-
gorithms

When combining the two consensus algorithmsPa and
Ra(R), our aim is to obtain an algorithm that inherits the
best features ofPa and ofRa(R). The three criteria that
we consider appear in Table 3: (1) condition on|HO|, (2)
global fast decision, (3) fast decision from other initial con-
figurations.

A simple way to combine two consensus algorithmsA
andA′ is just to juxtaposeA andA′, that is to executeA
and A′ in parallel (with the variables ofA being distinct
from the variables ofA′). Unfortunately the solution does
not work: since the decision value is not entirely determined
by the set of initial values, one process may decidev by al-
gorithmA, while another process decidesv′ 6= v by algo-
rithm A′. So the two algorithms need to be “semantically
merged”. To guarantee agreement, the merging procedure
must ensure that a configurationC is v-valent4 for one of

4A configurationC of an algorithm isv-valent if, from C, the only

the algorithms iff it is alsov-valent for the other algorithm.
We now describe another combination ofRa(R)andPa

that has thebest features of eachof the two algorithmswith-
out any overhead. We shall proceed in two steps: we pro-
pose a first combination, and then improve it to get the final
algorithm.

4.1 Hybrid-1(R): first combination of Ra(R)
and Pa

The first combination ofRa(R) and Pa is called
Hybrid-1(R). When the initial values are identical, similarly
to Ra(R), we wantHybrid-1(R) to be able to decide at the
end of the first round. Similarly toPa, we wantHybrid-1(R)
to be able to decide with only|HO| > n/2. The solution is
given by Algorithm 3:

• Round3φ − 2 of Hybrid-1(R)is obtained by merging
roundφ of Ra(R)and round3φ− 2 of Pa.

• Rounds3φ− 1 and3φ of Hybrid-1(R)are identical to
the corresponding rounds ofPa.

For agreement, we must ensure that if some process de-
cidesx as inRa(R), then a coordinator ofPa selectsx as
the vote to send to the participants. The key idea is the fol-
lowing. A process can decidex according toRa(R)if n−R
values received are equal tox (see lines 11, 12). For an-
other processp to detect thatx might have been decided,
p needs to receive at least2R messages: indeed, in this
case any majority among these2R messages consists of
messages equal tox. This is expressed in line 13 by the
condition “> max(− , 2R)”, and in lines 14, 15. The con-
dition “> max(n/2,−)” in line 13 is the condition ofPa
for agreement: a coordinator can select the value with the
largest time-stamp only if it has received more thann/2
messages.

However, we must avoid that (i) the selection rule ofRa
based on the reception of2R messages and (ii) the selec-
tion rule of Pa based on the time-stamps conflict. A con-
flict exists if the following occurs at the beginning of some
phaseφ:

1. dn+1
2 e − R values received are identical tox (i.e., x

should be chosen according toRa(R), lines 14, 15).

2. The largest time-stamp is equal toθ > 0 and fordn+1
2 e

processesq, we havexq = x andtsq = θ, with x 6= x
(i.e.,x should be chosen according toPa, lines 17, 18).

If 1 and 2 both hold, the coordinator cannot choose both
x and x ! To prevent this from occurring, we must have
dn+1

2 e −R + dn+1
2 e > n (there are onlyn processes). For

n odd this leads toR = 0; for n even this leads toR ≤ 1.

possible decision value isv.

5

To avoid these constraints onR, observe that that the
conflict cannot occur in the first phaseφ = 1 (in the first
phase the coordinator does not need to select a value with
the largest time-stamp). So if lines 10 to 12 are only exe-
cuted in phaseφ = 1, then no conflict between 1 and 2 is
possible. This is expressed by conditionΦ = 1 at line 10
and by〈x , 0〉 at line 14.

The correctness condition for algorithmsHybrid-1(R)is
given in Table 4 (compare with Tables 1 and 2). We obtain
the weakest constraint onHO whenn/2 ≥ 2R, i.e., for the
valueR ≤ n/4 (see the lower bounds in [12]).

Algorithm 3 TheHybrid-1 (R)algorithm.
1: Initialization:
2: xp ∈ V , initially vp {vp is the initial value ofp}
3: votep ∈ V ∪ {?}, initially ?
4: voteToSendp a Boolean, initiallyfalse
5: tsp ∈ IN, initially 0

6: Round r = 3φ− 2 :
7: Sr :
8: send〈xp , tsp, coordp(φ)〉 to all processes

9: T r :
10: if (φ = 1) and #〈−,−,−〉 received≥ n− R then
11: if n− R messages received are equal to〈x,−,−〉 then
12: DECIDE(x)
13: if p=coordp(φ) and #〈−,−, p〉 received> max(n/2, 2R) then
14: if the messages received, except at mostR, are equal to〈x , 0, p〉 then
15: votep := x
16: else
17: let θ be the largestθ from 〈−, θ, p〉 received
18: votep := x such that〈x, θ, p〉 is received
19: voteToSendp := true

20: Round r = 3φ− 1 :
21: Sr :
22: if p = coordp(φ) and voteToSendp then
23: send〈votep〉 to all processes

24: T r :
25: if received〈v〉 from coordp(φ) then
26: xp := v ; tsp := φ

27: Round r = 3φ :
28: Sr :
29: if tsp = φ then
30: send〈ack, xp〉 to all processes

31: T r :
32: if ∃v s.t.#〈ack, v〉 received> n/2 then
33: DECIDE(v)
34: voteToSendp := false

Fast decision of Hybrid-1(R): If all initial values are
identical, a decision is possible in one round. It requires
that the setHO contains at leastn − R elements (line 10).
With the condition|HO| > max(n/2, 2R), the weakest
requirement on the size of the setHO is whenn/2 = 2R
(i.e.,R = bn/4c), which leads to|HO| ≥ n−n/4 = 3n/4
(see Table 5). Besides, a decision is possible in three
rounds from other initial configurations; it only requires
|HO| > n/2.

COND.
FOR CONDITION FOR LIVENESS

SAFETY

n > 3R ∃φ0>0 ,

8
>>>>>>>>>><
>>>>>>>>>>:

∀p ∈ Π :
|HO(p, φ0)| > max(n/2, 2R)

∀p, q ∈ Π2 :
coordp(φ0) = coordq(φ0)

∀p ∈ Π :
coordp(φ0) ∈ K(φ0)

Table 4. Conditions for the Hybrid-1 (R) algo-
rithm.

Algorithm Hybrid-1(R)is worse thanRaandPa in terms
of fast decision “from other initial configurations” (see Ta-
ble 5). This is because the round 1 ofHybrid-1(R)serves
only for making a fast decision when all the initial values
are identical. If this is not the case, then round 1 is useless.
In Section 4.3 we modify round 1 ofHybrid-1(R)to make
it useful even if the initial values are not identical.

COND. GLOBAL FAST

ON HO FAST DECISION

ALGORITHM FOR DECI- FROM

CORRECT- SION OTHER INIT

NESS CONFIG

Ra (bn−1
3 c) > 2n/3 1 2

Pa > n/2 2 2
Hybrid-1 (bn/4c) ≥ 3n/4 1 3
Hybrid-1 (bn/4c) > n/2 3 3

Table 5. Fast decision of algorithm
Hybrid-1 (R) (fast decision depends on the
size of HO).

4.2 Hybrid-1(R): proof of correctness

We now proof the correctness of algorithmHybrid-1(R).
Validity is obvious. We show that agreement and termina-
tion hold.

Proposition 4.1 If the condition for safety of Table 4 holds,
algorithmHybrid-1(R)satisfies agreement for anyR < n.

Proof: We have two cases to consider: (1) the first deci-
sion at line 12 in phaseφ = 1, and (2) the first decision

6

decision at line 33 in any phase.
Case (1): If two processes decide at line 12, the con-

dition n > 3R ensures that they both decide the same
value. Consider now the case where some process decides
at line 12, and the other processes at line 33. Let process
p decidex at line 12 in phaseφ = 1. So, forn − R pro-
cessesq we havexq = x. A decision at line 33 is only
possible after some coordinator has executed lines 13 to 19.
Consider the smallest phase in which some coordinatorc
executes these lines. Since|HO(c, r)| > max(n/2, 2R)
(line 13), we have|HO(c, r)| > 2R. This ensures that the
condition of line 14 evaluates totrue for the valuex, i.e.,
c setsvotec to the valuex. From here on, it is easy to see
that any processq that updatestsq at line 26, assignsx to
xq. So onlyx can be decided.

Case(2): Let φ0 be the smallest phase in which some
processp decidesx at line 33. So, forn/2 processesq we
havexq = x, tsq = φ0 and for the other processesq′ we
havetsq′ < φ0. From here on a coordinatorc in some phase
larger thanφ0 can only assignx to votec. So onlyx can be
decided. 2

Proposition 4.2 If the condition for liveness of Table 4
holds, algorithm Hybrid-1(R) satisfies termination.

Proof: Let φ0 be a phase that satisfies the conditions for
liveness of Table 4. Letc = coord(φ0) be the unique coor-
dinator of phaseφ0. Since|HO(c, φ0)| > max(n/2, 2R)
(Table 4), for processc the condition at line 13 evaluates to
true , voteToSendc is set totrue (line 19), andvotec is
sent to all (line 23). Sincec ∈ K(φ0) (Table 4) every pro-
cess receives the vote ofc at line 25, and sends〈ack, xp〉 to
all processes (line 30). Since for allp, |HO(p, φ0)| > n/2
(Table 4), every process receives more thann/2 of these
messages (line 32) and decides at line 33. 2

4.3 Hybrid-2(R): an improved combination of
Ra(R)and Pa

The first round ofHybrid-1(R)is useless when initial val-
ues are not identical. In our second combination ofPa and
Ra(R)that we callHybrid-2(R), the first round is used for
two purposes: (1) to decide at the first round if possible (as
in Hybrid-1(R)andHybrid-1(R)), and (2) to have a coordi-
nator trying to impose its initial value. However (1) and (2)
must be consistent. This means that some valuev proposed
by the coordinator in round 1 can be adopted by a partici-
pant if and only if, according toRa(R), the initial configu-
ration is notv′-valent withv′ 6= v.

Algorithm 4 shows the first phase ofHybrid-2(R). The
other phases ofHybrid-2(R) are identical toHybrid-1(R).
The key idea ofHybrid-2(R) is in lines 12 to 19. Contrary
to Hybrid-1(R), where the corresponding lines are executed

only by the coordinator, these lines are executed byall pro-
cesses. If the condition of line 13 holds, then the initial
configuration may bex-valent with respect toRa(R). In this
case, the value received from the coordinator is ignored,un-
lessx is also received from the coordinator(line 15). If the
value received from the coordinator is ignored, then the first
phase is useful only for fast decision, similarly toHybrid-
1(R). Since our aim is to make the first round always use-
ful, the value received from the coordinator at phase 1 must
never be ignored, which requiresR = 0.

Algorithm 4 First phase ofHybrid-2(R). The other phases
are identical toHybrid-1(R).
1: Initialization:
2: xp ∈ V , initially vp {vp is the initial value ofp}
3: votep ∈ V ∪ {?}, initially ?
4: tsp ∈ IN, initially 0

5: Round r = 1 :
6: Sr :
7: send〈xp , tsp , coordp(φ)〉 to all processes

8: T r :
9: if |HO(p, r)| ≥ n− R then
10: if n− R messages received are equal to some〈x,−,−〉 then
11: DECIDE(x)
12: if |HO(p, r)| > max(n/2, 2R) then
13: if the messages received, except at mostR, are equal to〈x,−,−〉 then
14: xp := x
15: if received〈x,−,−〉 from coordp(φ) and

#〈−,−, coordp(φ)〉 received> n/2 then
16: tsp := φ
17: else
18: if received〈x,−,−〉 from coordp(φ) and

#〈−,−, coordp(φ)〉 received> n/2 then
19: xp := x; tsp := φ

20: Round r = 2 :
21: Sr :
22: if tsp = φ then
23: send〈ack , xp〉 to all processes

24: T r :
25: if ∃v s.t.#〈ack , v〉 received> n/2 then
26: DECIDE(v)

The correctness conditions ofHybrid-2(R)are the same
as those ofHybrid-1(R) (Table 4). Note that correctness
does not requireR = 0. Remember also that the condition
at lines 9, 12 and 25 are not conditions that define when
the state transition partT r starts: the start of theT r part
is defined by the predicates over the HOs. Specifically, the
condition at line 9 inHybrid-2(0) does not mean that the
algorithm blocks if one process has crashed.

Fast decision: Similarly to Hybrid-1(R), Hybrid-2(R)al-
lows fast decision in one round if initial values are all iden-
tical. If this is not the case, a decision in two rounds is pos-
sible if R = 0. Table 6 compares the characteristics of algo-
rithm Hybrid-2(0)with Ra(bn−1

3 c) andPa. The table shows
that Hybrid-2(0), similarly to Ra(bn−1

3 c), can achieve fast
decision in one round. This requires|HO| = n, while Ra
only requires|HO| > 2n/3. However, being optimistic

7

(i.e., assuming HO equal ton and all initial values identi-
cal)does not lead to any overhead if these conditions do not
hold (compare line 2 (alg.Pa) and line 4 (alg.Hybrid-2(0))
of Table 6).

COND. GLOBAL FAST

ON HO FAST DECISION

ALGORITHM FOR DECI- FROM

CORRECT- SION OTHER INIT

NESS CONFIG

Ra (bn−1
3 c) > 2n/3 1 2

Pa > n/2 2 2
Hybrid-2 (0) = n 1 2
Hybrid-2 (0) > n/2 2 2

Table 6. Fast decision of algorithm Hybrid-2(0)
(fast decision depends on the size of HO).

Discussion: R = 0 in Hybrid-2(0) does not mean that
Hybrid-2(0) is not fault tolerant. It only means that fast
decision in one round is no more possible if one process
has crashed. In this case, the fastest decision requires two
rounds. However, by excluding crashed processes using a
group membership service,fast decision in one round is
again possible. We explain now the idea.

The role of a group membership service is to add and
remove processes from a group of processes. Consider a
groupG of sizen. As long as no process inG has crashed,
we can have|HO| = |G| = n, i.e., fast decision in one
round is possible withHybrid-2(0). As soon as one process
p in G crashes, then fast decision requires two rounds, even
if all the initial values are identical. By excludingp from G,
we have a new membership forG of sizen − 1. The case
|HO| = |G| = n − 1 allows again a fast decision in one
round. Thus,Hybrid-2(0) shows the benefit of excluding
crashed processes from a group.

4.4 Hybrid-2(R): Proof of correctness

Validity of Hybrid-2(R)is obvious. If no process decides
in phaseφ0 = 1, then agreement holds with exactly the
same arguments as forHybrid-1(R). The caseφ0 = 1 is
discussed below. If the liveness conditions of Table 5 hold
in some phaseφ0 > 1, then termination is guaranteed with
exactly the same arguments as forHybrid-1(R). The case
φ0 = 1 is discussed below.

Proposition 4.3 If the condition for safety of Table 4 holds,
and if the first process that decides does so in phaseφ0 = 1,
then the algorithmHybrid-2(R)satisfies agreement.

Proof: We have two cases to consider: (1) decision at
line 11, and (2) decision at line 26.

Case (1):Let processp decidex at line 11. So, forn−R
processesq we havexq = x. We have three cases to con-
sider: (i) processq also decides at line 11 of Algorithm 4
(i.e., in phaseφ = 1), (ii) processq decides at line 26 of
Algorithm 4 (i.e., in phaseφ = 1), or (iii) processq decides
in some phaseφ > 1.
Case (i):Sincen > 3R, q necessarily decidesx.
Case (ii): If q decides at line 26, then at least one process
must have executed line 16 or line 19, i.e., the condition of
line 12 has evaluated totrue for at least one process. Con-
sider a processp′ such that the condition of line 12 evaluates
to true. Since (a)|HO(p′, r)| > 2R and (b) forn−R pro-
cessesq we havexq = x, consequently for processp′ the
condition of line 13 necessarily evaluates to true forx, i.e,
p′ setsxp′ to x (line 14). Sox is the only possible decision
value at line 26.
Case (iii): By the argument of case (ii), if some processp′

updatesxp′ in phaseφ = 1, it setsxp′ to x. So the number
of processesp′ with xp′ = x does not decrease. So if some
processp decidex at line 11, then at the end of phaseφ for
n− R processesq we havexq = x. Agreement follows by
repeating the arguments of case (1) in Proposition 4.1.

Case (2):Similar to the proof of case (2) in Lemma 4.1.
2

Proposition 4.4 If the liveness conditions of Table 4 hold in
phaseφ0 = 1, then the algorithmHybrid-2(0)terminates.

Proof: Let p be the unique coordinator of phaseφ0 = 1.
Since|HO(p, 1)| > n/2 (see Table 4) andR = 0, we have
|HO(p, 1)| > 2R. So the condition of line 12 evaluates
to true . Sincecoord(φ0) ∈ K(φ0), every processq re-
ceives the message fromcoord(φ0) at line 15 or 18, every
processq assign 1 totsq (line 16 or 19), and every pro-
cessq sends〈ack, xq〉 to all processes (line 23). For allp,
|HO(p, 1)| > n/2 (see Table 4), so every process receives
more thann/2 messages〈ack, xq〉 (line 25) and decides at
line 26. 2

5 Conclusion

The algorithmHybrid-2(0), obtained by combining two
consensus algorithms has the nice feature of being opti-
mistic without incurring any overhead in terms of time com-
plexity. The optimistic assumptions are: (1)n correct pro-
cesses, and (2) all initial values identical. If these two as-
sumptions hold,Hybrid-2(0)solves consensus in one round.
If none of these assumptions hold,Hybrid-2(0) requires 2
rounds, similarly toPa. So optimism does not lead to an
overhead, a rather surprising result.

8

As mentioned in Section 1, the idea of combining two
consensus algorithm appears inFast Paxos(an idea that pre-
viously appeared in [1] in a different context). However op-
timism has a cost inFast Paxos, whenever the optimistic
assumptions do not hold.Hybrid-2(0) has shown that it is
possible to be optimistic with no overhead.

Another interesting result ofHybrid-2(0) is that it shows
an algorithmic justification for excluding crashed processes
from a group: excluding crashed processes allows again
a decision in one round, while as long as crashed pro-
cesses are kept in the group, the fastest decision requires
two rounds.

Acknowledgements. We would like to thank Leslie Lam-
port for discussions related to Paxos and Fast Paxos, and
Tastuhiro Tsuchiya for correcting errors of a previous ver-
sion of the paper.

References

[1] M. Aguilera and S. Toueg. Failure detection and randomiza-
tion: A hybrid approach to solve consensus.SIAM J. Com-
put., 28(3):890–903, 1998.

[2] R. Boichat, P. Dutta, S. Frolund, and R. Guerraoui. Recon-
structing Paxos.ACM SIGACT News, 34(1):47–67, 2003.

[3] F. Brasileiro, F. Greve, A. Mostéfaoui, and M. Raynal. Con-
sensus in one communication step. In6th International Con-
ference Parallel Computing Technologies (PaCT), pages 42–
50. Springer Verlag, LNCS 2127, 2001.

[4] T. D. Chandra and S. Toueg. Unreliable failure detectors
for reliable distributed systems.Journal of ACM, 43(2):225–
267, 1996.

[5] B. Charron-Bost and A. Schiper. The Heard-Of model: Uni-
fying all benign failures. Technical report, EPFL, July 2006.

[6] D. Dolev, C. Dwork, and L. Stockmeyer. On the mini-
mal synchrony needed for distributed consensus.Journal of
ACM, 34(1):77–97, January 1987.

[7] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the
presence of partial synchrony.Journal of ACM, 35(2):288–
323, April 1988.

[8] M. Fischer, N. Lynch, and M. Paterson. Impossibility of
Distributed Consensus with One Faulty Process.Journal of
ACM, 32:374–382, April 1985.

[9] Eli Gafni. Round-by-round fault detectors: Unifying syn-
chrony and asynchrony. InProc of the 17th ACM Symp.
Principles of Distributed Computing (PODC), pages 143–
152, Puerto Vallarta, Mexico, June-July 1998.

[10] L. Lamport. The Part-Time Parliament. TR 49, Digital SRC,
September 1989.

[11] L. Lamport. The Part-Time Parliament.ACM Trans. on
Computer Systems, 16(2):133–169, May 1998.

[12] L. Lamport. Lower bounds for asynchronous consensus.
Technical Report MSR-TR-2004-71, Microsoft, 2004.

[13] L. Lamport. Fast Paxos. Technical Report MSR-TR-2005-
12, Microsoft, 2005.

[14] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann,
1996.

[15] F. Pedone, A. Schiper, P. Urban, and D. Cavin. Solv-
ing Agreement Problems with Weak Ordering Oracles. In
Proceedings of the 4th European Dependable Computing
Conference (EDCC-4), LNCS-2485, pages 44–61, Toulouse,
France, October 2002. Springer-Verlag.

[16] M. Rabin. Randomized Byzantine Generals. InProc. 24th
Annual ACM Symposium on Foundations of Computer Sci-
ence, pages 403–409, 1983.

[17] N. Santoro and P. Widmayer. Time is not a healer. InPro-
ceedings of the 6th Symposium on Theor. Aspects of Com-
puter Science, pages 304–313, Paderborn, Germany, 1989.

[18] A. Schiper. Early consensus in an asynchronous system with
a weak failure detector.Distributed Computing, 10(3):149–
157, April 1997.

[19] F. B. Schneider. Implementing Fault Tolerant Services Us-
ing the State Machine Approach: A Tutorial.Computing
Surveys, 22(4):299–319, December 1990.

9

