Improving Fast Paxos:
being optimistic with no overhead*

Bernadette Charron-Bost André Schipef
Ecole polytechnique EPFL
91128 Palaiseau, France 1015 Lausanne, Switzerland
Abstract synchronous system in which consensus is solvable [6, 7],

and the definition of failure detectors as an augmentation of

The paper addresses the cost of consensus algorithmsthe asynchronous model that makes consensus solvable [4].
It has been shown that in the best case, consensus can b the context of algorithms, two major contributions were
solved in two communication steps with < n/2, and the DLS algorithm in [7] and thPaxosalgorithm [10, 11],
in one communication step with < n/3 (f is the maxi- which both have the property that the agreement property
mum number of faulty processes). This leads to a dilemmaof consensus is never violated even if messages are lost
when choosing a consensus algorithm: greater efficiency orand the system is asynchronous. The latter feature (no
higher resiliency degree. Recently Lamport has proposedagreement violation despite asynchronism) holds for the
a solution calledFast Paxosfor partly escaping from this ~ Chandra-TouegXT) consensus algorithm based on the fail-
dilemma. The idea is to combine two types of rounds in ure detecto>S [4]. As shown in [5], thePaxosand theCT
a single consensus algorithm: fast rounds and rounds of algorithms have strong similarities (both are based on the
the ordinaryPaxosalgorithm. In the best cas&ast Paxos samelast votingscheme), but also have significant differ-
solves consensus in one fast round, that is it requires onlyences: (1)Paxostolerates link failures whileCT requires
one communication step. Unfortunately, the combination reliable links, (2)CT requires a majority of correct pro-
induces some time overhead, andFsast Paxodecomes cesses not to block, biRaxosonly requires that at some
more expensive than ordina®axoswhen fast rounds do point in the computation, a majority of processes behave
not succeed. In this paper we go one step further: we showcorrectly, and (3CT is based on the static rotating coordi-
that it is possible to tentatively execute a fast round before anator paradigm, whiléaxosallows the leader to be deter-
classical round without any time overhead if the fast round mined dynamically.

does not succeed. Once solving consensus became well understood, the
cost of consensus algorithms started to become a hot topic.
One of the cost criteria that received a lot of attention is the
1 Introduction number of communication steps (also caltede complex-
ity) to reach a decision in the best case, which corresponds

Consensus is one of the most fundamental problems int© Nice runs of the algorithm.Paxosand CT have a time
fault tolerant distributed computing, a problem related to COMPIexity of 3 in the best case. This value can be reduced
state machine replication [19]. This importance explains [0 2, @s shown initially by the early consensus algognhm
why consensus has attracted so much attention. Solvinqqn [18]. Later Brasileircet al. [3] and Pedonet al. [15]
consensus goes back to the early eighties with the FLP jm-"ave shown that this value can be reduced to 1 under two
possibility result, stating that the problem is not solvable by conditions: (1) 2/3 correct processes and (2) all consensus

a deterministic algorithm in an asynchronous system if one INitial values identical. This leads to the following dilemma
single process may crash [8]. Since this result, many pro_when choosing a consensus algorithm: is it better to choose

gresses have been accomplished. In the context of systerfit) @n algorithm with aresiliency degr¢éess tham /2 and
models, the major results are the definition of the partially WO communication steps, or (2) an algorithm wjth< n/3
and one communication steps if all initial values are identi-

*(© 2006 IEEE; Proc. of the 12th IEEE Pacific Rim Int. Symp. on ca|. Note that identical initial values are typically obtained
Dependable Computing (PRDC), Riverside, CA, USA, December 2006,
pp 287-295.

TResearch funded by the Swiss National Science Foundation under !In the context of atomic broadcast, which adds one communication
grant number 200021-111701. step wrt. consensus.

when, using consensus to solve atomic broadcast, messaged Santoro and Widmayer [17]. In the HO model, computa-
that are to be broadcast are spontaneously ordered (e.g., ontéon consist ofasynchronousommunication-closed rounds
LAN). Soitis a quite realistic assumption in some contexts (a message sent but not received in rourid lost). Con-
such as atomic broadcast. sider a sefl of processes. At each round, any process first
Recently Lamport has proposed a solution for partly sends a message to all (send phase), then receives a subset of
escaping from this dilemma. The algorithm, calleast the messages sent (receive phase), and finally does some lo-
Paxos[13], combines rounds of two algorithmslassic cal computation (transition phase). We denotdh (p,)
rounds andastrounds. Classic rounds are similar to rounds the set of processes thahears ofat roundr, i.e., the pro-
in the Paxos algorithm, while fast rounds allow processescesses (including itself) from which receives a message
to make a decision in one communication step if all initial at roundr. There can be various reasons for not receiving
values are equal. If a fast round does not succeed, the algoa message: the message may have been lost by the chan-
rithm switches to classical rounds. The algorithm dependsnel (link failure), the sender might not have sent the mes-
on various parameters, and we can adjust the latter so thasage (send omission), the receiver might not have received
(1) if termination in a classical round requirgs< n/2, the message (receive omission). The key point is that the
then termination in a fast round requirgs< |n/4], and (2) model describes just transmission faults at each round with-
if termination in a classical round requirgs< n/3, then out attributing these faults to some components (process,
termination in a fast round also requirgs< n/3. Note channel).
that Fast Paxos achieves the time complexity and resilienc
bounds given in [12]. However, there is no free lunch with
Fast Paxosswitching from a fast round to a classical round
has a cost. So, if fast rounds do not succeed often enough in
a sequence of consensus, then it is more efficient to use only
classical rounds. In other wordBaxosmay sometimes be The kernelK (¢) of a set¢ of rounds is defined as
better thanFast Paxosas recognized by Lamport in [13]:

“For any round-, its kernel is defined as the set of processes

K(r) = ﬂ HO(p,r).

pell

“If collisions are too frequent, then classRaxosmight be K(¢)=) KE(r).

better thanFast Paxos.” (a “collision” corresponds to the vree

case where the initial values of consensus are not all equalan HO modelis defined by the predicate — over the col-
which prevents fast rounds to be successful). lection of set§ HO(p, 1)) <1, — that it guarantees for

In this paper we go one step further. We show that con- a)| computations. For example, we shall consider the HO

trary toFast Paxosit is possible to combine rounds of two model in which at least one roundiisiform that is the HO
consensus algorithms without any overhead (and withoutmodel defined by the predicate:

contradicting [13]). In other words, we show that tentatively

executing a fast round before a classical round (in case the 3ry > 0, Vp,q € IT> : HO(p,70) = HO(q,70).

fast round does not succeed) is not more costly than only

executing a classical round. A problem is solvable in an HO model defined by pred-
The rest of the paper is structured as follows. Section 2icateP if there exists an (round-based) algorithay such

introduces the model that we use to express our consensuthat all runs ofA satisfying? meet the problem specifi-

algorithms. Section 3 gives the two algorithms that we later cation. In this paper, we focus on t@®nsensugroblem,

combine: one is basically tHeaxosalgorithm, and the other ~ specified in our approach by the following properties:

one consists in some derandomization of the Rabin con-

sensus algorithm [16]. Section 4 presents our contribution,

namely a consensus algorithm in which the execution of un-))

successful fast rounds does not penalize the time complex- ® AgreementNo two processes decide differently.

ity of the overall algorithm. Finally, Section 5 concludesthe e Termination:All processes eventually decide.

paper.

e Integrity: Any decision value is the initial value of
some process.

Since there is no notion of faulty process in an HO model, a
. . process is never exempted from making a decision (see Ter-
2 Model for expressing algorithms and con- ination). Such a strong liveness requirement may seem
sensus unreasonable in two basic respects. First, it may make Con-
sensus needlessly unsolvable in the sense that the resulting

We express below our algorithms in the new HO model Consensus specification might not be solvable in the HO
(HO = Heard Of) that we have defined in [5]. Itis inspired counterpart of a system in which the classical Consensus

by the asynchronous round model defined by Dwork, Lynch problem is solvable (termination requirement holds only for
and Stockmeyer [7], extended by Gafni [9], and by the work correct processes). In [5] we show that this objection does

not hold for all the classical types of systems where Consen-two rounds, whereas the second algorithm allows fast deci-
sus is solvable. The second question is the applicability of sion in just one round.

algorithms in whichall processes decide, for systems with

real crash failures. The fundamental point here i.s that ag Algorithm Pa consensus algorithm a
process that has crashed can take no step, and so is no more la Paxos

heard by any process. Consequently, what actually happens

on this process has no impact on the rest of the computa- i ,) i

tion. This is why there is no problem to implement an HO The first algorithm (see Algorithm 1), which we denote

algorithm solving the Consensus specification given above,P2 IS @ direct derivation of th@axosalgorithm [11] for
in a system with possible crash failures: the capability of HO models, which includes two optimizations already de-
making a decision provided by the HO algorithm is just not SC'ibed in the literature [2], a_llo‘yv!ng"us to reduce the num-
implemented by processes that have crashed. ber of communication steps in “nice” runs.

Besides, the HO approach has many advantages. First, The algon_thm is decomposed into phases, where each
it leads to very concise and simple algorithms. Second, thePhaseg consists of three rounds, namely roursis — 2,
high abstraction level provided by HO models allows us to 3¢ — 1. and3¢. Each round- starts with thesendpart de-
interpret predicates on thEO’s in multiple ways, includ- ~ noted byS™ (see line 7). Each procepshen receives mes-
ing link failures: two different types of system may have the Sages from every process #O(p,r). Finally, processes
same HO counterpart. Third, predicates allow us to identify EXecute thetate transitiorpart denoted by™ (see line 10).
synthetic conditions under which consensus algorithms areNOte that the conditions at lines 11, 20 and 27 should not be
correct. In particular, [5] rigorously establishes some weak mlsmterpreted:'l_'hese are not conditions that define when
conditions that are sufficient to ensure termination of the the state transition parf™” starts: the start of thd™ part
Paxosalgorithm. More generally, correctness proofs in HO IS defined by the predicates over the H@ghe conditions
models are much more direct and elegant since they are nét lines 11, 20 and 27 are false in some rouridr process
more smothered by the analysis of the causes of transmis¥: thenp skips the correspondin§” part; processp is not

sion faults. blocked
The notatiorcoord,(¢) in Algorithm 1 denotes the pro-

cess thap considers to be the coordinator in phaseAs

in Paxos the procedure for selecting coordinators is outside
of the algorithm. As inPaxos we can have multiple coor-
dinators in the same phase, i.e., for two procegsgsand
phasep, we can haveoord, (¢) # coord,(¢). Note that if
two coordinators coexist in phage because of line 9, the
e@ondition of line 11 can be true for at most one coordinator,
I.e., at most one coordinator can send a proposal in phase
at line 18.

Two optimizations, allowing fast decision in two rounds,
are included irPa. The first optimization consists in mod-
ifying S” so that each process sendsaak) message at
round3¢ to all processes, rather than only to its coordinator
(see line 25). The second optimization consists in skipping
the first round of every phase whenever the round is not
needed, that is whenever the coordinator is the same as in
the previous phase. To keep the algorithm simple, only the

Round vs. phase: In several papers (e.g., [10, 4]) con-
sensus algorithms are structured irdands where a round
consists of severadhases This terminology conflicts with
the notion of rounds in HO models. We swap the words
round and phaseto use classical terminology [14]: in the
paper, a consensus algorithm is structured iphases
where each phase consists of one or more consecutiv
rounds With this terminology, time complexity simply cor-
responds to the number of rounds.

Fast decision from some initial configurationvs. global
fast decision: In the paper we are interested in tfaest
decisionof consensus algorithms. Given some initial con-
figurationC,? fast decision fronC' corresponds to the “best
case” forC, that is, the minimum number of rounds re-
quired for all processes to decide frath Global fast de-
cision of a consensus algorithm corresponds to the “global i Lo

i . 2 . irst optimization is implemented here.
best case”, that is the minimum number of rounds required

for all processes to decide over the set of all the runs of the. Table 1 gives Fhe conditions under Wh'ch the algorlth_m
algorithm. is correct: safety is always guaranteed and liveness requires

the existence of some phasg in which (1) all the HO’s
3 The two consensus algorithms contain more tham /2 elements, (2) all processes agree on
the same coordinator denotedord(¢,), and (3) all pro-

Now we describe the two consensus algorithms that we ©®SS€S hear @bord(¢y), i.e.,coord(go) € K(¢o)-

want to combine. In the first algorithm fast decision requires

2Recall that an initial configuration is a collection of initial values, one Fast decision: No deC|S|on s possible in less than 2
per process. rounds. Moreover, fast decision does not depend on some

Algorithm 1 Algorithm Pa: the consensus algorithenla Conb.
Paxos FOR CONDITION FOR LIVENESS
1: Initialization: SAFETY
2.z, € V,initially v, {v, is the initial value ofp}
31 wote, € V U {7}, initially v, 8
4: woteToSend, aBoolean, Vpell:
initially true if Vq: Coord(q, 1) = p elsefalse HO >n/2
5. ts, €N, initially 0 | (p, %o)| /
: =3¢ —2: I? -
?. R°§’L“V 3¢ -2 none || 3¢o>0, P4 €
g if ¢ > 1 then coordp(po) = coordq(do)
9: send(z,, , tsp) to coordy(p)
10 Vp ell:
T _
11 if p = coord,(¢) and (¢ > 1)and (#(z , ts) received> n/2) then coordy (o) € K(do)
12: let @ be the largesf from (—, @) received
13: te, := oneZ such thatz ,) i ived .
1 voteToSend, such tNak, 6) is recelve Table 1. Conditions for the correctness of al-
gorithm Pa
15: Roundr = 3¢ — 1:
16: S”:
17: if p = coord,(¢)andvoteToSend,, then
18: send(vote,) to all processes
19: 77 . processes hear of the same 88D and|HO| > n — R.
20: if received(v) from coordy, (¢) then This makes the system “space uniform” in the sense that at
21: Tp =V tsy = ¢
01
the end of phaseé,, all processes have the same value for
%g Roggd T =3¢: xp. Secondly, if there exists a rougg greater tharp, and
24: " if ts, = o then such thal HO(p, ¢,,)| > n — R, thenp makes a decision
25: send(ack,) to all processes at the end of round,. This discussion is summarized in
26 7 Table 2. Note that we obtain the weakest correctness condi-
27: if v such thati(ack, v) received> n/2 then tion (safety and liveness) for algorithRa(R)for the value
28: DECIDE(v) R— |n=l
29: voteToSend,, := false - L 3 J

Algorithm 2 TheRa(R)algorithm: the consensus algorithm
a la Rabin

particular initial configurations: it depends on the cardinal-
ity of the setsHO and the coordinators in the first phase 1: Initialization:

: = is the initial value o
(see Table 3). e = e {op b}
3: Round r:
. . 4. ST
3.2 Algorithm Ra(R} consensus algorithm 5: send(z,) toall processes
ala Rabin -
7 if |[HO(p,r)| > n — Rthen
. : : 8: if the values received, except at méstare equal tac then
The second algorithm (see Algorithm 2), which we de- g P
note Ra can be viewed as a deterministic version of the 10: else
11: xp 1= smallestz received

Rabin consensus algorithm [16, 15]. A similar scheme is 5. if '~ R values received are equalTthen
used in [3] and in the fast rounds Bést Paxog13]. 13 DECIDE(Z)

Each phase of thRa algorithm, parameterized with a
constantR, consists of one single round. The interesting
feature of the algorithm is that making a decision is possi-
ble in one round if all the initial values are identical (the pag; gecision: If all initial values are identical, a decision
practical relevance of this case is discussed in Section 1),q possible in one round. Besides, a decision is possible in
Table 2 gives precise conditions under which the algorithm v, rounds from other initial configurations (see Table 3).
is correct. Safety requires > 31: the latter condition en- 1he apove discussion abait’s correctness shows that fast
sures that if some process decideat line 13 of roundr, decision requires that the setE0 contain at least — R
then in any round’ > r, only v can be assigned t0 any gjements withn > 3R, which corresponds to the weak-
z,. To ensure liveness, we proceed in two steps. First, weg,g; requirementE{O| > 2n/3 for paramete® = L%_IJ-
require that there exists some roupgf such that ing, all Note this necessary condition for fast decision is also suf-

33ince a phase consists here of one single ropheseandround are ficient from initial configurations with identical values, i.e.,
equivalent. for global fast decision.

COND.

FOR CONDITION FOR LIVENESS
SAFETY
d¢o > 0, IHO, |HO| > n—R :
n > 3R s
< Vp : HO(p, o) = HO
A

" Vp, 36, > ¢o : [HO(p,¢,)| > n—R

Table 2. Conditions for the Ra(R)algorithm.

3.3 Summary

the algorithms iff it is als@-valent for the other algorithm.
We now describe another combinationRé(R)andPa

that has théest features of eaatf the two algorithmsvith-

out any overheadWe shall proceed in two steps: we pro-

pose a first combination, and then improve it to get the final

algorithm.

4.1 Hybrid-1(R} first combination of Ra(R)

and Pa

The first combination ofRa(R) and Pa is called
Hybrid-1(R) When the initial values are identical, similarly
to Ra(R) we wantHybrid-1(R)to be able to decide at the
end of the first round. Similarly tBa, we wantHybrid-1(R)

Table 3 summarizes the features of the two algorithms 0 be able to decide with onlyZO[> n/2. The solution is

Pa and Ra(R) For fast decision, the best algorithmRa

However the algorithm has a stronger requirement on the

cardinalities of theHO's.

COND. GLOBAL FAST
ALG ON |HO| FAST DECISION
FOR FAST | DECISION | FROM OTHER
DECISION INIT CONFIG
Pa >n/2 2 2
—1
Ra(™5=]) | >2n/3 1 2

Table 3. Fast decision of the two consensus
algorithms.

4 Combining the Ra(R)and Pa consensus al-
gorithms

When combining the two consensus algorithifis and
Ra(R), our aim is to obtain an algorithm that inherits the
best features ofa and of Ra(R). The three criteria that
we consider appear in Table 3: (1) condition|dhO|, (2)

global fast decision, (3) fast decision from other initial con-

figurations.

A simple way to combine two consensus algorithrhs
and A’ is just to juxtaposed and A’, that is to executed
and A’ in parallel (with the variables ofl being distinct
from the variables ofd’). Unfortunately the solution does

not work: since the decision value is not entirely determined

by the set of initial values, one process may decithy al-
gorithm A, while another process decide’s= v by algo-

given by Algorithm 3:

e Round3¢ — 2 of Hybrid-1(R)is obtained by merging
round¢ of Ra(R)and round3¢ — 2 of Pa

e Rounds3¢ — 1 and3¢ of Hybrid-1(R)are identical to
the corresponding rounds B&.

For agreement, we must ensure that if some process de-
cidesz as inRa(R) then a coordinator dPa selectsz as

the vote to send to the participants. The key idea is the fol-
lowing. A process can decideaccording tadRa(R)if n—R
values received are equal Io(see lines 11, 12). For an-
other procesp to detect thatt might have been decided

p needs to receive at lea8? messages: indeed, in this
case any majority among the@& messages consists of
messages equal . This is expressed in line 13 by the
condition “> max(—,2R)", and in lines 14, 15. The con-
dition “> maxz(n/2,—)" in line 13 is the condition oPa

for agreement: a coordinator can select the value with the
largest time-stamp only if it has received more thgf2
messages.

However, we must avoid that (i) the selection ruleRaf
based on the reception 8k messages and (ii) the selec-
tion rule of Pa based on the time-stamps conflict. A con-
flict exists if the following occurs at the beginning of some

phasep:

1. [2] — R values received are identical (i.e., T
should be chosen according®a(R) lines 14, 15).

2. The largest time-stamp is equalfto> 0 and for[2£1]
processeg, we haver, = 7 andts, = 0, withZ # =
(i.e.,z should be chosen accordingRe, lines 17, 18).

If 1 and 2 both hold, the coordinator cannot choose both

rithm A’. So the two algorithms need to be “semantically z andz! To prevent this from occurring, we must have
merged”. To guarantee agreement, the merging procedurg 2t1] — R + [2H] > n (there are only: processes). For

must ensure that a configuratighis v-valent for one of

4A configurationC' of an algorithm isv-valent if, from C, the only

n odd this leads td? = 0; for n even this leads t& < 1.

possible decision value is

To avoid these constraints aR, observe that that the COND.
conflict cannot occur in the first phage= 1 (in the first FOR CONDITION FOR LIVENESS
phase the coordinator does not need to select a value with _SAFETY
the largest time-stamp). So if lines 10 to 12 are only exe- 8
cuted in phase = 1, then no conflict between 1 and 2 is % Vp eIl

possible. This is expressed by conditibn= 1 at line 10 |HO(p, $o)| > maz(n/2, 2R)

and by(z, 0) at line 14. Vpqg eI -

n>3R || 3¢o>0, coordy,(¢o) = coordy(¢o)

The correctness condition for algorithidgbrid-1(R)is
given in Table 4 (compare with Tables 1 and 2). We obtain
the weakest constraint d#O whenn /2 > 2R, i.e., for the
valueR < n/4 (see the lower bounds in [12]).

Vpell:
coordy(do) € K(¢o)

Algorithm 3 TheHybrid-1 (R)algorithm. Table 4. Conditions for the Hybrid-1(R) algo-
— rithm.
1: Initialization:
xp € V,initially v, {v, is the initial value ofp}

3: wote, € V U {7}, initially ?
4: wvoteToSend, aBoolean, initiallyfalse
St tsp €N, initially 0 Algorithm Hybrid-1(R)is worse tharRaandPain terms
6: Roundr = 3¢ — 2: of fast decision “from other initial configurations” (see Ta-
;3 ST Aoy ¢ 4o (6)) tol ble 5). This is because the round 1Hybrid-1(R)serves

sen Dy N y 0 all processes . .. Nl

Fpo P cooTlr P only for making a fast decision when all the initial values
190-_ T”",fi(qﬁ 1y and \ received> m — Rth are identical. If this is not the case, then round 1 is useless.
: i =1)an —, —, —) received> n — en . . .
11- if n — R messages received are equa{T —, —) then In Section 4.3 we modify round 1 dfybrid-1(R)to make
12: DpECIDE®@) _ it useful even if the initial values are not identical.
13: if p=coord,(¢) and #(—, —, p) received> maz(n/2, 2R) then
14: if the messages received, except at nidsare equal tqz , 0, p) then
15: votep :=T
16: else
17: let 6 be the largest from (7 0, p) received COND. GLOBAL FAST
18: vote, := 7 such thatz, 0, p) is received ONHO FAST DECISION
19: voteToSend, :=true ALGORITHM FOR DECI- FROM
20: Round r = 3¢ — 1: CORRECF SION OTHER INIT
21: S":
22: if p = coord,(¢) andvoteToSend, then NESS CONFIG
23: send(vote,) to all processes Ra (_”T*lj) > Qn/g 1 2
24: 7. Pa >n/2 2 2
25: if received(v) from coord, (¢) then Hybrid-l (Ln/4J) > 3n/4 1 3
26: Ty =V tsy = ¢ . —
g ! Hybrid-1 ([n/4]) > n/2 3 3

27: Roundr = 3¢
28: 9"

29° ifts, = ¢ then Table 5. Fast decision of algorithm
30: send(ack, z) to all processes Hybrid-1 (R) (fast decision depends on the
31 T size of HO)

32: if Jv s.t. #{ack, v) received> n /2 then

33: DECIDE(v)

34: voteToSend, := false

4.2 Hybrid-1(RY proof of correctness

Fast decision of Hybrid-1(R). If all initial values are We now proof the correctness of algorithiybrid-1(R)
identical, a decision is possible in one round. It requires Validity is obvious. We show that agreement and termina-
that the sef{ O contains at least — R elements (line 10). tion hold.

With the condition| HO| > maz(n/2, 2R), the weakest

requirement on the size of the B0 is whenn/2 = 2R Proposition 4.1 If the condition for safety of Table 4 holds,
(i.e.,R = |n/4]), which leads tHO| > n—n/4 = 3n/4 algorithmHybrid-1(R) satisfies agreement for aify < n.

(see Table 5). Besides, a decision is possible in three

rounds from other initial configurations; it only requires Proof: We have two cases to consider: (1) the first deci-
|[HO| > n/2. sion at line 12 in phaseé = 1, and (2) the first decision

decision at line 33 in any phase.
Case (1): If two processes decide at line 12, the con-

only by the coordinator, these lines are executedlbpro-
cesses. If the condition of line 13 holds, then the initial

dition » > 3R ensures that they both decide the same configuration may be&-valent with respect tRa(R) In this
value. Consider now the case where some process decidegase, the value received from the coordinator is ignared,
at line 12, and the other processes at line 33. Let procesdessz is also received from the coordinat{iime 15). If the

p decideZ at line 12 in phase = 1. So, forn — R pro-
cesseg; we havexr, = 7. A decision at line 33 is only

value received from the coordinator is ignored, then the first
phase is useful only for fast decision, similarlyHybrid-

possible after some coordinator has executed lines 13 to 191(R). Since our aim is to make the first round always use-

Consider the smallest phase in which some coordinator
executes these lines. SintBO(c,r)| > maxz(n/2, 2R)
(line 13), we have HO(c,)| > 2R. This ensures that the
condition of line 14 evaluates toue for the valuez, i.e.,

¢ setsvote, to the valuez. From here on, it is easy to see
that any procesg that updatess, at line 26, assigns to
x4. So onlyz can be decided.

Case(2): Let ¢y be the smallest phase in which some
procesy decidest at line 33. So, fom /2 processeg we
havez, = 7, ts; = ¢o and for the other processgswe
havets, < ¢o. From here on a coordinatoin some phase
larger thanp, can only assigit to vote.. So onlyz can be
decided. O

Proposition 4.2 If the condition for liveness of Table 4
holds, algorithm Hybrid-1(R) satisfies termination.

Proof: Let ¢y be a phase that satisfies the conditions for
liveness of Table 4. Lat = coord(¢o) be the unique coor-
dinator of phasey,. Since|HO(c, ¢o)| > maz(n/2, 2R)
(Table 4), for processthe condition at line 13 evaluates to
true , voteToSend, is set totrue (line 19), andvote,. is
sent to all (line 23). Since € K(¢o) (Table 4) every pro-
cess receives the vote ofit line 25, and sendsick,) to

all processes (line 30). Since for all [HO(p, ¢o)| > n/2
(Table 4), every process receives more thaR of these
messages (line 32) and decides at line 33. O

4.3 Hybrid-2(R} an improved combination of
Ra(R)and Pa

The first round oHybrid-1(R)is useless when initial val-
ues are not identical. In our second combinatioff@tnd
Ra(R)that we callHybrid-2(R) the first round is used for

ful, the value received from the coordinator at phase 1 must
never be ignored, which requirés= 0.

Algorithm 4 First phase oHybrid-2(R) The other phases
are identical tdHybrid-1(R)

1: Initialization:

2: x, € V,initially v, {v, is the initial value ofp}
3: wote, € V U {7}, initially ?
4: tsp €N, initially O
5: Roundr = 1:
6: S":
7 send(z,, , tsy , coord,(¢)) to all processes
8 T
9: if |[HO(p,r)| > n — Rthen
10: if n — R messages received are equal to sqme—, —) then
11: DECIDE(T)
12: if |[HO(p,)| > maz(n/2, 2R) then
13: if the messages received, except at nigsare equal tdz, —, —) then
14: Tp =T
15: if received(z, —, —) from coord, (¢) and
#(—, —, coord,(¢)) received> n /2 then
16: tsp = ¢
17: else
18: if received(z, —, —) from coord,, (¢) and
#(—, —, coordy,(¢)) received> n /2 then
19: Tp i=T; tsp = ¢
20: Roundr = 2:
21: S
22: if ts, = ¢ then
23: send{ack , z,,) to all processes
24: T :
25: if Jv s.t. #{ack ,v) received> n /2 then
26: DECIDE(v)

The correctness conditions Bifybrid-2(R)are the same
as those oHybrid-1(R) (Table 4). Note that correctness
does not requird? = 0. Remember also that the condition
at lines 9, 12 and 25 are not conditions that define when
the state transition paff” starts: the start of th&" part
is defined by the predicates over the HOs. Specifically, the

two purposes: (1) to decide at the first round if possible (as condition at line 9 inHybrid-2(0) does not mean that the

in Hybrid-1(R)andHybrid-1(R), and (2) to have a coordi-
nator trying to impose its initial value. However (1) and (2)
must be consistent. This means that some valpmposed

by the coordinator in round 1 can be adopted by a partici-

pant if and only if, according t®Ra(R) the initial configu-
ration is notv’-valent withv’ # v.

Algorithm 4 shows the first phase éfybrid-2(R) The
other phases odflybrid-2(R) are identical toHybrid-1(R)
The key idea oHybrid-2(R)is in lines 12 to 19. Contrary
to Hybrid-1(R) where the corresponding lines are executed

algorithm blocks if one process has crashed.

Fast decision: Similarly to Hybrid-1(R) Hybrid-2(R)al-
lows fast decision in one round if initial values are all iden-
tical. If this is not the case, a decision in two rounds is pos-
sible if R = 0. Table 6 compares the characteristics of algo-
rithm Hybrid-2(0)with Ra(L”T‘lJ) andPa. The table shows
that Hybrid-2(0), similarly to Ra(L”glj), can achieve fast
decision in one round. This requiretdO| = n, while Ra

only requires|HO| > 2n/3. However, being optimistic

(i.e., assuming HO equal to and all initial values identi- Proof: We have two cases to consider: (1) decision at
cal)does not lead to any overhead if these conditions do notline 11, and (2) decision at line 26.

hold (compare line 2 (algPa) and line 4 (algHybrid-2(0) Case (1):Let proces® decidez at line 11. So, fon—R
of Table 6). processeg we haver, = 7. We have three cases to con-
sider: (i) procesg also decides at line 11 of Algorithm 4
Conp. GLOBAL FasT (i.e., in phasep = 1), (ii) processq decides at line 26 of
ONHO FAST DECISION Algorithm 4 (i.e., in phase = 1), or (iii) process; decides
ALGORITHM FOR DECI- FROM in some phase > 1.
CORRECF SION OTHER INIT Case (i):Sincen > 3R, g necessarily decides
NESS CONFIG Case (ii): If ¢ decides at line 26, then at least one process
Ra (L"T‘lj) > 2n/3 1 2 must have executed line 16 or line 19, i.e., the condition of
Pa >n/2 2 2 line 12 has evaluated toue for at least one process. Con-
Hybrid-2 (0) =n 1 2 sider a procesg such that the condition of line 12 evaluates
Hybrid-2 (0) > n/2 2 2 to true. Since (a) HO(p',r)| > 2R and (b) forn — R pro-
cesseg we haver, = 7, consequently for process the
o)) condition of line 13 necessarily evaluates to true#or.e,
Table 6. Fast decision of algorithm Hybrid-2(0) P’ setsz, to T (line 14). Soz is the only possible decision
(fast decision depends on the size of HO). value at line 26.

Case (iii): By the argument of case (ii), if some procesés
updatesr, in phasep = 1, it setsz,, to z. So the number
of processep’ with z,, = T does not decrease. So if some
Discussion: R = 0 in Hybrid-2(0) does not mean that procesg decidez at line 11, then at the end of phagdor
Hybrid-2(0) is not fault tolerant. It only means that fast n — R processes we haver, = 7. Agreement follows by
decision in one round is no more possible if one processrepeating the arguments of case (1) in Proposition 4.1.
has crashed. In this case, the fastest decision requires two Case (2):Similar to the proof of case (2) in Lemma 4.1.
rounds. However, by excluding crashed processes using a
group membership servicéast decision in one round is
again possibleWe explain now the idea. Proposition 4.4 If the liveness conditions of Table 4 hold in
The role of a group membership service is to add and phaseg, = 1, then the algorithnHybrid-2(0) terminates.
remove processes from a group of processes. Consider a
groupG of sizen. As long as no process (@ has crashed,
we can havd HO| = |G| = n, i.e., fast decision in one X
round is possible witlybrid-2(0) As soon as one process SiNcelHO(p, 1) > n/2 (see Table 4) an& = 0, we have
pin G crashes, then fast decision requires two rounds, even7O(p, 1)| > 2R. So the condition of line 12 evaluates
if all the initial values are identical. By excludingfrom G, totrue . Sincecoord(¢o) € K(¢o), every procesg re-
we have a new membership f6tof sizen — 1. The case C€ives the message fromord(¢) at line 15 or 18, every
|HO| = |G| = n — 1 allows again a fast decision in one Processy assign 1 totsy (line 16 or 19), and every pro-

round. ThusHybrid-2(0) shows the benefit of excluding C&SS¢ Se€nds{ack, x,) to all processes (line 23). For all
crashed processes from a group. |[HO(p,1)| > n/2 (see Table 4), so every process receives
more tham /2 messagesack, z,) (line 25) and decides at

line 26. O

Proof: Let p be the unique coordinator of phagg = 1.

4.4 Hybrid-2(RY Proof of correctness

validity of Hybrid-2(R)is obvious. If no process decides 5 Conclusion

in phaseg, = 1, then agreement holds with exactly the

same arguments as fétybrid-1(R) The casepy = 1 is The algorithmHybrid-2(0), obtained by combining two

discussed below. If the liveness conditions of Table 5 hold consensus algorithms has the nice feature of being opti-

in some phasey > 1, then termination is guaranteed with mijstic without incurring any overhead in terms of time com-

exactly the same arguments as féybrid-1(R) The case plexity. The optimistic assumptions are: 1)orrect pro-

¢o = 1is discussed below. cesses, and (2) all initial values identical. If these two as-
sumptions holdHybrid-2(0)solves consensus in one round.

Proposition 4.3 If the condition for safety of Table 4 holds, |f none of these assumptions holdybrid-2(0) requires 2

and if the first process that decides does so in phgse 1, rounds, similarly toPa. So optimism does not lead to an
then the aIgorithnHybrid—Z(R)Satisfies agreement. overhead, a rather Surprising result.

As mentioned in Section 1, the idea of combining two [7] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the

consensus algorithm appears-ast Paxogan idea that pre- presence of partial synchrongournal of ACM 35(2):288—
viously appeared in [1] in a different context). However op- 323, April 1988.

timism has a cost iffast Paxos whenever the optimistic ~ [8] M. Fischer, N. Lynch, and M. Paterson. Impossibility of
assumptions do not holddybrid-2(0) has shown that it is Distributed Consensus with One Faulty Proceksurnal of
possible to be optimistic with no overhead. ACM, 32:374-382, April 1985.

Another interesting result ¢flybrid-2(0)is that it shows [9] Eli Gafni. Round-by-round fault detectors: Unifying syn-
an algorithmic justification for excluding crashed processes chrony and asynchrony. IRroc of the 17th ACM Symp.
from a group: excluding crashed processes allows again Principles of Distributed Computing (PODCpages 143—

a decision in one round, while as long as crashed pro- 152, Puerto Vallarta, Mexico, June-July 1998.
cesses are kept in the group, the fastest decision requiregio] L. Lamport. The Part-Time Parliament. TR 49, Digital SRC,
two rounds. September 1989.
[11] L. Lamport. The Part-Time ParliamentACM Trans. on
Acknowledgements. We would like to thank Leslie Lam- Computer System6(2):133-169, May 1998.
port for discussions related to Paxos and Fast Paxos, ancplz] L. Lamport. Lower bounds for asynchronous consensus.
Tastuhiro Tsuchiya for correcting errors of a previous ver- Technical Report MSR-TR-2004-71, Microsoft, 2004.
sion of the paper. [13] L. Lamport. Fast Paxos. Technical Report MSR-TR-2005-
12, Microsoft, 2005.
References [14] N. A. Lynch. Distributed Algorithms Morgan Kaufmann,
1996.

[1] M. Aguileraand S. Toueg. Failure detection and randomiza- [15] F. Pedone, A. Schiper, P. Urban, and D. Cavin. Solv-
tion: A hybrid approach to solve consensi&AM J. Com- ing Agreement Problems with Weak Ordering Oracles. In
put, 28(3):890-903, 1998. Proceedings of the 4th European Dependable Computing

[2] R. Boichat, P. Dutta, S. Frolund, and R. Guerraoui. Recon- Conference (EDCC-4).NCS-2485, pages 44-61, Toulouse,
structing PaxosACM SIGACT News34(1):47—67, 2003. France, October 2002. Springer-Verlag.

[3] F.Brasileiro, F. Greve, A. Moéfaoui, and M. Raynal. Con- [16] M. Rabin. Randomized Byzantine Generals.Pliroc. 24th
sensus in one communication step6th International Con- Annual ACM Symposium on Foundations of Computer Sci-
ference Parallel Computing Technologies (PaQigges 42— ence pages 403-409, 1983.

50. Springer Verlag, LNCS 2127, 2001. [17] N. Santoro and P. Widmayer. Time is not a healerPto-

[4] T. D. Chandra and S. Toueg. Unreliable failure detectors ceedings of the 6th Symposium on Theor. Aspects of Com-
for reliable distributed systemdournal of ACM 43(2):225— puter Sciencepages 304-313, Paderborn, Germany, 1989.
267, 1996. [18] A. Schiper. Early consensus in an asynchronous system with

[5] B. Charron-Bost and A. Schiper. The Heard-Of model: Uni- a weak failure detectoDistributed Computing10(3):149—
fying all benign failures. Technical report, EPFL, July 2006. 157, April 1997.

[6] D. Dolev, C. Dwork, and L. Stockmeyer. On the mini- [19] F. B. Schneider. Implementing Fault Tolerant Services Us-
mal synchrony needed for distributed consenslasirnal of ing the State Machine Approach: A TutoriaComputing
ACM, 34(1):77-97, January 1987. Surveys22(4):299-319, December 1990.

