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Abstract

Consensus is one of the most fundamental problems in
fault-tolerant distributed computing. This paper proposes a
mechanical method for analyzing the condition that allows
one to solve consensus. Specifically, we model check a dis-
tributed algorithm that implements a communication pred-
icate, which is an alternative system abstraction to failure
detectors. This model checking problem is challenging be-
cause it involves both continuous time and unbounded in-
tegers. We solve the problem by reducing it to the satis-
fiability problem of linear arithmetic constraints over real
and integer variables. The proposed method can be used to
determine the length of a synchronous period required for
implementing a communication predicate for solving con-
sensus.

1. Introduction

Consensus is one of the most fundamental problems in
fault-tolerant distributed computing. It is at the core of
the state machine replication, the most general method for
implementing fault tolerant services. This paper proposes
a mechanical method for analyzing the timeliness require-
ment for solving consensus.

It is well-known that consensus cannot be solved by any
deterministic algorithm in a pure asynchronous fault-prone
distributed system [11]. Any practical model therefore must
be augmented with synchrony assumptions to make consen-
sus solvable.

In this paper a general asynchronous model is assumed
where the system alternates between good periods and bad
periods [13]. Our proposed method can determine whether
a good period of a given length is sufficient for solving con-
sensus.

�This work was done when the first author was visiting EPFL with
support from Scientist Exchange Program between JSPS and SNSF.

�Research funded by the Swiss National Science Foundation under
grant number 200021-111701.

More specifically, we focus on a distributed algorithm
that implements a communication predicate, which encap-
sulates fault and synchrony conditions [4]. By model check-
ing the algorithm, our proposed method determines if a
good period of a given length allows the algorithm to imple-
ment a communication predicate that is sufficient for solv-
ing consensus. The advantages of communication predi-
cates over failure detectors are elaborated in [3, 4, 13].

The contribution of the paper is twofold. The first is
to provide an automatic analysis method for the timeliness
properties required for solving consensus. Although consid-
erable research has been conducted to investigate the perfor-
mance of consensus algorithms, it is only recently that the
issue of performance following bad periods has begun to
get attention [9, 13, 14]. To our knowledge, our work is the
first attempt to apply a formal method to this issue. In [13]
mathematical proofs are provided for some timeliness prop-
erties of the predicate implementation. The model checking
approach proposed in this paper allows finer analysis for
specific situations with fixed parameter values.

The second contribution of the paper is the novel idea
behind the proposed method. Compared to many problems
that have been addressed by real-time model checking, the
verification problem tackled in the paper is unique in that
unbounded integer numbers must be treated. This feature
prevents us from using well-established timed automaton-
based model checking techniques [1]. We solve the problem
by reducing it to the satisfiability problem of linear arith-
metic constraints over real and integer variables.

The paper is structured as follows. Section 2 describes
the system model and the concept and implementation of
communication predicates. Section 3 describes the pro-
posed verification method. Section 4 presents the results
of experiments using the proposed method. Section 5 sum-
marizes related work. Section 6 concludes the paper.

2. Preliminaries

This section summarizes some of the discussions made
in [13]. We consider a two-layered distributed system con-
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sisting of � processes. In the higher layer a consensus algo-
rithm works in communication-closed rounds, while in the
lower layer the communication predicate is implemented
and provided to the higher layer. Let � denote the set of
these � processes. Processes and links can be faulty but do
not behave maliciously. More detailed assumptions about
faults are given in Section 2.2.

2.1. The HO Model and Consensus (The Upper
Layer)

We adopt the Heard-Of (HO) Model [4] as the
communication-closed round model in the upper layer.
The HO model generalizes the asynchronous round model
in [10]. In the HO model both synchrony degree and faults
are represented in the form of transmission faults.

An algorithm for this model comprises, for each round
�, a sending function ��

� and a transition function � �
� . In

each round �, every process � sends messages according to
��
�����, where �� is the state of �. Then, � makes a state

transition according to � �
� ��� ���, where � is the collection

of all messages that have been received in round �.
We denote by �	��� �� �� �� the set of processes from

which � receives a message in round �: �	��� �� is the
“heard of” set of � in round �. A transmission fault refers
to the situation where 
 �� �	��� �� while 
 sent (or was
supposed to send) a message to � in round �. Transmission
faults can occur if messages missed a round due to the asyn-
chrony of communication and processing, or if a process or
a link is faulty.

Consensus is specified by the following three conditions:

Integrity Any decision value is the proposed value of some
process.

Agreement No two processes decide differently.
Termination All processes eventually decide.

Note that the termination property requires all processes to
decide. Discussion of the reason for this specification can
be found in [3, 4].

As an example of a consensus algorithm, we consider
the OneThirdRule algorithm (OTR for short) [4], see Al-
gorithm 1. A sufficient condition for OTR to solve con-
sensus can be represented in the form of a communication
predicate, that is, a predicate over the collection of HO sets
��	��� ����������. Let:

������� ��� �� �� � �� � �	��� ��� � ��

��
������ �� ���� �� ���� � � �� � �� �

������� ��� � ������� ���

In words, ������� ��� states the existence of a round in
which all processes receive the messages from the same
subset of the processes, while ��

������ states the existence
of two such rounds.

Algorithm 1 The OneThirdRule algorithm [4]
1: Initialization:
2: �� � � , initially �� � �� is the proposed value of �. �

3: Round �:
4: ��� �
5: send ��� � to all processes

6: � �
� �

7: if �����	 ��� 
 ���� then
8: if the values received, except at most ����

�
�, are equal

to � then
9: �� � �

10: else
11: �� � smallest � received
12: if more than ���� values received are equal to � then
13: DECIDE(�)

It is not difficult to see that communication predicate
� �
������ ensures the termination of processes in �� if

���� 
 ���	. Round �� allows every process � � �� to
adopt the same value for �� at the end of this round, while
round �� ensures that � decides in that round. Integrity triv-
ially holds. Agreement also holds because if some process
decides some value � in round �, then only � can be assigned
to �� in any round �� 	 �.

2.2. The Asynchronous Model and Communication
Predicate Implementation (The Lower Layer)

Communication-closed rounds and the communication
predicate in the upper layer are implemented by an algo-
rithm that works in the lower layer. In the lower layer, a pro-
cess executes a sequence of atomic steps, which are either
send or receive steps. Steps take no time but time elapses
between steps. Each process � has two sets of messages:
�������� and �������. If � executes ���������� to �,
then message ��� is put into �������� for all processes

 � �. Messages in �������� are transfered to �������
by the network. If � executes a receive step, then � receives
at most one message from �������. If ������� � 
 at the
time when a receive step is executed, then an empty mes-
sage is received. Thus receive steps are never blocked.

We consider a general fault model where good periods
and bad periods alternate. In bad periods, processes can
crash and recover, and suffer from send and receive omis-
sion. Also the network can loose messages.

A good period � � 
��� �� � �� � is defined with respect
to the set �� of “good” processes ��� � ��. During � the
processes in �� are up and do not crash. Further, communi-
cation and processing in �� are synchronous, that is:

1. For two processes �� 
 � ��, if process � executes
���������� at time � � � , then ��� � ������� by
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Algorithm 2 The algorithm for implementing ������� ��
[13]

1: Initialization:
2: 
������� � �
3: �� � �
4: ���� �� � �
5: �� � ����� � ����� is the initial state of � in the upper layer. �

6: Task:
7: while true do
8: ��� � �
9: 
�� � �

��
� ����

10: send �
��	 ��� to all
11: while ���� �� 	 �� do
12: ��� � ��� 
 �
13: if ��� � �Æ 
 ��
 ��� then
14: ���� �� � �� 
 �
15: receive a message (highest round number first)
16: if message is �
��	 ��� from � and �� � �� then
17: 
������� � 
������� � ��
��	 ��	 ��	
18: if �� 
 �� then
19: ���� �� � ��

20: � � ��
���	 ��� � �
���	 ��	 �
�� � 
�������	

21: �� � �
��
� ��	 ���

22: for all �� � ��� 
 �	 ���� �� 
 �� do
23: �� � � ��

� ��	 ���
24: �� � ���� ��

or at time �� Æ, provided that �� Æ � � .

2. In any open contiguous sub-interval of � of length 1,
every process in �� takes at most one step.

3. In any contiguous sub-interval of � of length � �	 ��,
every process in �� takes at least one step.

Let �� denote ����. We assume that processes in �� are
down and do not recover during a good period � . Moreover,
no messages from processes in �� are in transit during � . As
in [13], we refer to such a good period as a ��-down good
period.

We let ������� �� denote �� 
 
 � ������� ��. In a
sufficiently long ��-down good period, Algorithm 2, which
was proposed in [13], can implement ������� ��. In the
remainder of the paper, since ��

������ holds iff ������� ��
holds for two different rounds � � ��� ��, we concentrate
our discussion on the analysis of a ��-down good period
that allows Algorithm 2 to implement ������� ��.

This algorithm works as follows: The function �
��
� at

line 9 is the send function of the consensus algorithm in the
upper layer and returns the message to be sent. The mes-
sage, together with the current round number ��, is sent at
line 10. Variable  �� counts the number of receive steps
during an iteration of the while loop between lines 11 to 19.
Process � executes receive steps until (1) 
�Æ�������� re-
ceive steps have been executed or (2) a message of a round

�� 
 �� is received. The round number will be updated to
�� �� in Case (1) or to �� in Case (2). Before �� is updated
to the new round number at line 24, the state transition func-
tion �

��
� of the consensus algorithm is executed with the set

� of the messages received in round �� (line 21). In ad-
dition, in Case (2), the state transition function is executed
for all rounds from �� � � to �� � � with an empty set of
messages (lines 22–23).

Figure 1 schematically shows a part of a run of this al-
gorithm, where � � ���� ��� ��� ���, �� � ���� ��� ���,
� � ��� and Æ � �. A ��-down good period starts at
time 20. The black, gray, and white dots respectively repre-
sent send steps, receive steps that actually received a mes-
sage, and receive steps receiving an empty message. The
number attached to a send step denotes the round number
of the message sent by it, while the tuple associated with
a receive step represents the round number of the received
message and its sender process. �������� ��� ���� �
� holds
in this example.

3. Verification

The verification problem we address is defined as fol-
lows: Given ��, �, Æ, � and �� , decide whether a ��-down
good period � � 
��� ����� � is large enough to implement
the communication predicate ������� �� for any ��.

We propose a conservative approximate solution to this
problem. That is, if our proposed method outputs “Yes,”
then it is guaranteed that ��-down good period � �

��� �� � �� � implements ������� ��.

3.1. �-Step Sequence ! ���

The idea of our verification approach is to limit the
search space to a range that can be represented by a col-
lection of step sequences of bounded length. Parameter �
�	 �� is used to denote the length of the step sequences.
Specifically, we consider, for each � � ��, a sequence of
the first � consecutive steps that occur at or after �� (the
beginning of the good period). We let ! ��� denote the set
of steps in these sequences. That is,

! ��� �� �������� � �� � ����" � 
�� ���

where ������� �" � 
�� ��� is the "-th step of � after time ��.
We associate each step ������� in ! ��� with the follow-

ing attributes:

� ����: the time at which the step occurs.

�  ���� : the value of  �� of Algorithm 2 when the step
occurs. If  ���� � 
, ������� is a send step; otherwise,
������� is a receive step.
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Figure 1. A part of a run of Algorithm 2

� ����: the round number of process �, i.e., the value of ��
of Algorithm 2. Precisely, if ������� receives a message
of round 
 ��, then ���� represents the new value of ��
updated at line 24 of Algorithm 2. In this case ����
equals the round number of the message.

� �#���� ��
 � ���: the arrival time of the message sent
by ������� to 
. If ������� is a receive step, then �#���� is
set to 0.

� �$�����: the type of the message received by �������
(explained below). If ������� is a send step, then
�$����� ��.

The attributes ���� and �#���� are real values, while the other
attributes are integers. A receive step is one of the following
four types, where 
 � ��:

��� 
� %� : (Type 1) The received message has a round
number 	 �� and is sent by ������	 � ! ��� (i.e.,
% � 
�� ��).

��� 
� : (Type 2) The received message has a round number
	 �� and is sent by 
 before �������.

�	� 
� : (Type 3) The received message has a round number
	 �� and is sent by 
 after ������
.

��� : (Type 4) The received message has a round number
& �� or is an empty message. Messages of this type
are simply discarded by Algorithm 2 (see line 16).

Execution for ! ���: We define an execution for ! ��� as
a value assignment to the attributes of all the steps in ! ���
that corresponds to a possible run of Algorithm 2 in ��-
down good period 
�����. We say that an execution imple-
ments a communication predicate by time � iff the message
receptions that occur by time � in the execution guarantee
that the communication predicate holds. If � is not impor-
tant, we simply say that an execution implements a commu-
nication predicate.

In Figure 1, the dotted lines show which steps are con-
tained in ! ����; that is, ! ���� contains, for each process,
the first 16 steps that occurred at or after ��. The execution
for ! ���� in Figure 1 implements ������� �
� by time 30,
where �� � ���� ��� ���. Table 1 shows the attribute values
of some steps of �� in this execution.

Table 1. Attributes of some steps of �� in Fig-
ure 1

� ����� ������ ����� �������� �������� �������� ��������

1 20.2 0 3 21.0 21.6 21.1 �
2 21.3 1 3 0 0 0 ��	 ��	 ��
3 22.8 2 3 0 0 0 ��	 ���
4 24.0 3 3 0 0 0 ���
5 25.0 4 3 0 0 0 ���
6 26.3 5 10 0 0 0 ��	 ��	 ��
7 27.3 0 10 28.0 29.1 29.2 �
8 28.3 1 10 0 0 0 ��	 ��	 ��

16 39.7 9 11 0 0 0 ��	 ���

3.2. Arithmetic Constraints

The proposed method solves the verification problem by
solving several instances of a satisfiability problem, which
is the problem of deciding whether or not at least one value
assignment exists that satisfies all linear arithmetic con-
straints in a given set. A constraint is a boolean combi-
nation of linear (in)equalities over real or integer variables
and constants.

We use arithmetic constraints over the attributes of the
steps in ! ��� to reason about the executions for ! ���. That
is, the real and integer variables involved in the arithmetic
constraints correspond to those attributes.

Specifically, we construct the following three constraint
sets:

� '���: '��� models the behavior of Algorithm 2:
'��� represents all possible executions for ! ��� in
such a way that '��� is satisfied by any execution
for ! ���.1 The non real-time constraints that define
'��� are shown in Figure 2. In this figure, lines 4–
7, for example, specify how the value of  �� changes.
For instance, constraint �� � ����" � 
�� �� � 
 �

1Note that we do not guarantee that a satisfying assignment to ���� is
an execution, since this would make ���� much more complex. In other
words, ���� is an overapproximation of the executions for � ���.
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 ���� � 
�Æ � ��� ���� 2 (at line 5) specifies that  ��
varies between 0 to 
�Æ � �� � ���� (see lines 8 and
13 of Algorithm 2). Real-time constraints of '��� are
presented in Section 3.4.

� � ���: � ��� specifies the condition for an execution
for ! ��� not to implement communication predicate
������� ��. Precisely, � ��� is satisfied by an execu-
tion for ! ��� iff the execution does not implement the
communication predicate.

� ��� ���: ��� ��� is almost the same as � ��� except that
��� ��� takes the length �� of the good period into ac-
count: ��� ��� is satisfied by an execution for ! ��� iff
the execution does not implement the communication
predicate ������� �� by time �� � �� .

� ��� and ��� ��� are described in Section 3.5.
The satisfiability problem of this class has NP-hard com-

plexity; however, heuristics have been extensively stud-
ied and thus even large instances of the problem can be
solved in a reasonable amount of time using a recent algo-
rithm. Throughout the work, we use the YICES satisfiability
solver [7].

3.3. Algorithm Overview

Algorithm 3 shows how the verification works. It con-
sists of two phases.

Phase 1 determines the value of � such that ! ��� rep-
resents a sufficiently large search space for solving the ver-
ification problem. Specifically, we seek the least � such
that all executions for ! ��� implement the communication
predicate ������� ��, assuming that the good period lasts
sufficiently long. We denote this value of � as �
��.

Phase 2 is then performed to determine if all executions
for ! ��
��� implement ������� �� by time �� � �� . If so,
it is ensured that ��-down good period � � 
��� �� � �� �
implements ������� ��.

3.3.1 Phase 1

Phase 1 repeatedly checks the satisfiability of the constraint
set:

'��� � � ���� (1)

starting from � � � up to �
��. Remember that '���
is satisfied by any execution for ! ���, while � ��� is sat-
isfied by any execution for ! ��� that does not implement
������� ��. Hence, Constraint set (1) is satisfied by any ex-
ecution for ! ��� if the execution does not implement com-
munication predicate ������� ��. If no satisfying assign-
ment exists, one can conclude that all executions for ! ���
implement ������� ��.

2����� are used only for simplicity of presentation.

Algorithm 3 The outline of the verification algorithm
1: Phase 1:
2: for � 	 �	 �	 � � � do
3: Check the satisfiability of ���� � � ��� �(1)�
4: if Unsatisfiable then
5: ���� � �
6: Break the loop
7: Phase 2:
8: Check the satisfiability of ������� � ��� ������ �(2)�
9: if Unsatisfiable then

10: Output “Yes” �Good period �	�� 	� � 
	 � ensures �	
 .�

If Constraint set (1) turns out to be satisfiable, as a result
of the satisfiability checking, then the satisfiability checking
is repeated with � � � � �. If Constraint set (1) is unsatis-
fiable, on the other hand, the current � is �
�� and Phase 1
terminates.

3.3.2 Phase 2

Once �
�� has been obtained in Phase 1, the next phase is to
determine whether all executions for ! ��
��� implement
the communication predicate by time �� � �� . This can be
done by checking the satisfiability of the constraint set:

'��
��� � ��� ��
���� (2)

If an execution for ! ��
��� exists that does not imple-
ment the communication predicate by time �� � �� , then
Constraint set (2) is satisfiable, because that execution sat-
isfies both '��
��� and ��� ��
���. By contraposition,
if Constraint set (2) is unsatisfiable, then all executions for
! ��
��� implement the communication predicate by time
�� � �� .

If Constraint set (2) turns out to be satisfiable, how-
ever, it is not possible to immediately conclude that there
is an execution that fails to implement ������� �� in � �

��� ��� �� �, because the satisfying assignment is not nec-
essarily a possible execution (see Footnote 1). In this case
further analysis will be needed if one wants to determine
whether good period � � 
��� �� � �� � is indeed insuffi-
cient for implementing the communication predicate. The
procedure for this will be studied in future work.

Note that if one wants to check a different value for �� ,
then Phase 1 no longer needs to be executed; it suffices to
repeat Phase 2 with the new value. In Section 4, we demon-
strate that the upper bound on the minimum length of a suf-
ficient good period can be obtained by iterating Phase 2 with
different values for �� .

3.4. Real-Time Constraints of '���

The real-time constraints of '��� are the following.
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� Message types
� �� � ��� �� � ��� �� � ���
���� � ��� 	� � ���
���� � ��� 	��	� � ���
���� � ��� ��


 (Integer variable ���

�
���

represents the �-th entry of ���
���.)

	 The value of ���
� �� � ��� �� � ��� �� � � 
 ����� 
 � (� is a constant defined as � �� ��Æ � ��� ����. )

 �� � ��� �� � ��� � 
 �� �

�
������ � � � ���� � ������� � ������� � �

�
�

�
������� � � � ���� � ������� � ������� � ����� � �

�

� �� � ��� �� � ��� �� � ����� � � � ���
��� ��

� Incrementing round number ��
� �� � �� � � 
 ���� (Integer variables ���� represents �� of the previous step of ��
����.)

�� �� � ��� �� � ��� � 
 �� � ���� 
 ������
�� �� � ��� �� � ��� �� � ���
��� ���
��

�
�������� � � � ������ � ������� � ���� � ������ � �

�
�
�
��������� � � � ������ �� ������� � ���� � ������

�

�
 Highest round number first policy for message delivery
�	 �� � ��� � � ��� �� � ���
��� �� ��� �	�� �
�� �� � ������ � ��� �� � ���
���� ��� ����

����
� ���� � ����� 
 ���� � ���� � � � ���
����� � ��� �� ����

�
 The properties of the receive steps of the four types
�� ��� � � ������ �� � ��� �� � ���
��� � ��� �� ��� � ����
���� �� � ��

�

����

 ���� � ����� � �����

�� �� � ��� ��� �� � ��� �� � ����
��� � ��� �� �� � ���
���� � ��� �� ��� � ���
��� �� ���
����

�� ��� � � ����� � ��� �� � ���
��� � ��� �� � ���� 
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Figure 2. '��� : Constraints Specifying Executions (Excluding Real-Time Properties)

Message Delay: Property 1 in Section 2.2 states that if a
send step is executed at or after ��, then the message sent
by the step is placed in ������� at the receiver process 

within time Æ. This property is represented as follows:

�� � ����" � 
�� �� �
�$����� ��� �
 � �� � 
 � �#���� � ���� � Æ

Step Execution Speed: Properties 2 and 3 in Section 2.2
impose the lower and upper bounds on the time between
two consecutive steps executed by the same process. These
bounds can be represented as follows:

�� � ����" � 
�� � � �� � � � ������ � ���� � �

The First Step Executed in the Good Period: For each
process � � ��, ������� is the first step that occurs at or after
��. Because of the upper bound � on the step delay, �������
must occur before or at time �� � �:

�� � �� � �� � ���� � �� � �

3.5.� ��� and��� ���: Constraints Specifying a Com-
munication Predicate

� ��� is satisfied by an execution for ! ��� iff the execu-
tion does not implement the communication predicate. We

have:

� ��� ��
�� � ����" � 
�� ��� �
� 
� � ����"� � 
�� �� ��
��"�� � 
�� �� � �$������ �� ��� 
�� "���� � �$������ �� ��� 
��
��$������ �� �	� 
��

�
� ����� �� ����� �

This formula can be explained as follows. Given an execu-
tion for ! ���, all round numbers occurring in that execution
are represented as ����� � � � ��� " � 
�� ���. The execu-
tion fails to implement ������� �� iff for any of these round
numbers, say �, some process 
 � �� exists that receives no
message of round � from some process 
� � ��. This hap-
pens iff at every step of 
, that is, at �������� (�"� � 
�� ��),
the received message is not from 
� or the round number
����� is different from �.

��� ��� is satisfied by an execution for ! ��� iff the exe-
cution does not implement the communication predicate by
time ����� . ��� ��� can be obtained by slightly modifying
� ��� to take time �� � �� into account as follows:

��� ��� ��
�� � ����" � 
�� ��� �
� 
� � ����"� � 
�� �� ��
��"�� � 
�� �� � �$������ �� ��� 
�� "���� � �$������ �� ��� 
��
��$������ �� �	� 
��

�
� ����� �� ����� � � ������ 
 �� � ���

4. Experimental Results

This section presents the results of experiments. All the
measurements were performed using a Linux workstation
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Table 2. Execution time (h:m:s) (� � �, ���� � 	)
� Æ Phase 1 ���� Phase 2 (���) Phase 2 (���) Total (���) Total (���)

1.0 0.5 0:18:40 15 0:11:15 0:04:12 0:29:55 0:22:52
1.0 1.0 0:26:29 16 0:14:04 0:05:28 0:40:33 0:31:57
1.0 1.5 1:25:24 19 0:53:55 0:13:36 2:19:19 1:39:00
1.0 2.0 2:08:21 20 1:13:48 0:18:59 3:22:09 2:27:20
1.2 0.5 5:24:22 20 3:42:08 0:49:45 9:06:30 6:14:07
1.2 1.0 12:01:31 22 8:26:11 1:26:34 20:27:42 13:28:05

with an Intel Xeon processor 2.2GHz and 4Gbyte memory.
Table 2 summarizes the performance of the proposed

verification method, where the execution time is shown for
several combinations of the parameter values. The measure-
ment was performed for two types of �� : ��� and ���. ���
is defined as follows:

��� �� ��
�Æ � ��� ����� ���� Æ � � (3)

This is the known upper bound on the minimum length of
a ��-good period that allows Algorithm 2 to implement
������� �� [13]. ��� was set to �����. In all the cases
tested, our verification method confirmed that ��-good pe-
riod 
��� �� � ���� is sufficient to implement ������� ��.
For ��-good period 
��� �� � ����, on the other hand, no
conclusive answer was obtained, since Constraint set (1)
(Section 3.3.1) turned out to be satisfiable in all the cases.

As seen in Table 2, Phase 2 for ��� took less time to
complete than in the case of ���. This can be explained by
the fact that satisfiable instances of the satisfiability problem
are usually easier to solve than those unsatisfiable, because
finding a single satisfiable assignment is sufficient.

Next, we explored the upper bound on the minimum
length of a sufficient good period by applying the proposed
method with different values for �� , setting it first to some
small value and increasing it by small steps. As stated in
Section 3.3.2, only Phase 2 was needed to be iterated in this
process.

Table 3 compares the obtained upper bounds and the
known bounds. As shown in this table, we were successful
in obtaining tighter bounds. The difference between these
two bounds can be accounted for, to some extent, by the fact
that the known bound does not take �� into consideration
(see Formula (3)). In contrast, the proposed approach exam-
ines all possible executions in a given setting, thus yielding
more precise results. We expect that these obtained bounds
can be useful in finding a more precise formula for the upper
bound.

5. Related Work

It is only very recently that the issue of performance of
consensus following asynchronous periods has been stud-

Table 3. Upper bound on the minimum length
of a good period ensuring ��� (� � �, ���� � 	)

� Æ obtained bound known bound [13]

1.0 0.5 13.5 17.5
1.0 1.0 15.0 20.0
1.0 1.5 17.5 22.5
1.0 2.0 19.0 25.0
1.2 0.5 19.0 25.7
1.2 1.0 21.2 28.6

ied. This issue was addressed in [9, 13, 14]. In [14] perfor-
mance of consensus was analyzed with respect to the num-
ber of rounds, rather than time. In [9] an algorithm was
proposed that reaches consensus within a constant number
of message delays after the system becomes synchronous.
In [13] timeliness properties of the predicate implementa-
tion were analyzed. None of the previous work discussed
formal verification.

The work that seems most related to ours is that by Hen-
driks [12]. In [12] the UPPALL model checker [15] was
used to verify the correctness of a consensus algorithm. The
consensus algorithm and the underlying system model are
different from ours in many respects. For example, the sys-
tem model is a synchronous model where the message delay
and the relative process speed are always bounded. Also,
no concept similar to communication predicates appeared
in [12].

The standard continuous real-time model checking is
based on the well-established theory of timed automata [1].
UPPAAL is an example of a timed-automata-based real-time
model checker. The verification problem we addressed in
the paper involves unbounded integer variables, because a
process can take an arbitrary round number at the begin-
ning of a good period. Unbounded integer variables cannot
be treated in timed automata.

In [8] and [17], different techniques were devised for
continuous real-time model checking. Using the SAL
model checker [6], these techniques were successfully ap-
plied to verification of the fault-tolerant start up proto-
col for the Time-Triggered Architecture (TTA). SAL uses
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YICES [7] as a back-end solver; thus their approach is
similar to ours in that the model checking problem is re-
duced to constraint satisfiability problems of a similar class.
The TTA start up protocol is, however, completely differ-
ent from the communication predicate implementation al-
gorithm, and thus these techniques cannot be directly used
in our context.

The proposed method borrows some ideas from bounded
model checking [5]. The basic idea behind bounded model
checking is to search a counterexample of length up to a
given bound. Usually, this bounded version of the model
checking problem is reduced to the boolean satisfiability
problem (SAT). Since states are represented with boolean
variables, only discrete time can be dealt with by conven-
tional bounded model checking.

Extension of bounded model checking to continuous
time was discussed in, for example, [2] and [16]. These
studies adopted timed automata as the underlying computa-
tion model and thus cannot be used for our problem.

6. Conclusions

In this paper we model checked a distributed algorithm
that implements a communication predicate that solves con-
sensus. By doing this, we addressed the performance evalu-
ation of consensus in a synchronous period following asyn-
chronous periods. Our work is the first study to apply model
checking to this issue. This model checking problem was
challenging since it involved both continuous time and un-
bounded integers. We solved this problem by reducing it to
several instances of the satisfiability problem of linear arith-
metic constraints. An advantage of using model checking is
that it allows fine analysis for specific parameter settings.
We demonstrated this advantage through experiments, by
obtaining more precise conditions for solving consensus
than known before.

Future work needs to be carried out to improve the
performance of verification. There are several techniques
worth exploring. For example, we expect that the behav-
ioral symmetry of processes can be exploited to reduce the
solution space.
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