
Generic Fault-Tolerance Mechanisms Using the Concept of Logical Execution
Time

Christian Buckl, Matthias Regensburger, Alois Knoll, Gerhard Schrott
Department of Informatics

Technische Universität München
Garching b. München, Germany

{buckl,regensbu,knoll,schrott}@in.tum.de

Abstract

Model-based development has become state of the
art in software engineering. Unfortunately, the used
code generators often focus on the pure application
functionality. Features like automatic generation of
fault-tolerance mechanisms are not covered. One main
reason is the inadequacy of the used models. An
adequate model must have amongst others explicit
execution semantics and must be suited to support
replica determinism and automatic state synchroniza-
tion. These requirements are fulfilled when using the
concept of logical execution time, a time-triggered ap-
proach. This approach hides the implementation de-
tails like the physical execution from the user, In con-
trast to other time-triggered paradigms. Within this
paper, we present a solution to exploit this concept to
realize major fault-tolerance mechanisms in a generic
way1.

1 Introduction

Model-based design has become state of the art in
software engineering. Especially the existence of di-
verse tools for automatic code generation like Mat-
lab/Simulink or SCADE is very attracting. Particularly
for the domain of safety-critical applications, where
the developer are typically application domain experts
with less background in programming fault-tolerant
real-time systems [11], the possibility to provide ex-

1This work is funded by the German Federal Ministry of Edu-
cation and Research BMBF under grant 01ISF12A

tensive code generation is crucial.
Nevertheless, the code generation abilities of existing
tools cover only the functional aspects of the appli-
cations like control functions. However, major parts,
especially of fault-tolerant embedded systems, are re-
lated to system aspects. We understand by this term
all non-functional aspects related to the distribution of
the embedded system and the need for fault-tolerance:
process management, scheduling, inter-process com-
munication, communication within the distributed sys-
tem and the fault-tolerance mechanisms. These as-
pects are in general not addressed by existing tools and
have to be implemented manually.
Due to the non-existence of adequate tools, the de-
velopment of safety-critical systems is very expensive
and many systems are implemented without appropri-
ate fault-tolerance mechanisms. Examples are systems
for robot control, off-shore wind mill control or factory
automation. Typically, only the most essential safety
mechanisms like emergency stop are implemented in
such systems. Other mechanisms that could raise the
reliability and safety are not implemented due to the
high development overhead. The goal of our work
is therefore to provide a tool that allows the addition
of fault-tolerance mechanisms with minimal overhead.
This can be achieved by intensive automatic code gen-
eration.
One reason for the non-existence of code generation
tools is the absence of adequate models with an ex-
plicit semantic. The widely used unified modeling lan-
guage UML for example, lacks the precision and rigor
needed for code generation [7]. Especially, the wish to
generate automatically code for fault-tolerance mech-

13th IEEE International Symposium on Pacific Rim Dependable Computing

0-7695-3054-0/07 $25.00 © 2007 IEEE
DOI 10.1109/PRDC.2007.14

3

13th IEEE International Symposium on Pacific Rim Dependable Computing

0-7695-3054-0/07 $25.00 © 2007 IEEE
DOI 10.1109/PRDC.2007.14

3

13th IEEE International Symposium on Pacific Rim Dependable Computing

0-7695-3054-0/07 $25.00 © 2007 IEEE
DOI 10.1109/PRDC.2007.14

3

anism poses several strict requirements on the applica-
tion, like replica determinism [13].
One possibility to cope with the need for replica deter-
minism is to use the concept of logical execution times
[9], a time-triggered approach. This approach has sev-
eral advantages: on the one hand, the system behaves
deterministic, due to the absence of race conditions.
On the other hand, there are previously known points
in time, when the fault-tolerance mechanisms like vot-
ing can be executed. Within the time-triggered archi-
tecture, these characteristics were already exploited to
realize fault-tolerance mechanisms at communication
level. The time-triggered protocol [16] provides dif-
ferent services like predictable communication with
small latency, clock synchronization and a member-
ship service. Errors affecting one electronic control
unit (ECU) can be detected automatically, if the errors
result in missing or corrupted messages. More detailed
error detection must be implemented manually by the
developer, e.g. by implementing a distributed voting.
The main contribution of this paper is to point out
a way to automatically generate such mechanisms at
system level. More explicitly, the developer can spec-
ify within our model-based tool the fault-tolerance
mechanisms that should be applied. The faults, we
intend to cover, comprise amongst others transient
or permanent hardware defects, implementation er-
rors, if N-Version programming [1] is used, network-
ing errors and timing violations. In addition to fault-
tolerance mechanisms, our code generation also covers
other system-level aspects like process management,
scheduling, communication and I/O operations.
The remainder of this paper is organized as follows:
an overview of our tool and its architecture is given in
Sec. 2. Section 3 gives an introduction to the concept
of logical execution times and defines our meta-model.
Subsequent, the realization of different popular fault-
tolerance in the context of time-triggered systems is
discussed in Sec.4. Finally, Sec.5 concludes this paper
and provides a summary of the planned future work.

2 Code Generation

Before talking about the generic fault-tolerance
algorithms, it is necessary to describe the approach
for code generation. Our tool covers the generation
of all system level aspects like process management,

communication and fault-tolerance mechanisms.
Thus, it can be used in addition to well-established
tools that cover the generation of code at function
level.
Due to the vast heterogeneity of platforms2 used in
embedded systems, it is not possible to implement a
code generator that covers a priori all possible plat-
forms. Rather, the code generator must be designed
in a way that it is easy to extend both regarding the
meta-model used for code generation, as well as
regarding the code generation ability.
By using a template-based code generator[4], we
can achieve this extensibility. The input of the code
generator is on the one hand the model and on the
other the application dependent code, e.g. the control
functions. The code generation is performed using
templates. A single template offers an application
independent solution for a particular aspect of the
system, e.g. scheduling, and is designed for a specific
platform. Within the code generation process, the
generator core analysis the model, selects appropriate
templates and adapts the templates to the application
model. A detailed description of this technique can
be found in [2]. The result of the code generation
process is an optimized run-time system tailored to
the application-specific requirements.

3 Meta-Model Using the Time-Triggered
Paradigm

In this section, we will explain the core aspects of
the meta-model used for the code generation. Because
several aspects must be covered by the model, we use
a combination of different sub models: a hardware
architecture model, a software architecture model, a
fault model and a fault tolerance model. Within this
paper, we will only describe the main concepts of
the software architecture, the fault and fault tolerance
model. A complete overview is given in [3].
As execution model, we are using the concept of log-
ical execution time [9], a time-triggered paradigm. In
contrast to standard time-triggered approaches, this
concept hides the physical execution of tasks. The de-
veloper has rather to specify the points in time, when

2We understand the combination of programming language,
operating system and hardware as platform.

444

the tasks are logically started by reading the argu-
ments and stopped by publishing the result. A con-
crete schedule is generated by our tool. The behavior
of the system is deterministic since race conditions are
excluded by design. Another big advantage is the ex-
istence of previously known points in time, when dis-
tributed fault-tolerance mechanisms must be executed.
Furthermore, the developer of distributed decision pro-
tocols benefits from this knowledge: for each expected
message, there exists a time frame when this message
arrives in an error-free system. Thus, the design of
protocols to gain a consistent view of the system state
between all error-free units is simplified.
Also, replica determinism can be achieved by using the
knowledge about the execution times [13]: at specific
points in time a deterministic behavior of the system
is guaranteed, while between these points in time, the
process execution and scheduling can be carried out in
different ways on the individual units. Of course, this
is only true, when each individual unit gets exactly the
same input and the same algorithms are used. This
contradicts the usage of replicated analog sensors and
N-Version programming. To bypass this problem, we
allow also the usage of interval voting. In this case, the
developer has to define the maximal deviation between
two correct values.
The core idea within the software model is the con-
cept of simple tasks [8]: tasks are periodically called
functions that are independent from each other. The
task functions consist of sequential code without any
synchronization points. Blocking communication and
synchronization mechanisms are not allowed during
task execution.
The communication between tasks is realized in a
time-triggered manner using ports. A port is a space in
memory with a predetermined size and interpretation.
Instead of using local ports assigned to each task, like
for example in Giotto [6], ports are specified within
our model globally. Thus, the values of the ports rep-
resent the current state of the system, which is neces-
sary for automatic state synchronization. At the logi-
cal start of a task execution, the values of the ports are
read as function parameters, at the logical end of a task
execution, the results are written to a set of ports. The
values of the ports represent the state of the unit, as
already mentioned. Therefore, task functions are not
allowed to store state information in internal variables.

X1 X2 X3

X

Figure 1. Task and Port Interaction

Rather, the developer has to use additional ports.
Figure 1 shows an example scenario: two tasks t1 and
t2 are communicating via a port. In this scenario, the
task t2 has twice the frequency of t1. This means that
task t2 reads the result of t1 twice, even if task t1 has
finished its physical execution on the CPU, before task
t2 starts the second execution.

To guarantee the deterministic behavior of the ap-
plication, the user must declare mechanisms to solve
possible conflicts due to simultaneous write accesses
on one port. The user can decide to select the median
of the values, to calculate the average value or to use
local copies of one port. These mechanisms are es-
pecially useful, when using redundant components to
achieve fault-tolerance.
The interaction with the environment takes place also
in a time-triggered manner. All points in time, when
input and output functions are executed, must be
specified at compile time. Further concepts (jobs,
modes, triggers) allow a more flexible design of the
application.

Fault Hypothesis: The selection of the generated
fault-tolerance mechanisms is based on the fault model
and the selected fault-tolerance mechanisms specified
by the developer. One example is the consensus proto-
col that depends on the reliability of the network.
Within the fault model, the developer can specify
the faults that should be tolerated and the fault-
containment units, the components that are affected by
a specific fault. If possible, the developer can also state
the probability of the different faults and the behavior
of erroneous units (e.g. fail-silent, fail-hold, etc.).
In general, we do not pose any restrictions on the
faults. The system is designed in a way that all kind
of faults may occur at task level. Nevertheless, we as-
sume that none of the generated mechanisms can be
affected by an erroneous task. This assumption can be
legitimated by using an operating system with mem-

555

ory management unit. The scheduling algorithm can
also be designed in a way that erroneous tasks can not
affect other tasks on the same unit.
The generated fault-tolerance mechanisms are as-
sumed to be error-free. In case, the ECU is erro-
neous, we assume the failure mode to be symmetric.
This can be legitimated by the fact that only the gen-
erated mechanisms can interact directly with the envi-
ronment. Byzantine failures are excluded by design.

Fault-Tolerance Mechanisms: The fault-tolerance
model is used for the specification of fault-tolerance
mechanisms that should be used within the system.
The basic mechanisms fall into three different cate-
gories: error detection, error handling and error recov-
ery. By using these basic mechanisms, typical fault-
tolerance patterns like hot-/cold-standby, fault mask-
ing, backward recovery and reconfiguration can be
implemented. A detailed discussion on the available
mechanisms can be found in Section 4.

Example: To illustrate our approach, we want to
give a simple example: a PID controller running on
a TMR system. The general data flow is depicted in
Fig.2. An input function is executed every 1ms and the
result is written into the port Sense. The task reads
the value of this port as well as two other auxiliary
ports used for the calculation of the integral part and
the derivative part and writes the results to the result
port and updates the auxiliary ports. An output func-
tion triggers the actuator. To achieve fault-tolerance,
the user has to specify three replicas of the input, out-
put and task objects that are each assigned to one con-
trol unit. To cope with the simultaneous write access
of the redundant items on these ports, the developer
can decide to have a local copy of the ports Sense and
Last on each control. Thus, he can avoid a communi-
cation round before the task execution to obtain a con-
sistent value. The other two ports must be assimilated
after each round. Otherwise, small differences within
the calibration of the sensor, e.g. an AD converter, can
sum up in the port Sum and lead to a disagreement be-
tween the different nodes. Within the fault-tolerance
model, the developer can then select a voting test to be
performed on port Result. If a disagreement, e.g. by
using interval testing, is detected, the erroneous unit
will be excluded from the system. The voting algo-
rithm also decides which unit should perform the out-
put, in case the user has specified that exactly one con-

PIDSense

<…>
<…>

Sum

<…>
<…>

Last

<…>
<…>

Result

<…>
<…>

Output

<…>
<…>

Input

<…>
<…>

<…>
<…>

Figure 2. Application Model: a PID Controller

trol unit should perform the output. To allow also an
integration of a previously excluded node, the user has
to state that the values of the ports Sum and Last have
to be copied to the integrating unit.

4 Fault-Tolerance Mechanisms

In this section, we will point out possibilities to
realize the fault-tolerance techniques within time-
triggered systems. Due to space limitations, we can
point out only the major mechanisms. All suggestions
made are independent from the specific hardware. If
some requirements are posed to the hardware architec-
ture, these requirements are stated explicitly. In ad-
dition, the realization of the mechanisms depends on
the fault hypothesis. The assumptions made are stated
wherever necessary.
The first part of this section describes basic require-
ments and assumptions. Afterwards different tests for
error detection and localization are discussed. Mech-
anisms for error handling/masking and error recovery
round up this section.

4.1 Basics

In this subsection, the mechanisms for a basic fault-
tolerant distributed system, networking and temporal
synchronization, are discussed.

Network: In general, we make no assumptions on
the reliability of the used networks. However, since
the realization of different mechanisms is dependent
on the reliability of the network, the concrete imple-
mentation may differ drastically depending on the reli-
ability. Within this paper, we assume two kinds of net-
works: a reliable network with no message loss, e.g.
TTP, but also unreliable protocols like Ethernet.
One assumption that is posed to all used networks is

666

related to the time-triggered paradigm: we assume a
maximal message latency considering a known net-
work load. This can be achieved by using Switched
Ethernet or real-time protocols like CAN (controller
area network).

Temporal Synchronization: Temporal synchro-
nization is one of the key features required to design
a fault-tolerant system. If the communication layer
does not provide a service for clock synchronization,
an appropriate solution can be realized on top of the
network stack exploiting the time-triggered scheme.
By means of the expected and the actual arrival time
of the individual messages, a logical global clock
can be computed [10, 15]. To allow a fault-tolerant
temporal synchronization, the majority of nodes must
be non-faulty [5].
The algorithm exists of two parts: the arrival time
is attached to each incoming message. The unit is
allowed to process the message, if the message was
received within the expected time frame. Otherwise,
a communication error or a temporal synchronization
error is assumed. To avoid a corruption of the time
stamp, the reception and storage of the network
messages must be performed with high priority.
The second part of the algorithm is invoked peri-
odically and checks the deviation of the local to
the global clock. For this purpose, all messages
within the buffer are analyzed and the difference of
the expected reception time to the actual reception
time is calculated. If this difference is greater than
the tolerated deviation ε the message is discarded.
Otherwise, the time difference of all regular messages
is accumulated and the arithmetic mean is calculated.
In addition, the number of valid messages/senders is
counted. If the number of senders is lower than the
minimal required number of senders, either the local
clock or the network is faulty. Another possibility is
the presence of more faulty units than tolerated. If
enough valid messages are received, the global clock
can be adjusted. To avoid permanent adjustments, a
threshold ρ is introduced that must be exceeded before
the local clock is adjusted.
To achieve an initial temporal synchronization an
algorithm similar to the start-up algorithm in TTP/C
[16] can be used. It is obvious that the precision of the
temporal synchronization is limited by two factors:
the maximal network message delay and the precision

of the local clock. Within our tests, we achieved
maximal synchronization errors below 200 µs using
Switched Ethernet and the standard real-time clock in
VxWorks.

4.2 Error detection

The first step in fault-tolerant systems is to detect
errors. Errors can be detected by using timing tests,
hardware tests, test on port values, as well as liveliness
tests. We will focus on tests that can be implemented
independent from the application or by the use of very
little input from the application developer. Within our
system, we use the tests to determine the state of the
fault containment units. Changes in this state can trig-
ger fault-tolerance actions that are described in the
succeeding sections.

Timing Tests: The first obvious tests in time-
triggered systems are of course tests related to the
timing behavior. In the previous subsection, we al-
ready mentioned timing errors related to the clock. Of
course, also time violations regarding the task execu-
tion can be detected very easily. Within the run-time
system, tests are performed to check whether the in-
dividual tasks complete their executions on time. In
case the WCETs are previously known, scheduling al-
gorithms can be constructed that guarantee time slots
for each individual tasks [12]. Thus the effects of tim-
ing violations can be restricted to the individual task.

Hardware Tests: Examples for hardware tests can
be CPU or memory tests. For frequently used proces-
sors, one can include relevant CPU tests as templates.
The required test frequency can be determined by an-
alyzing the used safety standard or can be specified by
the developer. As memory tests are often not accept-
able due to the long execution times of such tests, the
user can also specify to store the data redundant within
memory.

Tests on Port Values: This class of tests can be
divided into relative and absolute tests. Absolute
tests can be performed on one unit without knowledge
about the states of other redundant units. If the ap-
plication designer specifies rules about the port values
like valid intervals, maximal deviation between two
successive port values, these acceptance tests can be
performed very easily at runtime.

777

Algorithm 1 Voting - 1st round
1: matrix=initializeMatrix;
2: sendState();
3: while timeout do{
4: //receive voting messages until timeout
5: addMessage(buffer,receiveVotingMessages());
6: end while
7: for all pairs of messages i,j in buffer do
8: result=compareMessages(i,j);
9: updateMatrix(matrix,result,i,j);

10: end for

For the application of relative tests, the states of redun-
dant units must be available. A common problem is
the necessity of replica determinism, meaning that all
fault-free should behave in the same way. Replica non-
determinism can also be the result of clock synchro-
nization imprecision ε, of N-Version programming or
of imprecision of measurement results. Due to these
effects, the port values of correct, redundant units are
typically situated in a small interval. To overcome this
problem, interval decisions can be used for voting. In
this case, the application designer has to specify al-
lowed deviations for correct values.
The generation of generic voting algorithms is simpli-
fied, as the state of each processing unit is reflected in
the port values.
Of course, the realization of voting depends heavily
on the assumptions made on the reliability of the net-
work. In this paper, we will assume an unreliable net-
work with at most one communication error (broken
link or lost/corrupted message within each communi-
cation round). A possible way to achieve a distrib-
uted voting decision is depicted in algorithm 1 and 2.
The usage of an unreliable network is tolerated by per-
forming the voting in two rounds. If the network is
reliable, the second round can be avoided. To avoid
unnecessary further network load, voting and normal
communication messages are combined. The result of
the voting algorithm is stored in an agreement matrix
containing the information, whether or not the states of
two participating units are consistent with each other.
To minimize the network load without endangering the
consistency of the decision, within a second round, the
results of the first round instead of the complete state
are forwarded to the other voting units.

The initial step in the first round is to send the own
state to all participating units. Afterwards, the states
of the other units are received. This step is limited
by time: the maximal time needed for message trans-
mission plus the maximal synchronization error. Af-
ter the reception, the messages are analyzed: all pairs
of states are compared and the result of the compari-
son is entered in the matrix (typically 0 for disagree-
ment, 1 for agreement). The analysis concludes the
first round and each units waits for the begin of the
second round. In this round, the agreement matrix is
send to the other nodes. Afterwards, the units wait for
incoming messages and analyze these messages: all
matrices are combined by the OR operation. This ap-
proach is motivated by the assumption that message
corruption can be detected, e.g. using CRC tests, and
leads to a loss of the message. Note that in addition,
Byzantine errors were excluded by design. Therefore,
a deviation in an entry of the matrix is always caused
by the loss of a message. In other words, if one node
states the agreement of two units, this statement can be
adopted. Note that the result of this voting algorithm is
a decision, which result is erroneous. It is not ensured
that all units received all redundant results.

Liveliness Tests: The developer has the possibility
to state the heartbeat period for a liveliness test. A re-
dundant unit, e.g. in a hot- or cold-standby system,
supervises the selected unit and can detect errors. To
minimize the overhead, regular actions of the super-
vised unit that can be detected by the observing unit
are used for this test. Only if no such action is per-
formed within the heartbeat period, an additional mes-
sage is transmitted.

4.3 Error Handling

Changes of the error state of a fault containment
unit can trigger diverse mechanisms to mask this er-
ror. Errors can be masked without compromising the
real-time constraints by using redundant units, e.g. us-
ing hot/cold standby or Triple Modular Redundancy
(TMR) systems.

Hot and Cold Standby: Hot or cold standby are
typical mechanisms to achieve fault-tolerance. Espe-
cially in cold standby, one main problem is state syn-
chronization. In time-triggered systems nevertheless,
this is a trivial issue similar to check pointing. Since

888

Algorithm 2 Voting - 2nd round
1: waitForRound2();
2: sendMatrix(matrix);
3: while timeout do{
4: m=receiveMatrix();//receive results of 1.round
5: matrix=or(matrix,m);
6: end while
7: for each line i in matrix do
8: sum=sumUpLine(i);//check correctness of i
9: if sum< ρ then

10: notifyError(i)
11: if (theni==ownId)
12: ERROR;
13: end if
14: end if
15: end for

the system state and the functional behavior are sepa-
rated, the state can be regularly sent to the redundant
unit. In case the primary unit fails, the redundant unit
can start the execution immediately.
Another problem concerning hot standby is the timely
recognition of failures. Since in time-triggered system
all behavior is specified in relation to time, an optimal
value for the points in time, when to test the active unit,
can be determined easily.

TMR Architectures: The basic mechanism to al-
low the implementation of TMR architectures is vot-
ing. In subsection 4.2 the algorithm for voting was
presented. The task of failure masking is to get a con-
sistent agreement of the unit that is performing the out-
put. If all correct units are allowed to output, even si-
multaneously, this is a trivial issue. In this case, all
units have to analyze the relevant line in the agree-
ment matrix containing the information about the own
agreement state. If enough units, typically the major-
ity, agreed with the own state, the unit can perform the
output.
If exact one correct unit has to perform the output, a
possibility is that the unit with the lowest ID and with
a majority of votes performs the output. Another pos-
sibility is that the unit with most votes and the lowest
id performs the output.
If there are not enough votes for the own unit, the
node will be excluded by the system and should per-
form repair mechanisms. Since these repair actions

are typically application dependent, the possibilities
to design generic algorithms are limited. Possibilities
are the restart of the system or rebooting the control
unit. The final design decision, which actions should
be conducted, is made by the application designer.

4.4 Error Recovery

Components within erroneous fault containment
units are typically excluded from system operation and
perform repair operation. This can be done e.g. by
rollback recovery or other typically application depen-
dent mechanisms. After a successful repair, it is often
necessary to integrate the unit into the running system.

Rollback Recovery: In case of a transient or in-
termittent fault, a repeated execution of some function
can overcome the error [14]. Instead of executing the
same function again, it can be also promising to use
some other function or to execute the function on an-
other processing unit. Rollback recovery is a rather
simple approach, the only difficulty arise in designing
and generating the checkpoints. Since the values of
ports represent the state of the unit and ports are up-
dated in a time-triggered manner, it is relatively easy
to realize this check pointing. Based on the fault model
and the available memory, the set of affected ports,
the number of checkpoints and the frequency of the
check pointing can be generated. Due to the time-
triggered paradigm, problems like domino effects in
multiprocessor environments are excluded by design.

Integration of Nodes: A successful state synchro-
nization is the prerequisite of integration. The syn-
chronization is simplified by the concept of global
ports. A requirement for an enduring success of the in-
tegration is that at transmission time, no relevant tasks
are running on the forwarding node. Otherwise, the
update of the port values at the end of the task exe-
cution could lead to a repeated exclusion of the pre-
viously integrated unit. The latter condition can be
checked by analyzing the time schedule. A possibil-
ity to guarantee the correctness of the received data is
to perform voting on the transmitted data, if redundant
units are forwarding the current system state to the in-
tegration unit. The ports needed for integration can be
specified by the application designer within the model.

999

5 Conclusion

In this paper, we discussed an approach to au-
tomatically generate fault-tolerance mechanisms us-
ing model-based development. Besides fault-tolerance
mechanisms, the presented code generation tool al-
lows also the generation of other system level code,
like communication or process management. The tool
can be used in addition to existing tools like Mat-
lab/Simulink or SCADE to accelerate the application
implementation and to reduce the error rate by the us-
age of pre-implemented components.
The main contribution of this paper is to point out a
way to generate these mechanisms by using the con-
cept of logically execution times. The concept fulfills
the posed requirements like replica determinism and
provides previously known points in time to perform
distributed fault-tolerance mechanisms. By separat-
ing the functional behavior, reflected in the concept of
tasks, from the state of the system, reflected in the con-
cept of ports, we formed the basis for an automatic re-
alization of voting and integration. Due to the variety
of different fault-tolerance mechanisms, we focused
on standard mechanisms. However, our approach is
also suited for other mechanisms due to the extensibil-
ity of our tool.
The approach was tested in several lab applications
using hot-redundancy or triple-modular redundancy
architectures. The automatic code generation rate
reached up to 95% and we achieved sample rates up
to 1 kHz [2].
The next step within the project is to apply the tool
in an industrial development process to point out the
feasibility of the approach. Further research is re-
lated to the qualification of the code generator by the
German certification authority TÜV and the usage of
formal methods to proof the correctness of the gener-
ated code, especially the adequacy of selected fault-
tolerance mechanisms and architecture concerning the
fault-model.

References

[1] A. Avizienis and L. Chen. On the implementation of
n-version programming for software fault-tolerance
during program execution. In Proc. COMPSAC’77,
Nov 1977.

[2] C. Buckl, A. Knoll, and G. Schrott. Model-based de-
velopment of fault-tolerant embedded software. In
Second International Symposium on Leveraging Ap-
plications of Fomal Methods, Verification and Valida-
tion (IEEE-ISoLA), pages 113–120, 2006.

[3] C. Buckl, M. Regensburger, A. Knoll, and G. Schrott.
Models for automatic generation of safety-critical
real-time systems. In Second International Confer-
ence on Availability, Reliability and Security (ARES
2007), pages 580–587. IEEE Computer Society, Apr
2007.

[4] F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S.
Yu. Automatic code generation from design patterns.
IBM Systems Journal, 35(2):151–171, 1996.

[5] F. Cristian and C. Fetzer. Probabilistic internal clock
synchronization. In Symposium on Reliable Distrib-
uted Systems, pages 22–31, 1994.

[6] T. A. Henzinger, B. Horowitz, and C. M. Kirsch.
Giotto: A time-triggered language for embedded pro-
gramming. In First International Workshop on Em-
bedded Software (EMSOFT), pages 166 – 184, 2001.

[7] I. Johnson, C. Snook, A. Edmunds, and M. But-
ler. Rigorous development of reusable, domain-
specific components, for complex applications. In
CSDUML’04 - 3rd International Workshop on Crit-
ical Systems Development with UML, 2004.

[8] H. Kopetz. Real-Time Systems, Design Principles for
Distributed Embedded Applications. Kluwer Acad-
emic Publishers, Dordrecht, Nederlands, 1997.

[9] H. Kopetz and G. Bauer. The Time-Triggered Archi-
tecture. Proceedings of the IEEE, 91(1):112 – 126,
Jan. 2003.

[10] L. Lamport and P. M. Melliar-Smith. Synchronizing
clocks in the presence of faults. J. ACM, 32(1):52–78,
1985.

[11] P. A. Lee and T. Anderson. Fault Tolerance: Princi-
ples and Practice. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1990.

[12] J. W. S. W. Liu. Real-Time Systems. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2000.

[13] S. Poledna, A. Burns, A. Wellings, and P. Barrett.
Replica determinism and flexible scheduling in hard
real-time dependable systems. IEEE Transactions on
Computers, 49:100–110, Feb. 2000.

[14] D. K. Pradhan. Fault-Tolerant Computer System De-
sign. Prentice Hall, 1996.

[15] U. Schmid and K. Schossmaier. Interval-based clock
synchronization. Real-Time Systems, 12(2):173–228,
1997.

[16] TTTech Computertechnik AG. Time Triggered Pro-
tocol TTP/C High-Level Specification Document.
2003.

101010

