
On the Effects of Finite Memory on Intrusion-Tolerant Systems∗

Giuliana Santos Veronese1 Miguel Correia1 Lau Cheuk Lung2 Paulo Verissimo1
1LASIGE, Faculdade de Ciências da Universidade de Lisboa

2Departamento de Informática e Estatística, Universidade Federal de Santa Catarina

giuliana@lasige.di.fc.ul.pt mpc@di.fc.ul.pt lau@ppgia.pucpr.br pjv@di.fc.ul.pt

1. Introduction

Intrusion tolerance has been proposed as a new paradigm
for computer systems security [2, 7]. The idea is to apply
the fault tolerance paradigm in the domain of systems
security, accepting that malicious faults (attacks, intrusions)
can never be entirely prevented, and that highly resilient
systems have totoleratethese faults.

Research in this area has produced a set of clever
intrusion-tolerant protocols and systems (I/T protocolsand
I/T systemsfor short). However, we believe that an issue
has been overlooked: that servers havefinite memory, so
the number of messages that can be stored in theirbuffers
is limited. Intuitively, this can be a problem in systems
in which there are many messages being exchanged.
Moreover, all of these systems assume that the environment
is essentially asynchronous, i.e., that there are no bounds
on communication and processing delays. Assuming this
kind of model is very important in order to prevent the
success of attacks against time.

However, this combination of a limited capacity to
store messages with long message delays that cause long
protocol execution times, can be very problematic. This
is the crucial problem debated in this paper: the effects
that finite memory has on I/T protocols and systems.
In environments like the Internet, faults follow unusual
patterns, dictated by the combination of malicious attacks
with natural faults such as long communication delays due
to temporary network partitions. In this scenario, attackers
can force the filling of buffers, an effect often called a
buffer overflow– not to be confused with C/C++ buffer
overflows1– in order to leave the system in an inconsistent
state or to prevent it from doing progress, causing a denial

∗This work was supported by the EC, through project IST-4-027513-
STP (CRUTIAL) and Alban scholarship E05D057126BR, by the FCT
through LASIGE and project POSI/EIA/60334/2004 (RITAS), and by
CAPES/GRICES through project TISD.

1These latter buffer overflow attacks consist in injecting data in a buffer
for which the limits are not checked, writing over memory used for other
purposes, with effects that may range from crashing the application to
running arbitrary code on the attacked machine.

of service.
The paper starts by showing that the problem appears

at three levels: channels, protocol instances and service
(Section 2). After presenting the problem, the paper
studies buffer overflows with an I/T group communication
primitive, inspired by the Rampart toolkit [5], and proposes
the use ofrepair nodesto mitigate the problem (Section 3).
An experimental evaluation with and without repair nodes is
presented, allowing to assess in practice the effects of finite
memory in a real, albeit simple, I/T system.

2. The Problem

Consider a set of processes that communicate by
message-passing overauthenticated fair links, which
deliver infinite times messages sent infinite times. The
system is asynchronous. Consider also an application that
repeatedly requests a processp to senddata messages(i.e.,
application-level messages) to a processq for a long period
of time. The application wants to be sure thatq receives
the messages, so messages are numbered sequentially
and wheneverq receives a messagem(k) it has to send a
messageack(k) to p, wherek is the number of messagem.
p stores all the messages it sends in asend buffer; when
p receivesack(k), it discardsm(k), since it knows thatq
received it. Messages that are not confirmed have to be
retransmitted after a timeout.

Now, suppose that after a certain instant,p stops
receiving acknowledgments fromq. If the application
periodically requestsp to send messages toq, eventually
p’s send bufferwill be full of messages (memory is finite).
Therefore, when the application requests it to send the next
message, saym′, it has three possibilities: (1) discard the
messagem′, hoping thatq is faulty; (2) discard an older
message, hoping thatq received it; (3) block waiting forq
to acknowledge messages, hoping that the communication
with q is slow or there is a temporary disconnection, but that
it will recover. The problem is thatp can not know for sure
if q is faulty or the communication is simply experiencing
long delays, so all these solutions are problematic. In (1),



if in reality there is a temporary disconnection,q will never
receive the message. In (2), ifq is correct and did not
receive the message, it will never receive it. In (3), ifq is
faulty, p will stay blocked.

This is the kind of dilemma that asynchronous I/T
protocols have to deal with. The problem is that due to
the limited size of memory, and consequently of buffers, a
protocol may have to sacrifice either a safety property (e.g.,
discarding messages) or a liveness property (blocking), in
both cases potentially impairing the behavior of the protocol
or system. Notice that this problem of the buffer size being
limited is not an implementation detail, but an intrinsic,
theoretical, problem, which can not be solved simply by
making this size larger.

The problem appears at three levels: channels, protocol
instances and service level.

Channels. Most I/T protocols in the literature assume
that processes are fully-connected byauthenticated reliable
point-to-point channels(that deliver all messages), or
implement those channels on top of authenticated fair
links (e.g., [4, 5]). The problem of reliable channels with
finite memory is essentially the problem just described,
which can be stated more formally as:It is not possible
to implement an authenticated reliable point-to-point
channel on top of authenticated fair links that eventually
relinquishes messages from the send buffer (i.e., frees buffer
memory) if the processes can fail in a Byzantine way.

Protocol Instances. Many I/T systems run several
instances of the same I/T protocol(s) concurrently. For
instance, in [4, 5] several processes can be sending
messages in parallel to the others, using several
communication primitives. Malicious processes can
send messages about a non-existent instance of a protocol,
which the others have to store and can not discard because
they can not distinguish an instance that does not exist
from one that they are not aware of. The problem can be
stated: If for a certain I/T protocol, the relinquishing of
messages from the internal buffers involves receiving the
message plus some form of confirmation from at least a
process other than the sender, and there can be an arbitrary
number of parallel executions of instances of that protocol,
then it is not possible to guarantee both the safety and the
termination of all instances of the protocol.

Service. Most I/T systems replicate in a set of servers
a service, which is accessed by a set of clients [1, 2, 3].
Clients send requests to the servers, which process the
requests and send back replies. The problem is that a
malicious client may send requests without acknowledging
the reception of the replies, leaving those messages in the
servers’ buffers until they overflow:It is not possible to
implement a reliable service that eventually relinquishes
reply messages if the clients can fail in Byzantine way and
the links are fair.

3. Buffer Overflows in an I/T System

After presenting the problem, we now study buffer
overflows with an I/T group communication primitive,
inspired by the Rampart toolkit [5] and RITAS [4]. The
objective is to propose a technique –repair nodes– to
mitigate this problem when there are long communication
delays or temporary disconnections. The system is formed
by n processes, at mostf of which are assumed to fail.

In order to study the buffer overflow problem in I/T
protocols, we use amessage dissemination protocolbased
on the echo broadcastproposed by Toueg [6]. That
protocol guarantees two properties: (1) if a correct process
sends adata message, all correct processes deliver that
message; and (2) no two correct processes deliver two
different data messages with the same identifier. The
protocol, presented in Figure 1, satisfies the two properties
if the channels have unlimited capacity (implying infinite
memory). In the original echo protocol, when the first
message is received, all correct processes reply with
a message containing the same data; in our protocol
each process replies with a message containing only the
hash of this data, reducing the use of buffer space. All
messages that are sent by a processpi are tagged with
a message identifier (or sequence number) eliminating
possible interferences among multicasts. There are two
types of messages:initial andecho. In the secondwhen,
any subsequent〈MULTICAST, INITIAL , pi , seq(m), *,
* 〉 message received byp j from the same processpi is
ignored.

when pi wants to send a data messagemdo
send〈MULTICAST, initial, pi , seq(m), m〉 to all processes

when p j receives frompi a message〈MULTICAST, initial, pi ,
seq(m), m〉 do

send〈MULTICAST, echo,p j , seq(m), H(m)〉 to all processes

when p j receives messages〈MULTICAST, echo ,*, seq(m),
H(m)〉 from (n− f ) distinct processesdo

Acceptm

Figure 1. Message dissemination protocol

3.1. Buffer Management

Suppose we have a system in which processes
communicate using the echo multicast protocol in the
previous section. In practice echo multicast must be
implemented on top of limited-capacity authenticated
reliable point-to-point channels since memory is finite,
and in Section 2 we showed the problems related to
finite memory. These problems force processes in certain
circumstances to choose either (1) to block or (2) to discard



messages. Both options are highly undesirable but we
believe (1) to be the worse because the system stops (or
may stop) functioning. If messages are discarded it is still
a good idea to try to store them in some of the processes
and retransmit them if some processes lose some of them.
Therefore, the problem is to determine which processes
should buffer a message and how long they should keep
it. The expected approach would be to try to store the
messages in all processes that have them for as long as
possible. However, the total memory available in the
system is limited, so we should avoid occupying it with
several copies of the same data. Next we present a solution
to optimize buffer management.

Message Storage We now present our strategy to store
messages received by processes using the dissemination
protocol described above. When a process receives the first
message of a protocol instance, it creates acontext object
in order to store information about the messages received
for that instance (initial andechomessages). All contexts
are stored in acontext buffer. Contexts are identified
by the sender identifier and theinitial message identifier,
and they are classified in states:progress, acceptedand
end. Contexts with less thann− f messages received
from different processes (or withoutinitial message) are in
the progressstate. Contexts with oneinitial message and
at leastn− f echomessages (but less thann) are in the
acceptedstate. Contexts withinitial message andn echo
messages are in theendstate.

Accepted contexts only remain in thecontext bufferof
repair nodes. Contexts in theendstate are removed from
all context buffers(all processes got the data message).
Whenever a context is discarded, an object with the hash of
the message, the sender identifier and the message identifier
is stored in another buffer, called thehash buffer.

A process is defined to be a repair node for a certain data
message depending on the correspondinginitial message
identifier. A global system parameter,Nrn, defines how
many processes are repair nodes for each message. This
parameter should be defined at least asNrn = f + 1 to
guarantee that at least one correct node will store each
message. However, since any process can lose a message,
choosing a higher value forNrn increases the possibility of
a message being available, but also involves more nodes
storing the message, so a worse buffer usage. The repair
nodes for a message with identifierid are obtained by
calculatingid modulo Nrn and using this value as an index
of a vectorV with subsets of the processes.

Using repair nodes allows a better usage of the system
memory. The benefit depends onNrn. If Nrn = f + 1 and
n= 3 f +1, the gain of extra space available is3 f+1

f+1 ; if Nrn =

f + 1 andn ≫ f the gain tends ton/ f . The responsibility
of message buffering is shared by all processes but each one
stores only a subset of the messages.

Message Recovery The purpose of using repair nodes
is to allow processes that did not receive a message to
recover it. The message recovery protocol has two parts:
one to recoverechomessages and another to recoverinitial
messages. The recovery mechanism periodically analyzes
each context in thecontext buffer. If a context has no
initial message or has less thann− f echomessages and
remains in the buffer more thanTrecov units of time, a
control message is sent to all other processes requesting the
missing message(s). All processes that receive a control
message reply with the message requested, if they still have
it. More precisely, when a process receives anechoRequest
message and the corresponding context remains in its
context bufferor thehashis in thehash buffer, it sends an
echomessage. The idea forinitialRequestis the same, but
the initial message is sent only if the context remains in the
context buffer. Theechoand initial messages delivered by
those algorithms are delivered to the dissemination protocol
(Figure 1). Fake messages sent by malicious repair nodes
are discarded by the recipient since they can never match
the initial message (if they areecho messages) orn− f
echos(if they areinitial messages).

Garbage Collection Our system uses twogarbage
collectorsto avoid entirely buffer overflows of thecontext
andhash buffers: the context collectorand theage-based
collector. The context collectoris executed periodically,
with period Trecov, and it does the following (only for
contexts for whichpi is not a repair node): (1) remove
contexts in theprogressstate that remain in the buffer after
Nrecov recovery protocol executions; (2) remove contexts in
theacceptedstate; (3) remove contexts in theendstate.

The idea of using repair nodes is to store information
about messages as long as possible. Contexts may have
to be removed even from thecontext bufferof their repair
nodes, to avoid a protocol instance to remain in the buffer
forever. This removal is performed by anage-based
collector that is executed whenever thecontext buffer
free-space drops below a low-water mark. The age-based
collector simply discards theNold oldest contexts.Nold is a
parameter specified by application. An age-based collector
is also associated to thehash buffer, to remove old hashes.

3.2. Evaluation

In order to understand the effects of finite buffers on
I/T protocols/systems, we did a set of experiments with a
prototype of the echo multicast protocol written in Java,
using two differentbuffer management policies:

P1 – with repair nodes(our proposal): in this approach
the responsibility of message buffering is shared by all
processes. Messages are discarded from the buffers by the
context and age-based collectors (see above).



P2 – without repair nodes: each message is stored
by all processes and discarded only when all processes
confirm its reception (since other processes may request its
retransmission). If the buffer is full, the oldest messagesare
discarded by the age-based collector.

The two policies use the recovery protocol presented
above. For policy P1 the number of repair nodes wasNrn =
f +1. For both policies,Nrecov= 2 andTrecov= 3 seconds.
The experiments were executed with values off from 1 to
5 and the number of processes was set ton = 3 f + 1, thus
varied from 4 to 16. There were two different faultloads. In
thefail-stop faultload, f processes crashed before messages
started to be sent. In theByzantine faultload, f malicious
processes tried to cause buffer overflows in two ways: (1)
for each message they had to send, they sent two different
messages, one to each half of the recipients, but both with
the same identifier, making them impossible to deliver; (2)
they never sentecho messages, so correct processes did
not receiveechosfrom all processes and were not able to
discard these contexts.

The experiments were run on the Emulab environment
[8], on 16 Pentium-III machines with 850 Mhz processors,
512 Mb of RAM and Red-Hat Linux 9. The JVM was Sun
JDK1.5.11. In all tests the virtual machine memory was
limited to 100Mbytes to allow the experiments to assess the
impact of finite memory. Notice that these protocols are part
of the middleware (e.g., analogous to RPCs or CORBA)
so they are supposed to leave most of the memory to the
service/application, not consume it themselves.

Time to Discard the First Data Message The main
interest of the repair node scheme we propose is to
increase the time a data message is available in the system
in case there is a temporary network partition or high
communication delays. In this section we evaluate the
benefit of having this scheme (policy P1), instead of storing
the messages in all processes that receive them (policy P2).

0

100

200

300

400

500

600

700

4 7 10 13 16
Number of Processes

T
im

e 
(m

s)

without repair nodes with repair nodes

0

100

200

300

400

500

600

700

4 7 10 13 16
Number of Processes

T
im

e 
(m

s)

(a) (b)

Figure 2. Time to discard the first data
message (a) fail-stop and (b) Byzantine
faultloads, with and without repair nodes

This evaluation consists in measuring the time until the
first data message is discarded from acontext bufferdue to
a buffer overflow with both policies. The set of experiments

presented in Figure 2 evaluated this time with the fail-
stop and Byzantine faultloads. Each test was executed 10
times and each process (even if Byzantine) sent 20000/n
data messages with 10Kbytes at a rate of 100 messages
per second. The system with repair buffers discarded the
first message at least twice as late as the system without
repair nodes. In fact, the ratio between the time to discard
in policies P1 and P2 is approximately proportional to
Nrn/n, as also expected. The time to discard the first
message with repair nodes (P1) might be further improved
by reducing this ratio, e.g., by keepingNrn = f +1 constant
but increasing the total number of processesn. In the
Byzantine faultload, data messages are discarded earlier
than in the fail-stop faultload, since Byzantine processes
do their best to cause discarding. In all experiments we
had better results when using the repair nodes scheme, i.e.,
with policy P1, since the weight of buffering messages in
the long term is scattered by all processes, instead of being
shared by all for all messages. The time a data message is
available in the system is longer, so more messages can be
recovered.

References

[1] M. Castro and B. Liskov. Practical Byzantine fault tolerance
and proactive recovery. ACM Transactions on Computer
Systems, 20(4):398–461, Nov. 2002.

[2] J. S. Fraga and D. Powell. A fault- and intrusion-tolerant file
system. InProceedings of the 3rd International Conference
on Computer Security, pages 203–218, Aug. 1985.

[3] D. Malkhi and M. Reiter. Secure and scalable replication in
Phalanx. InProceedings of the 17th IEEE Symposium on
Reliable Distributed Systems, Oct. 1998.

[4] H. Moniz, N. F. Neves, M. Correia, and P. Veríssimo.
Randomized intrusion-tolerant asynchronous services. In
Proceedings of the International Conference on Dependable
Systems and Networks, pages 568–577, June 2006.

[5] M. Reiter. Secure agreement protocols: Reliable and atomic
group multicast in Rampart. InProceedings of the 2nd ACM
Conference on Computer and Communications Security,
pages 68–80, Nov. 1994.

[6] S. Toueg. Randomized Byzantine agreements. InProceedings
of the 3rd ACM Symposium on Principles of Distributed
Computing, pages 163–178, Aug. 1984.

[7] P. Veríssimo, N. F. Neves, and M. Correia. Intrusion-tolerant
architectures: Concepts and design. In R. Lemos, C. Gacek,
and A. Romanovsky, editors,Architecting Dependable
Systems, volume 2677 ofLecture Notes in Computer Science,
pages 3–36. Springer-Verlag, 2003.

[8] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed systems
and networks. InProcedings of the Fifth Symposium on
Operating Systems Design and Implementation, pages 255–
270. USENIX, Dec. 2002.


