On the Effects of Finite Memory on Intrusion-Tolerant Systems*

Giuliana Santos Veronese Miguel Correid Lau Cheuk Lung Paulo Verissimd
ILASIGE, Faculdade de Ciéncias da Universidade de Lisboa
2Departamento de Informatica e Estatistica, Universidaieral de Santa Catarina
giuliana@lasige.di.fc.ul.pt mpc@di.fc.ul.pt lau@pppigkcpr.br pjv@di.fc.ul.pt

1. Introduction of service.
The paper starts by showing that the problem appears

Intrusion tolerance has been proposed as a new paradigrﬁlt thr_ee levels: channels, p_rotocol instances and service
for computer systems security [2, 7]. The idea is to apply (S€ction 2). After presenting the problem, the paper
the fault tolerance paradigm in the domain of systems Studies buffer overflows with an I/T group communication
security, accepting that malicious faults (attacks, sipns) ~ Primitive, inspired by the Rampart toolkit [5], and propsse
can never be entirely prevented, and that highly resilient the use ofepair nodesto mitigate the problem (Section 3).
systems have twleratethese faults. An experimental evaluation with and without repair nodes is

Research in this area has produced a set of clevePresented, allowing to assess in practice the effects o¢fini
intrusion-tolerant protocols and systend (protocolsand ~ Memory in areal, albeit simple, I/T system.

I/T systemdor short). However, we believe that an issue
has been overlooked: that servers hémée memoryso 2. The Problem
the number of messages that can be stored in thdfers

is limited. |ntuitively, this can be a problem in SyStemS Consider a set of processes that Communicate by

in which there are many messages being exchangedmessage-passing oveauthenticated fair links which

Moreover, all of these systems assume that the environmenjeliver infinite times messages sent infinite times. The

is essentially asynchronous, i.e., that there are no boundsystem is asynchronous. Consider also an application that

on communication and processing delays. Assuming thisrepeatedly requests a procest senddata messages.e.,

kind of model is Very important in order to preVent the application_leve' messages) toa procqmr a |0ng period

success of attacks against time. of time. The application wants to be sure tlypteceives
However, this combination of a limited capacity t0 the messages, so messages are numbered sequentially

store messages with long message delays that cause |On§nd wheneveq receives a messagﬂ(k) it has to send a

protocol execution times, can be very problematic. This messageck(k) to p, wherek is the number of message

is the crucial problem debated in this paper: the effects p stores all the messages it sends iremd buffer when

that finite memory has on I/T protocols and systems. p receivesack(k), it discardsm(k), since it knows thaty

In environments like the Internet, faults follow unusual received it. Messages that are not confirmed have to be
patterns, dictated by the combination of malicious attacks retransmitted after a timeout.

with natural faults such as long communication delays due Now, suppose that after a certain instamt, stops

to temporary network partitions. In this scenario, attaske receiving acknowledgments from. If the application
can force the fIIIIng of buffers, an effect often called a periodica”y requesty to send messages tp eventua”y
buffer overflow— not to be confused with C/C++ buffer s send buffemill be full of messages (memory is finite).
overflows— in order to leave the system in an inconsistent Therefore, when the application requests it to send the next
state or to prevent it from doing progress, causing a denialmessage, sayt, it has three possibilities: (1) discard the

*This work was supported by the EC, through project IST-45137 messagmf, hqpmg thatq ITS fau.lt_y; (2) dlscard. .an older
STP (CRUTIAL) and Alban scholarship EOSD057126BR, by theTFC ~Message, hoping thatreceived it; (3) block waiting fog
through LASIGE and project POSI/EIA/60334/2004 (RITAShdaby to acknowledge messages, hoping that the communication
CAPES/GRICES through project TISD. with g is slow or there is a temporary disconnection, but that

1These latter buffer overflow attacks consist in injectingada a buffer P :
for which the limits are not checked, writing over memory usedofiher it will recover. The problem IS thab can not know for sure

purposes, with effects that may range from crashing the eatjsn to if g is faulty or the Commumca:tion is simply expe_riencing
running arbitrary code on the attacked machine. long delays, so all these solutions are problematic. In (1),

if in reality there is a temporary disconnectianwill never 3. Buffer Overflows in an I/T System

receive the message. In (2), dfis correct and did not

receive the message, it will never receive it. In (3)q i After presenting the problem, we now study buffer

faulty, p will stay blocked. overflows with an I/T group communication primitive,
This is the kind of dilemma that asynchronous I/T inspired by the Rampart toolkit [5] and RITAS [4]. The

protocols have to deal with. The problem is that due to objective is to propose a techniqueepair nodes to

the limited size of memory, and consequently of buffers, a mitigate this problem when there are long communication

protocol may have to sacrifice either a safety property (e.g. delays or temporary disconnections. The system is formed

discarding messages) or a liveness property (blocking), inby n processes, at mo$tof which are assumed to fail.

both cases potentially impairing the behavior of the protoc In order to study the buffer overflow problem in I/T

or system. Notice that this problem of the buffer size being protocols, we use message dissemination protodmsed

limited is not an implementation detail, but an intrinsic, on the echo broadcastproposed by Toueg [6]. That

theoretical, problem, which can not be solved simply by protocol guarantees two properties: (1) if a correct preces

making this size larger. sends adata messageall correct processes deliver that
The problem appears at three levels: channels, protocomessage; and (2) no two correct processes deliver two
instances and service level. different data messages with the same identifier. The

Channels. Most I/T protocols in the literature assume Protocol, presented in Figure 1, satisfies the two propertie
that processes are fully-connectedamthenticated reliable if the channels have unlimited capacity (implying infinite
point-to-point channels(that deliver all messages), or Memory). In the_original echo protocol, when the firs_t
implement those channels on top of authenticated fair Message is received, all correct processes reply with
links (e.g., [4, 5]). The problem of reliable channels with @ Message containing the same data; in our protocol
finite memory is essentially the problem just described, €ch process replies with a message containing only the
which can be stated more formally akt:is not possible hash of this data, reducing the use of buffer space. All
to implement an authenticated reliable point-to-point Messages that are sent by a procpssre tagged with
channel on top of authenticated fair links that eventually & message identifier (or sequence number) eliminating
relinquishes messages from the send buffer (i.e., freésrbuf POSsible interferences among multicasts. There are two
memory) if the processes can fail in a Byzantine way. types of messagesnitial andecha In the secondvhen

Protocol Instances. Many T systems run several 2"y SubsequentMULTICAST, iNITIAL, pi, sedm), *,

instances of the same I/T protocol(s) concurrently. For -) Message received by; from the same procesp, is
instance, in [4, 5] several processes can be sendingdncred-
messages in parallel to the others, using several
communication primitives. Malicious processes can Whenpi wants to send a data messageo
send messages about a non-existent instance of a protocol, SeNAMULTICAST, initial, pi, seqm), m) to all processes
which the others have to store and can not discard because when p; receives fromp; a messagéMULTICAST, initial, pj,
they can not distinguish an instance that does not exist seqm), m) do
from one that they are not aware of. The problem can be send(MULTICAST, echo,p;, sedm), H(m)) to all processes
stated: If for a certain I/T protocol, the relinquishing of when p; receives messageULTICAST, echo *, seqm),
messages from the internal buffers involves receiving the H(m)) from (n— f) distinct processeso
message plus some form of confirmation from at least a Acceptm
process other than the sender, and there can be an arbitrary
number of parallel executions of instances of that protpcol Figure 1. Message dissemination protocol
then it is not possible to guarantee both the safety and the
termination of all instances of the protocol.

Service. Most I/T systems replicate in a set of servers 3.1. Buffer Management
a service which is accessed by a set of clients [1, 2, 3].
Clients send requests to the servers, which process the Suppose we have a system in which processes
requests and send back replies. The problem is that acommunicate using the echo multicast protocol in the
malicious client may send requests without acknowledging previous section. In practice echo multicast must be
the reception of the replies, leaving those messages in themplemented on top of limited-capacity authenticated
servers’ buffers until they overflowlt is not possible to reliable point-to-point channels since memory is finite,
implement a reliable service that eventually relinquishes and in Section 2 we showed the problems related to
reply messages if the clients can fail in Byzantine way and finite memory. These problems force processes in certain
the links are fair. circumstances to choose either (1) to block or (2) to discard

messages. Both options are highly undesirable but weMessage Recovery The purpose of using repair nodes
believe (1) to be the worse because the system stops (ofs to allow processes that did not receive a message to
may stop) functioning. If messages are discarded it is still recoverit. The message recovery protocol has two parts:
a good idea to try to store them in some of the processesone to recoveechomessages and another to recawéial
and retransmit them if some processes lose some of themmessages. The recovery mechanism periodically analyzes
Therefore, the problem is to determine which processeseach context in the&ontext buffer If a context has no
should buffer a message and how long they should keepinitial message or has less thar- f echomessages and
it. The expected approach would be to try to store the remains in the buffer more thaWfecoy UNits of time, a
messages in all processes that have them for as long asontrol message is sent to all other processes requeséng th
possible. However, the total memory available in the missing message(s). All processes that receive a control
system is limited, so we should avoid occupying it with message reply with the message requested, if they still have
several copies of the same data. Next we present a solutiorit. More precisely, when a process receivesahoRequest
to optimize buffer management. message and the corresponding context remains in its
context buffeor thehashis in thehash bufferit sends an
Message Storage We now present our strategy to store echomessage. The idea fatitialRequests the same, but
messages received by processes using the disseminatiogheinitial message is sent only if the context remains in the
protocol described above. When a process receives the firsgontext buffer The echoandinitial messages delivered by
message of a protocol instance, it createdatext object those algorithms are delivered to the dissemination pobtoc
in order to store information about the messages receivedFigure 1). Fake messages sent by malicious repair nodes

for that instanceifitial andechomessages). All contexts are discarded by the recipient since they can never match
are stored in acontext buffer Contexts are identified the initial message (if they arecho messages) on — f

by the sender identifier and theitial message identifier, echogif they areinitial messages).

and they are classified in stateprogress acceptedand

end Contexts with less tham — f messages received Garbage Collection Our system uses twagarbage
from different processes (or withoiritial message) are in collectorsto avoid entirely buffer overflows of theontext
the progressstate. Contexts with onimitial message and andhash buffers the context collectorand theage-based
at leastn — f echomessages (but less thai are in the collector. The context collectoris executed periodically,
acceptedstate. Contexts witlnitial message and echo with period Tecow @nd it does the following (only for
messages are in tledstate. contexts for whichp; is not a repair node): (1) remove

Accepted contexts only remain in tleentext bufferof contexts in therogressstate that remain in the buffer after
repair nodes Contexts in theend state are removed from Necov recovery protocol executions; (2) remove contexts in
all context buffergall processes got the data message). theacceptedstate; (3) remove contexts in teedstate.
Whenever a context is discarded, an object with the hash of The idea of using repair nodes is to store information
the message, the sender identifier and the message identifietbout messages as long as possible. Contexts may have
is stored in another buffer, called thash buffer to be removed even from theontext bufferof their repair

A process is defined to be a repair node for a certain datanodes, to avoid a protocol instance to remain in the buffer
message depending on the corresponditital message forever. This removal is performed by amge-based
identifier. A global system parametdX,,, defines how collector that is executed whenever theontext buffer
many processes are repair nodes for each message. Thisee-space drops below a low-water mark. The age-based
parameter should be defined at leastNpg = f + 1 to collector simply discards thig, 4 oldest contextsNyq is a
guarantee that at least one correct node will store eachparameter specified by application. An age-based collector
message. However, since any process can lose a message,also associated to thash bufferto remove old hashes.
choosing a higher value fa\,, increases the possibility of
a message being available, but also involves more nodes3 2 Evaluation
storing the message, so a worse buffer usage. The repair
nodes for a message with identifiaet are obtained by
calculatingid modulo N, and using this value as an index
of a vectorV with subsets of the processes.

Using repair nodes allows a better usage of the system
memory. The benefit depends bdky,. If Njn = f+1 and
n=3f 41, the gain of extra space availabléf%; if Njp =
f +1 andn > f the gain tends ta/ f. The responsibility
of message buffering is shared by all processes but each on§
stores only a subset of the messages.

In order to understand the effects of finite buffers on
I/T protocols/systems, we did a set of experiments with a
prototype of the echo multicast protocol written in Java,
using two differenbuffer management policies

P1 — with repair nodes(our proposal): in this approach
the responsibility of message buffering is shared by all
rocesses. Messages are discarded from the buffers by the
ontext and age-based collectors (see above).

P2 — without repair nodes: each message is stored presented in Figure 2 evaluated this time with the fail-
by all processes and discarded only when all processestop and Byzantine faultioads. Each test was executed 10
confirm its reception (since other processes may request itsimes and each process (even if Byzantine) sent 20000
retransmission). If the buffer is full, the oldest messagyes data messages with 10Kbytes at a rate of 100 messages
discarded by the age-based collector. per second. The system with repair buffers discarded the

The two policies use the recovery protocol presented first message at least twice as late as the system without
above. For policy P1 the number of repair nodes Was= repair nodes. In fact, the ratio between the time to discard
f 4+ 1. For both policiesNrecov= 2 andTrecov= 3 seconds. in policies P1 and P2 is approximately proportional to
The experiments were executed with valued dfom 1 to Nin/n, as also expected. The time to discard the first
5 and the number of processes was set t03f + 1, thus message with repair nodes (P1) might be further improved
varied from 4 to 16. There were two different faultloads. In by reducing this ratio, e.g., by keepiig, = f + 1 constant
thefail-stop faultload f processes crashed before messagesbut increasing the total number of processes In the
started to be sent. In tHgyzantine faultioadf malicious Byzantine faultload, data messages are discarded earlier
processes tried to cause buffer overflows in two ways: (1) than in the fail-stop faultload, since Byzantine processes
for each message they had to send, they sent two differento their best to cause discarding. In all experiments we
messages, one to each half of the recipients, but both withhad better results when using the repair nodes scheme, i.e.,
the same identifier, making them impossible to deliver; (2) with policy P1, since the weight of buffering messages in
they never senecho messages, so correct processes did the long term is scattered by all processes, instead of being
not receiveechosfrom all processes and were not able to shared by all for all messages. The time a data message is
discard these contexts. available in the system is longer, so more messages can be

The experiments were run on the Emulab environment recovered.

[8], on 16 Pentium-IIl machines with 850 Mhz processors,

512 Mb of RAM and Red-Hat Linux 9. The JVM was Sun References

JDK1.5.11. In all tests the virtual machine memory was

limited to 100Mbytes to allow the experiments to assess the

impact of_ finite memory. Notice that these protocols are part and proactive recovery. ACM Transactions on Computer

of the middleware (e.g., analogous to RPCs or CORBA) Systems20(4):398-461, Nov. 2002.

so they are supposed to leave most of the memory to the[2] J. S. Fraga and D. Powell. A fault- and intrusion-tolerant file

service/application, not consume it themselves. system. InProceedings of the 3rd International Conference
on Computer Securifypages 203-218, Aug. 1985.

Time to Discard the First Data Message The main [3] D. Malkhi and M. Reiter. Secure and scalable replication in

interest of the repair node scheme we propose is t0 Phalanx. InProceedings of the 17th IEEE Symposium on

increase the time a data message is available in the system Reliable Distributed System®ct. 1998.

in case there is a temporary network partition or high [4] H. Moniz, N. F. Neves, M. Correia, and P. Verissimo.

communication de]ays' In this section we evaluate the Randomized intrusion-tolerant asynchronous services. In

benefit of having this scheme (policy P1), instead of storing Proceedings of the International Conference on Dependable

; : ; Systems and Networksages 568-577, June 2006.
the messages in all processes that receive them (policy F)2)[5] M. Reiter. Secure agreement protocols: Reliable and atomic

group multicast in Rampart. IRroceedings of the 2nd ACM

[1] M. Castro and B. Liskov. Practical Byzantine fault tolerance

s o0 Conference on Computer and Communications Security
_. 500 500 pages 68-80, Nov. 1994.
£ a0 £ 400 [6] S.Toueg. Randomized Byzantine agreementBrateedings
E igg H_—/‘/‘ gigg ﬁ of the 3rd ACM Symposium on Principles of Distributed
100 100 Computing pages 163-178, Aug. 1984.
0 ‘ ‘ ‘ ‘ ‘ 0+ : ‘ ‘ ‘ ‘ [7] P. Verissimo, N. F. Neves, and M. Correia. Intrusion-tolerant
4 7 10 13 16 4 7 10 13 16

architectures: Concepts and design. In R. Lemos, C. Gacek,
and A. Romanovsky, editorsArchitecting Dependable
Systemsvolume 2677 of_ecture Notes in Computer Science
pages 3-36. Springer-Verlag, 2003.

[8] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
integrated experimental environment for distributed systems
and networks. InProcedings of the Fifth Symposium on

Number of Processes Number of Processes

—aA— without repair nodes —¥— with repair nodes
(a) (b)

Figure 2. Time to discard the first data
message (a) fail-stop and (b) Byzantine
faultloads, with and without repair nodes

This evaluation consists in measuring the time until the

first data message is discarded fromamtext buffedue to
a buffer overflow with both policies. The set of experiments

Operating Systems Design and Implementatjpeges 255—
270. USENIX, Dec. 2002.

