
Jangwoo Kim* Jared C. Smolens* Babak Falsafi*† James C. Hoe*
*Computer Architecture Laboratory (CALCM), Carnegie Mellon University

†School of Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne
http://www.ece.cmu.edu/~truss

PAI: A Lightweight Mechanism for Single-Node
Memory Recovery in DSM Servers

Appears in the 13th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC’07),
December 2007, Melbourne Austrailia
Abstract

Several recent studies identify the memory system
as the most frequent source of hardware failures in
commercial servers. Techniques to protect the memory
system from failures must continue to service memory
requests, despite hardware failures. Furthermore, to
support existing OS’s, the physical address space must
be retained following reconfiguration. Existing
techniques either suffer from a high performance
overhead or require pervasive hardware changes to
support transparent recovery.

In this paper, we propose Physical Address
Indirection (PAI), a lightweight, hardware-based
mechanism for memory system failure recovery. PAI
provides a simple hardware mapping to transparently
reconstruct affected data in alternate locations, while
maintaining high performance and avoiding physical
address changes. With full-system simulation of
commercial and scientific workloads on a 16-node
distributed shared memory server, we show that prior
techniques have an average degraded mode
performance loss of 14% and 51% for commercial and
scientific workloads, respectively. Using PAI’s data-
swap reconstruction, the same workloads have 1% and
32% average performance losses.

1. Introduction
Commercial server systems based on distributed

shared memory (DSM) architectures must provide reli-
able, high-performance operation, even in the face of
hardware failures. Several recent studies identify the
memory system as the most frequent source of failures
in servers [12,16,19]. In a DSM, the memory address
space spans all nodes; therefore the failure of any sin-
gle component—including DRAM chips, memory
modules and memory controllers—or an entire mem-
ory node results in data loss that affects the entire sys-
tem. Downtime on critical server systems incurs
significant financial costs [13]; therefore memory sys-
tem failure tolerance is a key design requirement.

Memory system protection in DSMs must achieve
two system-level goals. First, to maintain reliability

and availability, the system must continue running
without data loss following component failure in a sin-
gle memory node. Furthermore, system must maintain
performance while demapping and replacing the failed
component. So long as availability and performance
are maintained, data reconstruction can proceed gradu-
ally in the background before repair or
replacement [1]. Second, operating systems (OS) nec-
essarily depend upon an immutable physical address
space to hold critical data structures such as pinned,
physically-addressed and “unrelocatable” pages [19].
Therefore, even if underlying memory organization
changes unexpectedly, existing OS’s require the physi-
cal address space to remain unchanged.

Prior approaches either fail to meet these two
requirements or require system-wide architectural
changes to transparently tolerate changes in the physi-
cal memory organization. Distributed parity [5,15]
reconstructs the contents of failed memory components
using mechanisms similar to the RAID-5 commonly
used with disk arrays [14]. While it provides strong
reconstruction properties, distributed parity incurs a
significant performance penalty when operating in
degraded mode where lost data is reconstructed on
demand. “Memory page retirement” [19] leverages OS
virtual memory support to unmap damaged physical
pages, but cannot tolerate faults that affect unrelocat-
able pages [9,11]. Alternatively, the absolute location
of physical addresses can be managed by a hypervisor,
however this requires significant changes to the system
architecture and hardware and firmware changes
throughout the design to efficiently support the mem-
ory reorganization [1]. Furthermore, because single
nodes can be repaired before additional failures
occur [16], simple reconstruction mechanisms can pro-
vide the same reliability benefits as a heavyweight, but
flexible hypervisor architecture.

In this paper, we present Physical Address Indirec-
tion (PAI), a lightweight hardware-based mechanism
for transparent reconstruction of single-node memory
failures in DSM servers. PAI transparently isolates the
failed component from the rest of the system, recon-
structs lost values in other memory locations and

reconfigures the memory system while avoiding
changes to the physical address space. To preserve sys-
tem availability and minimize performance overheads,
PAI reconstructs lost data off the critical path of mem-
ory requests using distributed parity. The hardware
changes to implement PAI are constrained to the direc-
tory controller, avoiding invasive modifications to the
complicated processor core and OS.

We make the following contributions:
• Physical Address Indirection (PAI). We introduce
the concept of PAI, a lightweight hardware-based
mechanism for memory system reconstruction.
• Quantitative performance evaluation. We evalu-
ate PAI in using a full-system simulation of a 16-node
DSM server with commercial database and web server
workloads, as well as parallel scientific workloads, to
show that:

1. Degraded mode causes a substantial perfor-
mance loss for all workloads.

2. Two reconstruction modes enabled by PAI that
have negligible overheads for commercial (avg.< 2%)
and moderate overheads for scientific workloads
(avg.< 32%).

This paper is organized as follows. In Section 2,
we provide a background discussion and reconstruc-
tion goals. Sections 3 and 4 describe the PAI mecha-
nism during error-free and reconstruction modes.
Section 5 presents two reconstruction modes. We eval-
uate PAI in Section 6 and conclude in Section 7.

2. Distributed parity protection
This section discusses the vulnerabilities of the

memory system to hardware faults and presents our
fault model and reconstruction goals, describes a base-
line DSM server protected by distributed parity and
summarizes conventional memory protection tech-
niques.

2.1. Memory system vulnerability
Hard errors are permanent hardware component

failures of a hardware device, ranging from individual
transistors to entire DIMM packages, memory control-
lers and memory nodes. Unlike soft errors (e.g., radia-
tion-induced single-event upsets) which affect
individual bits, hardware failures can cause small-scale
multi-bit to large-scale gigabit data loss. These failures
necessitate reconstruction mechanisms capable of
rebuilding a large proportion of, or even all, the data
stored on a memory node.

As server workloads increase their memory
requirements, the total system reliability increasingly
depends upon the reliability of its memory system
components. A recent study [16] shows that memory
system faults comprise the single most common failure

mode during a nine-year study of a large installation of
high-performance servers. Field failure data collected
by Microsoft and Sun also show that memory contrib-
utes most frequently to system downtime for hardware
failures on Windows and Sun servers [12,19].

2.2. Fault model
In this paper, we address reconstruction from hard

failures originating in the memory controller and
DRAM modules (shaded regions of Figure 1). We
assume that memory includes SECDED ECC protec-
tion for soft error detection and correction and detec-
tion mechanisms can identify faults in the protected
components (e.g., ECC detection on the memory
arrays, self-checks and message time-outs), but that
multi-bit errors are not recoverable with ECC protec-
tion alone. We assume that the remaining components
in the system, including processors, caches, directory
controller and NIC are protected by other, complemen-
tary mechanisms. For example, previously proposed
processor redundancy [5] or checkpoint-based protec-
tion techniques [15,18] can be applied for non-memory
component failures.

2.3. Distributed parity protection

MemCtrl

DRAM

Node i

DirCtrl NI
CCache

CPU

MemCtrl

DRAM

Parity

Node i+1

MemCtrl

DRAM

Node i+7

Parity
Group

DirCtrl NI
CCache

CPU

DirCtrl NI
CCache

CPU

Data Data

FIGURE 1. DSM server’s memory system (shaded
area) protected by (7:1) distributed parity.

The baseline system in this paper is the distributed
shared memory (DSM) machine shown in Figure 1.
Each node contains a processor with caches, a direc-
tory-based cache coherence controller, memory con-
troller and associated DRAM channels, and a network
interface to communicate with other nodes. Each mem-
ory node, consisting of the shaded memory controller,
memory channels and DIMM modules, contributes to
the system’s large, single physical address (PA) space.

To support node-level reconstruction in DSM
servers, recent studies propose distributing parity
across nodes [5,15], as shown in Figure 1. These pro-
posals arrange parity groups in a RAID level-5-like
fashion [14], allowing parity group sizes that scale with

the system size. Distributed parity has a scalable stor-
age overhead which is amortized by distributing the
parity group over multiple nodes. Distributed parity
survives a single memory node failure per parity group
by reconstructing the lost information in “degraded
mode” with the bitwise XOR of the remaining data val-
ues and the parity value.

The system uses a distributed parity configuration
as described by Prvulovic et al. in ReVive [15]. Parity
is the bitwise XOR of all data stored in its parity group.
Every data write updates the parity, on a remote node,
with a new parity value obtained by bitwise-XOR of
the old data, new data and old parity. Parity manage-
ment is implemented by modifying the existing cache-
coherence protocol and per-node directory controllers.
In this paper, we assume parity is updated on a cache
block granularity [5].

2.4. Recovery challenges with hardware faults
In degraded mode, distributed parity protection

reconstructs data on each memory request. However,
reconstruction compounds the memory latency prob-
lem for every value stored in the failed node. Each
memory request incurs multiple additional requests to
remote nodes to reconstruct the block, significantly
reducing overall performance [5,15].

An ideal reconstruction mechanism instead
rebuilds the lost data just once in an alternate location
and redirects subsequent memory requests to the new
location. However, relocation and message redirection
based on changing the physical address is impossible
when a failed component contains pinned pages—an
unavoidable situation in large-scale failures. Although
pinned pages consume a small fraction of the total PA
space, field data collected from Sun servers using
Solaris’s memory page retirement (MPR) show that in
approximately 50% of failures, page retirement cannot
be completed due to pinned pages in the damaged
address range, leading to a system crash or data
corruption [19]. Sun’s experience motivates a real need
for memory systems that transparently relocate pinned
pages. Alternatively, significant OS changes would be
required to eliminate pinned pages [9,19].

2.5. Conventional memory protection
Hardware-based memory protection uses informa-

tion redundancy to protect against failures. These
mechanisms include ECC [17] and Chipkill [4], which
protect against small numbers of failures in bits and
single chips, respectively. However, these techniques
neither protect against larger-scale component failure
nor permit memory replacement without data loss.
Board-level techniques such as memory mirroring, par-
ity-based RAID and DIMM sparing [2,8] provide pro-

tection across DIMM modules on a single memory
node. However, they have a fixed cost overhead, rang-
ing from 33% for 3:1 RAID to 100% for memory mir-
roring, which cannot be amortized over the size of the
system. Distributed parity [5,15] provides scalable pro-
tection, including reconstruction of data following the
failure of an entire memory node, by spreading parity
across nodes in the system and can amortize the cost
over several nodes. However, degraded mode opera-
tion with distributed parity incurs a significant perfor-
mance loss.

Other approaches include Solaris’s MPR [19],
which demaps virtual pages that have been affected by
a failure. This technique cannot restore lost data and
cannot recover from failures that affect unrelocatable
pages. In contrast, hardware hypervisor-based systems
can perform flexible remapping and migration of OS-
visible physical addresses memory pages to new abso-
lute memory locations at runtime [1]. However, this
approach requires architectural changes in all levels of
the memory system to support page migration and ded-
icated hardware and firmware to map and manage the
memory locations. Furthermore, while the hypervisor
can move memory pages arbitrarily, this flexibility
exceeds what is needed to survive a single failure in the
memory system.

3. Physical Address Indirection
In this section, we introduce Physical Address

Indirection (PAI), a lightweight mechanism that
enables high-performance, transparent memory recon-
struction, using distributed parity, following memory
failures. Figure 2 shows a DSM system of 2N nodes
protected by N:1 distributed parity. Memory from N+1
nodes forms a parity group where N nodes store data
information and the remaining node stores parity (as in
RAID-5 [14], parity is the bitwise XOR of all data val-
ues).

PAI provides a mapping between a physical
address and its actual location (e.g., which memory
node and parity group holds the data). PAI adds an
additional level of address indirection for pages in
memory, below that of the physical addresses seen by
the OS. PAI comprises several control registers (PAI
registers) with a simple, fast address translation logic
between processor’s directory controller, memory con-
troller and network interface.

Parity is arranged into parity groups where nodes
are divided into two sets of N nodes apiece and are
numbered in order of increasing PA. Each node is fur-
ther divided into N+1 vertical equally-sized sub-groups
where N hold data and one holds parity. The parity for
each group resides in a different set from the data. To
locate a group’s parity, a cross-set register (X-Set)

FIGURE 2. Distributed parity protection using PAI
translations during error-free operation.

Mem Ctrl

Parity
Node i

Dir Ctrl

N
IC

Cache

CPU

PAI

Mem Ctrl

Parity
Node N-1

Dir Ctrl

N
IC

Cache

CPU

PAI

Mem Ctrl

Parity

Node N+i

Dir Ctrl

N
IC

Cache

CPU

PAI

Mem Ctrl

Parity

Node 2N-1

Dir Ctrl

N
IC

Cache

CPU

PAI

Data Data

XOR

Data Data

XOR

PAI Reg

Set: N

X-Set: 0

PAI Reg

Set: 0

X-Set: N

+X-Set

Data address
GNNode ID

Parity address

Parity GN
= N

Parity
Node ID

GO

GO

GN N-1

GN 0

GN i

holds the number of the first node in the opposing set
(e.g., in Figure 2, in Nodes 0 to N-1, X-set is N, while
in nodes N to 2N-1, X-set is 0). This ensures that data
and its parity never occupy the same node, and there-
fore, enough information always remains to reconstruct
lost data or parity values after a single failure.

Figure 2 also shows the mapping from a cache
block’s PA to its corresponding parity. Each PA is
divided into several logical fields that define the initial
location of the cache block:
• Node ID
• Parity group number of the address (GN)
• Data address offset within the group (GO)

For each group, the parity node ID is calculated by
summing the group number and the X-set register for
that node. The parity sub-group is statically assigned to
a sub-group on the node. To simplify presentation and
without loss of generality, we choose the highest sub-
group on each node to hold parity.

The parity sub-groups in PAI are arranged in a
“horizontal” fashion across the set. In this arrange-
ment, each sub-group occupies the same physical
address offsets in each node. This contrasts with “diag-
onal” arrangements, such as Intel E8500 [8]. While
diagonal parity offers better load balancing, it also

makes recovery difficult with unrelocatable pages. In
horizontal parity, each parity group is less likely to
contain unrelocatable pages because these pages are
typically located in a small range of fixed physical off-
sets in each node. By contrast, each diagonal parity
group is likely to contain at least one unrelocatable
page. Parity group arrangements that avoid unrelocat-
able pages are desirable for the data swap mode recon-
struction presented in Section 5.

4. Reconstruction
This section describes PAI’s reconstruction mech-

anism for surviving memory component failures.

4.1. Degraded mode reconstruction
When a memory component fails, the system

enters degraded mode. In degraded mode, the distrib-
uted parity can reconstruct lost data from the remaining
data and parity values. However, reconstruction
imposes a significant performance overhead because
every memory request on the failed node incurs multi-
ple reconstruction requests. This situation persists until
repair of the failed node. PAI also uses degraded mode
reconstruction to restore lost data to alternate locations
with a single mechanism. We explain how to locate
reconstructed data in Section 5.

4.2. Memory system reconstruction
Following a memory component failure, a portion

of the global physical address space disappears from
the system. To recover to a high-performance state and
restore parity protection, the faulty memory compo-
nents must be mapped out and the affected pages must
be moved to a fault-free memory node.

To reconstruct a failed node, PAI performs the
operations shown in Figure 3. First, PAI coordinates
on-line reconstruction of the lost data in alternate loca-
tions. While the reconstruction is performed in the
background, PAI serves memory requests through
degraded mode reconstruction or from new locations,
depending on the reconstruction progress. Finally,
when the reconstruction process completes, PAI
resumes high-performance operation mode by redirect-
ing subsequent requests to the reconstructed data. The
failed memory is isolated from the rest of system.

Containment and reconstruction. PAI initiates
on-line reconstruction of lost data according to the sys-
tem reconstruction policy. PAI distinguishes already
reconstructed regions from those pending reconstruc-
tion by maintaining a Reconstruction Register that con-
tains the current reconstruction physical address in the
directory controller of the failed memory node. Recon-
struction is performed in the background, starting from
the lowest physical address on the failed node and con-

FIGURE 3. Steps in reconstruction and recovery of
data from a failed memory node.

Memory failure detected

Hardware repair or
replacement

Normal mode

- Parity update

Reconstruction mode

- Fault containment
- Start reconstruction
- Serving requests

degraded/
redirection

Reconstruction completed

Recovery mode

- Only redirecting
messages

- Resuming parity
protection

taining to the highest affected address. Following
reconstruction, the failed component can be repaired.

Servicing requests during reconstruction. While
reconstruction is performed in the background, PAI
continues servicing memory requests. Requests are
first sent to the respective home directory controller.
PAI compares the requested address with the contents
of the Reconstruction Register to determine the proper
method for accessing the data. If the address is already
reconstructed, the directory controller forwards the
address to the PAI translation and completes the mem-
ory request, otherwise the directory controller issues a
degraded mode request.

Leaving reconstruction mode. Once the recon-
struction process has rebuilt all affected data for the
failed node, the system enters recovery mode. In this
mode, mode-specific PAI registers are updated with the
failed node ID and recovery policy. Unlike reconstruc-
tion, where all memory requests are first sent to the
failed home node, PAI minimizes the memory request
latency by immediately translating the PAI address.
Thus, memory requests go directly to the reconstructed
node and the effective memory latency is the same as
other remote requests.

5. Memory Recovery Modes
In this section, we present two recovery modes

enabled by PAI: spare memory and data swap modes.

5.1. Spare Memory Mode
Spare memory mode utilizes a spare node with

equal memory as the other nodes. This mode restores
all data using parity reconstruction from the failed
memory node onto the spare [17]. Using PAI, the sys-
tem sends subsequent memory requests to the spare.

During error-free operation, PAs do not resolve to
the spare memory node’s ID. Upon entry into recon-
struction, the data and parity values are reconstructed
on the spare node by changing PAI’s translation. PAI
replaces the node ID of the failed node (Fail ID regis-
ter) in the original PA with the spare memory node’s
ID. This remaps all PAs from the failed node without

involving the OS and user programs or changing the
amount of addressable memory in the system.

Spare memory nodes increase the cost of the sys-
tem, however the overhead can be amortized over the
size of the system. For typical DSM machines with
four to sixteen memory nodes [3,10], the spare mem-
ory node overhead is lower than existing on-board
redundancy mechanisms such as memory mirroring,
RAID and DIMM sparing [2,8].

5.2. Data Swap Mode

FIGURE 4. Data swap mode recovery rebuilds
failed node i’s data in an evicted group. The
reconstruction process and updated PAI
mappings are shown.

Node N+i+1

PAI Reg

Set: N
X-Set: 0

PAI Reg

Set: 0
X-Set: N
Fail ID: i
RmG: k

Fail ID: i
RmG: k

Node N+iNode N

Node 0 Node N-1

Node i failure

OS evicts group k from
other set (RmG)
Data and parity
reconstruction

Remapped data addr

Parity
GN=N

Parity
Node ID GO

Parity addr

Remap
GN

Remap
Node ID GO

Parity Addr Construction
Lost data addr in Node i

GNFail ID

Remap
GN

Remap
Node ID GO

GO

Remapped data addr

RemapGN

From OS

X-Set + (+ 1) % NGNX-Set + (+ 1) % NGN

Data Addr Redirection

Remap
Node ID+ (-1) % NSet
Remap
Node ID+ (-1) % NSet

Data swap mode maintains both redundancy and
performance by reducing the available system memory,
while incurring no additional hardware costs. Data
swap mode leverages the OS’s virtual memory support
to free one parity group by swapping pages to disk or
migrating the data to other free pages. Data swap mode
reconstructs data from the failed node into the freed
group, as shown in Figure 4.

Data swap mode must free an entire parity group.
An ideal choice is to evict the parity group that lost its
parity—the parity stored on the failed node—because
this group is otherwise without protection. However,

the OS may not evict this parity group if it contains
pinned pages. The OS can instead choose another par-
ity group with no pinned pages. The OS can find a free
parity group easily because the memory uses horizon-
tal parity groups.

Once the selected parity group is freed, data swap
mode reconstructs data to the freed parity group. PAI
then maps transparently requests for the failed node to
the replacement parity group. By maintaining the origi-
nal parity sub-groups, PAI preserves parity protection
for the reconstructed data. Figure 4 summarizes the
mappings for message redirection and parity address
construction of remapped address.

Data swap mode exposes a subtle addressing
restriction during recovery: data sub-groups cannot
reside on the same node as their parity. Data swap
mode avoids this problem by horizontally shifting the
location of relocated data by one node, ensuring that
data and parity are always separated.

Data swap mode retains the error correction capa-
bilities of the baseline system, but reduces the available
memory by one parity group. Data swap mode can also
protect multiple node failures in one set with multiple
PAI registers and further reducing memory. This is
equivalent to the protection afforded by multiple spare
memory nodes, without added hardware.

6. Evaluation
In this section, we evaluate the performance of

PAI recovery modes.

6.1. Methodology
We evaluate the performance of PAI in FLEXUS, a

full-system timing simulator [7]. We simulate a 16-
node DSM running Solaris 8. Each node contains
detailed processor core, microcoded directory control-
ler, memory controller, and DRAM models. Nodes
communicate using a directory-based NACK-free, 3-
hop cache-coherence protocol over an interconnect
based on the HP GS1280 [3]. We list the relevant
parameters in Table 1.

TABLE 1. DSM server and workload configuration.
Processing
Nodes

UltraSPARC III ISA, TSO consistency
4 GHz, 8-wide, 8-stage; out-of-order
256-entry ROB, LSQ and store buffer

L1 Caches Split I/D, 64KB 2-way, 2-cycle latency
4 ports, 32 MSHRs

L2 Cache Unified, 8MB 8-way, 25-cycle latency
1 port, 32 MSHRs

Main Memory 60 ns latency, 2 channels, 32 banks
16 entry read/write queues per channel

Parity Protection Two 8:1 parity groups for 16 nodes
Protocol Engine 1 GHz controller, 64 contexts
Interconnect 4x4 2D torus, 25 ns latency per hop

128 GB/s peak bisection bandwidth
Commercial Workloads
DSS-DB2 10GB data, 3GB buffer pool
OLTP-DB2 10GB data, 64 clients, 450 MB buffer pool
OLTP-Oracle 10GB data, 16 clients, 1.4 GB buffer pool
Web 16K connections, fastCGI
Scientific Workloads
Em3d 3M nodes, degree 2, span 5, 15% remote
Ocean 1026^2 grid, 9600s rlx, 20K res., err.tol.1e-7

We evaluate six commercial and two scientific
workloads. We run both IBM DB2 v8 ESE and Oracle
10g Enterprise Database Server with an on-line trans-
action processing (OLTP) workload modeled after
TPC-C. We evaluate a decision support system (DSS)
workload modeled after TPC-H on DB2, using two
representative queries: scan-bound query 1 and join-
bound query 2. We evaluate web server performance
using SpecWeb99 running on both Apache HTTP
Server v2.0 and Zeus Web Server v4.3. We also evalu-
ate two scientific workloads: em3d exhibits producer-
consumer sharing between pairs of processors and
ocean exhibits bursts of memory transactions. Our

workloads are carefully tuned to produce representa-
tive memory system behavior.

We allocate pages to reduce remote misses and
balance load: round-robin and first-touch for commer-
cial and scientific workloads, respectively.

We use a systematic paired-measurement sam-
pling approach derived from SMARTS [20]. We collect
a sample size targeting 5% confidence intervals with
measurements of 50,000 cycles, using warmed
microarchitectural structures. For commercial work-
loads, we measure user-mode instructions committed,
which is proportional to overall system throughput [6].
In scientific workloads, we measure the user-mode
instructions committed by the slowest node over time,
which reflects the overall execution time for the work-
load. In data swap mode, we assume the OS locates
enough free virtual pages to absorb the decreased
memory space, thus swapping to disk is unnecessary.

6.2. Recovery mode performance
In this section, we evaluate the performance of

PAI’s recovery modes after a hard failure in a single
memory node. For data swap and spare memory
modes, all data reconstruction and page migrations
have taken place and the system is now operating in
steady-state execution with one memory node inactive.
Execution during the reconstruction process is similar
to degraded mode, however the situation only lasts
until reconstruction has completed.

Figure 5 shows the performance of degraded, data
swap, and spare memory modes, normalized to error-
free execution.

Degraded mode. Degraded mode suffers from a
significant performance loss—averaging 14% for com-
mercial workloads and 51% for scientific workloads.

0

0.2

0.4

0.6

0.8

1

DSS-Scan
DSS-Join

OLTP-DB2

OLTP-Oracle

Web-Apache
Web-Zeus

Em3D
Ocean

No
rm

ali
ze

d
Pe

rfo
rm

an
ce

Degraded DataSwap Sparing-2hop

FIGURE 5. Recovery mode performance.

Every memory request to the failed node requires
reconstruction of lost data and directory values. The
failed node’s performance is impacted because local
memory must be reconstructed. The other nodes are
degraded due to the increased remote latency of blocks
owned by the failed node. Therefore, even though only
a fraction of the address space is degraded, all nodes
have a longer memory latency.

We now discuss this effect quantitatively. Table 2

TABLE 2. Workload memory characteristics per 1K
cycles from baseline execution.

L2
Misses

Write-
backs

Dirty
Misses

Parity
Updates

DSS-Scan-DB2 0.78 0.01 0.28 0.29
DSS-Join-DB2 2.48 0.22 0.58 0.80
OLTP-DB2 3.95 0.30 0.54 0.84
OLTP-Oracle 5.18 0.57 0.44 1.01
Web-Apache 2.96 0.53 0.41 0.94
Web-Zeus 3.09 0.24 0.45 0.69
Em3d 7.94 1.85 0.02 1.87
Ocean 6.21 4.15 0.22 4.37

summarizes the average frequency of L2 misses, write-
backs, dirty misses (remote misses to modified data)
and parity updates during error-free mode. Parity
updates are divided into those from writebacks and
dirty misses. The commercial workloads show a clear
bias towards dirty sharing, while the scientific work-
loads exhibit frequent writeback requests. Therefore,
during degraded mode the performance of commercial
workloads will decrease because of remote memory
accesses, while scientific workloads will be slow due
to a high L2 miss rate.

FIGURE 6. Execution time breakdown for (A) fault-
free, (B) degraded, (C) data swap, and (D) sparing 2-
hop modes, normalized to fault-free execution.

0.0

0.5

1.0

1.5

2.0

2.5

A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D
DSS-
Scan

DSS-
Join

OLTP-
DB2

OLTP-
Oracle

Web-
Apache

Web-
Zeus

Em3D Ocean

No
rm

ali
ze

d T
im

e B
re

ak
do

wn

Read - Remote
Read - Local
Store
Spin
On-Chip

This expectation is reflected in the execution time
breakdown result during error-free and the recovery
modes, in Figure 6. The execution time is divided into
on-chip execution, time spent in spin-locks, stores,
reads for private data and remote data. Compared to

error-free mode, commercial workloads spend addi-
tional time in off-chip remote read and write requests
during the degraded mode. This reflects the increased
latency for reconstructing shared data. Em3d spends
additional time on local reads, due to the increased
local memory read latency, while ocean spends addi-
tional time on stores, due to the increased local write-
back latency.

Spare memory mode.

FIGURE 7. Performance sensitivity of spare node as
average distance from the failed node changes.

0.0

0.2

0.4

0.6

0.8

1.0

Spare-1hop Spare-2hop Spare-4hop Spare-8hop

No
rm

ali
ze

d P
er

for
ma

nc
e

Commercial
Scientific

We now study performance
after reconstruction in spare memory mode. Figure 7
shows the performance when varying the distance
between the failed and spare nodes. We vary from one
network hop to eight hops to study effects beyond the
maximum four hop distance in our interconnect.

The average performance impact at two hops is
2% for commercial workloads and 26% for scientific
workloads. The primary overhead is increased memory
access latency from the failed node’s once-local data
that is now on the spare. Other nodes do not experience
significant performance loss because both directory
and memory requests are already remote. Commercial
workloads show little sensitivity because only a small
fraction of the remote accesses are affected. However,
performance for scientific workloads is severely

degraded as the distance increases due to redirecting
once-local memory requests to the remote spare.

Data swap mode. In data swap mode, PAI sends
memory requests for the failed node directly to the
reconstructed data locations. As with spare memory
mode, only the local accesses to the lost memory
observe increased latency from redirection.

The average distance between a failed node and
the reclaimed space in other nodes is about 2.5 hops.
Therefore, the performance of data swap mode is com-
parable to the performance of spare memory mode at
2.5 hops. The average performance impact is 1% and
32% for commercial and scientific workloads, respec-
tively. Increased local memory access latency is the
primary performance factor during degraded mode,
therefore the performance of spare node at two hops
and data swap mode are similar (as shown in Figure 6).
For scientific workloads, data swap outperforms the
spare memory mode at four hops and performs worse
than spare memory mode at two hops. The slowdown
comes from contention in nodes accepting additional
memory requests, due to PAI redirection. By contrast,
spare memory mode does not increase contention.

7. Conclusion
In this paper, we propose Physical Address Indi-

rection (PAI), a lightweight, hardware-based mecha-
nism for memory system failure recovery. PAI provides
a simple hardware mapping to transparently recon-
struct affected data in alternate locations, while main-
taining high performance and avoiding physical
address changes. With full-system, timing simulation
of commercial and scientific workloads on a DSM
server, we show that prior techniques have a substantial
performance loss following hardware failure, while
commercial workloads using PAI have a negligible
performance loss.

Acknowledgements
We thank the anonymous reviewers and members

of the SimFlex research group for their helpful com-
ments on drafts of this paper. This work is supported by
NSF CAREER award CCF-0347568, NSF award ACI-
0325802, Sloan fellowships, the Center for Circuit and
System Solutions (C2S2/FCRP), CyLab, and by grants
and equipment from Intel Corporation.

References
[1] C. R. Conklin, C. J. Hollenback, C. Mayer, and
A. Winter. Reducing planned outages for book hardware
maintenance with concurrent book replacement. IBM Journal
of Research and Development, 51(1/2), Jan-Mar 2007.
[2] C. C. Corporation. Compaq Advanced Memory Protec-

tion Technologies. Compaq, Jun 2002.
[3] Z. Cvetanovic. Performance analysis of the Alpha 21364-
based HP GS1280 multiprocessor. In Proceedings of the 30th
Annual International Symposium on Computer Architecture,
pages 218–229, June 2003.
[4] T. Dell. A White Paper on the Benefits of Chipkill-Cor-
rect ECC for PC Server Main Memory. IBM Corp., 1997.
[5] B. Gold, J. Kim, J. Smolens, E. Chung, V. Liaskovitis,
E. Nuvitadhi, B. Falsafi, J. Hoe, and A. Nowatzyk. TRUSS:
A reliable, scalable server architecture. IEEE Micro,
25(6):51–59, Nov-Dec 2005.
[6] R. Hankins, T. Diep, M. Annavaram, B. Hirano, H. Eri,
H. Nueckel, and J. P. Shen. Scaling and characterizing data-
base workloads: Bridging the gap between research and prac-
tice. In Proceedings of International Symposium on
Microarchitecture, Dec 2003.
[7] N. Hardavellas, S. Somogyi, T. Wenisch, R. Wunderlich,
S. Chen, J. Kim, B. Falsafi, J. Hoe, and A. Nowatzyk. Sim-
flex: A fast, accurate, flexible full-system simulation frame-
work for performance evaluation of server architecture.
SIGMETRICS Performance Evaluation Review, 31(4):31–35,
Apr 2004.
[8] Intel Corporation. Intel E8500 Chipset North Bridge
(NB). Intel reference manual, Mar 2005.
[9] J. Jann, L. Browning, and R. Burugula. Dynamic recon-
figuration: Basic building blocks for autonomic computing on
ibm pseries servers. IBM Systems Journal, 42(1), Jan 2003.
[10] C. N. Keltcher, K. J. McGrath, A. Ahmed, and
P. Conway. The AMD Opteron processor for multiprocessor
servers. IEEE Micro, 23(2), March-April 2003.
[11] S. Microsystems. Predictive Self-Healing in the Solaris
10 Operating System - A Technical Introduction. SUN Micro-
systems, Jun 2004.
[12] B. Murphy. Automating software failure reporting. ACM
Queue, 2(8), Nov 2004.
[13] D. Patterson. Recovery oriented computing: A new re-
search agenda for a new century, Feb. 2002. Keynote Address,
HPCA-8.
[14] D. Patterson, G. Gibson, and R. Katz. A case for redun-
dant arrays of inexpensive disks (raid). In Special Interest
Group on Management of Data, pages 109–116, Jun 1988.
[15] M. Prvulovic, Z. Zhang, and J. Torrellas. Revive: Cost-
effective architectural support for rollback recovery in shared-
memory multiprocessors. In Proceedings of International
Symposium on Computer Architecture, May 2002.
[16] B. Schroeder and G. Gibson. A large-scale study of fail-
ures in high-performance computing systems. In Internation-
al Conference on Dependable Systems and Networks, pages
249–258, Jun 2006.
[17] D. Sieworek and R. S. (Eds.). Reliable Computer Sys-
tems: Design and Evaluation. A K Peters, 3rd edition, 1998.
[18] D. Sorin, M. Martin, M. Hill, and D. Wood. Safetynet:
Improving the availability of shared memory multiprocessors
with global checkpoint/recovery. In Proceedings of Interna-
tional Symposium on Computer Architecture, May 2002.
[19] D. Tang, P. Carruthers, Z. Totari, and M. Shapiro. As-
sessment of the effect of memory page retirement on system
ras against hardware faults. In International Conference on
Dependable Systems and Networks, Jun 2006.
[20] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe.
SMARTS: Accelerating microarchitecture simulation through
rigorous statistical sampling. In Proceedings of the 30th An-
nual International Symposium on Computer Architecture,
June 2003.

	1. Introduction
	2. Distributed parity protection
	2.1. Memory system vulnerability
	2.2. Fault model
	2.3. Distributed parity protection
	FIGURE 1. DSM server’s memory system (shaded area) protected by (7:1) distributed parity.

	2.4. Recovery challenges with hardware faults
	2.5. Conventional memory protection

	3. Physical Address Indirection
	FIGURE 2. Distributed parity protection using PAI translations during error-free operation.

	4. Reconstruction
	4.1. Degraded mode reconstruction
	4.2. Memory system reconstruction
	FIGURE 3. Steps in reconstruction and recovery of data from a failed memory node.

	5. Memory Recovery Modes
	5.1. Spare Memory Mode
	5.2. Data Swap Mode
	FIGURE 4. Data swap mode recovery rebuilds failed node i’s data in an evicted group. The reconstruction process and updated PAI mappings are shown.

	6. Evaluation
	6.1. Methodology
	TABLE 1. DSM server and workload configuration.

	6.2. Recovery mode performance
	FIGURE 5. Recovery mode performance.
	TABLE 2. Workload memory characteristics per 1K cycles from baseline execution.

	FIGURE 6. Execution time breakdown for (A) fault- free, (B) degraded, (C) data swap, and (D) sparing 2- hop modes, normalized to fault-free execution.
	FIGURE 7. Performance sensitivity of spare node as average distance from the failed node changes.

	7. Conclusion
	Acknowledgements
	References

