dOSEK: A Dependable RTOS for Automotive
Applications

Martin Hoffmann, Christian Dietrich, Daniel Lohmann
Friedrich—Alexander University (FAU) Erlangen—-Nuremberg, Germany
E-Mail: {hoffmann,dietrich,lohmann} @cs.fau.de

Abstract—Recent automotive systems exhibit an increased sus-
ceptibility against transient hardware faults. As a consequence,
dependability measures are mandatory to provide appropriate
fault detection or masking properties fulfilling the required
safety standards. On the other hand, production costs are
still a crucial factor in this domain, which leads to hardware
consolidation and therefore mixed-criticality systems. An existing
dependability approach, supporting such systems, combines triple
modular redundancy with encoded operations, but still leaves the
operating system as single point of failure. We intend to close
this gap by extending the encoded operations throughout the
kernel execution, and additionally integrate the analyzed system
behavior into the code.

I. INTRODUCTION

The effect of transient hardware faults is typically catego-
rized into control flow and data errors. Accordingly, many
software-based dependability concepts cover only one candi-
date of errors, for example introducing error-correcting codes
for memory faults or control-flow signatures on the other hand.
Only few approaches tackle both error types simultaneously, as
for instance the vital coded microprocessor (VCP) [1], using
an arithmetic data encoding also including control flow and
temporal information. The VCP provides a common prime
number A, allowing to detect errors when calculating the
remainder, a variable-specific signature Bx preventing the
mix-up of two encoded values, and a time stamp D ensuring
actuality:

Xene=X-A+Bx+D (1

The concept was pursued by compilers generating fully en-
coded systems [2]. Nevertheless, such a fully encoded sys-
tem implies considerable runtime overhead, which seriously
restricts its applicability in our targeted domain of mixed-
criticality systems. The Combined Redundancy (CoRed) ap-
proach [3] addresses this issue by safe-guarding the com-
putation intensive application logic with triple modular re-
dundancy, while protecting only the voting procedure — the
remaining single point of failure (SPOF) — with the help an
Extended AN Code (EAN), also based on Equation 1. While
CoRed provides a holistic approach on application level, it still
depends on an operating system, which reliably coordinates the
replica execution, as well as spatial and temporal isolation.
The hardening of the operating system itself is not covered

This work was partly supported by the German Research Foundation (DFG)
priority program SPP 1500 under grant no. KA 3171/2-1, LO 1719/1-1 and
SP 968/5-1.

Task 1 — safety-critical ag: Task 2 — uncritical
c - oY ™ [
'% 3 3 8 © Monitoring
Q o3 a o3 @ Application
= [) 0] o
e o o o 175}
o
5 CoRed Voter ‘l‘ Syscal
5]
e
[o%
()
Registers Hardware
Fig. 1. Upon dOSEK two tasks are instantiated: Task 1 includes a CoRed [3]

safe-guarded task system with triple modular redundancy. Task2 implements
an uncritical monitoring application, which is isolated in terms of space and
time from the safety critical component. JOSEK aims to extend the SOR from
the CoRed application layer over the entire operating system.

by the CoRed approach, thus left as single point of failure.
We intend to close this gap by extending the EAN concept
throughout the entire kernel execution. Our targeted system
domain are static OSEK-like operating systems (OSs), which
are used extensively in the automotive area.

II. THE BASIC IDEA

We use the concept of the sphere of replication (SOR) [4]
to depict the ideas and issues more comprehensively. A SOR
describes a logical domain protected by some fault detection
scheme ensuring that any fault occurring within the sphere
and propagating to its boundary will be detected. In other
words, as long as redundancy is applied, either being triple
modularity, or in terms of encoded values, which facilitates
at least fault detection, the system lies within a SOR. Once
a value is decoded, the border of the SOR is reached: at this
point the redundancy is dropped.

As depicted in Figure 1, our approach aims to extend
the SOR from the CoRed application layer (replicas and
voter) over the entire kernel execution, while preserving the
realizability of mixed-criticality systems. The system call can
be seen as an entry point to the kernel’s SOR. At this point,
redundancy in terms of EAN is applied and kept throughout
the entire kernel execution. In fact, any data processed within
the kernel, that is the input parameters as well as the internal
kernel state, has to be encoded all the way through the kernel
execution. Only when reaching the border of the SOR, for
example when concrete values are to be set in hardware

dOSEK.c
\ -7 - N

ActivateTask (Xene);

.C
\
ActivateTask (X);

Original System Generated
Application Analysis System
(@) (b) (c)

Fig. 2. On the basis of the original application (app.c) and the system
description (app.oil) a system analysis reveals the task dependencies
and the expected runtime behavior according to the OSEK specification.
Subsequently a tailored kernel (dOSEK. c) is generated, where the expected
behavior information is merged into encoded system call parameters.

registers, a value is validated and decoded. Consequently, all
operations within the kernel must be able to handle EAN
encoded values. This may also lead to unusual data structure
design optimized for EAN support, rather than runtime or
memory efficiency. However, a fully static embedded system
provides a significant amount of system knowledge. To take
advantage of this information, we aim to integrate the analyzed
system behavior into the EAN code, which allows to detect
deviations from the expected behavior.

III. REQUIREMENTS

As already mentioned, our targeted system domain are static
OSEK-like mixed-criticality systems. The OSEK specification
[5] for the core functions is small, precise and a good starting
point for designing a safety-critical OS. The dOSEK kernel
will provide essential dependability aspects, like temporal
isolation in terms of a watchdog or deadline monitoring
concept. Also, spatial isolation among the tasks with the help
of a memory protection unit is mandatory.

To realize CoRed protected applications, the dOSEK kernel
has to provide means for reliable coordination and voting of
the various replica tasks. Therefore the kernel must be tailored
to the specific application to provide proxies for system
calls within replicated instances. Such a tailoring requires a
composable OS design concept similar to the CiAO family [6].
While CiAO concentrates on memory and runtime efficiency,
we focus on effective dependability aspects, in the first place.

IV. INTENDED APPROACH

For both problems we will exploit the static domain knowl-
edge, that arises from the static system design. As illustrated in
Figure 2a, all tasks and resources are well-known beforehand.
The stringent OSEK specification allows to build a complete
space of reachable OS states. With the help of a static analysis
tool [7], this, potentially huge, state space can be reduced
by considering the analyzed kernel interaction and resource
dependencies of the concrete application (see Fig. 2b). This,
actually redundant, information can be then used as a fur-
ther dependability aspect improving fault detectability: The
signatures B of the original encoding rule (see Eq. 1) are

selected to be unique for each variable, but they do not contain
further redundant information. The system generation step

(Fig. 2¢) integrates the system knowledge into the code word,
leveraging the validation of the tasks’ interaction, as expected
after the pre-runtime analysis. Entering the SOR with system
call parameters encoded this way, the signature allows to check
the validity of the call according to the analyzed application.
As a result, beneath control flow and data integrity, even the
system behavior is condensed into a tailored EAN code. The
resulting kernel (dOSEK.c) has a strictly continuous SOR
with dedicated entries and check points at the specific sphere
boundaries, where the encoded results are validated.

This might further enable transactional behavior: When
initiating a transaction, that is entering a system call, the
current OS state can be backed up. The following kernel
execution happens within the SOR; no irreversible action is
performed without passing a check point at the SOR boundary.
This clearly defined commit phase also facilitates graceful
degradation. In case of a detected error. the misleading system
call can be retried, or, with the help of the application
knowledge, an alternative path can be chosen. Ultimately, if
no viable solution can be found, the system may still result in
a fail-stop state.

V. CHALLENGES

We expect some interesting challenges to be tackled, when
realizing the JOSEK kernel. First we need to find decent algo-
rithms and data structures for the operating system primitives
that operate on encoded values efficiently. Since the OSEK
specification provides several conformance classes, we can
start with a small subset of primitives and build up from
there. The second challenge will be to keep the SOR as big as
possible to minimize the unprotected operations. Clearly, the
bare hardware registers are a natural SOR boundary of any
software-based solution.

REFERENCES

[1] P. Forin, “Vital coded microprocessor principles and application for
various transit systems.” in Symp. on Control, Computers, Communication
in Transportation (CCCT '89), Sep. 1989, pp. 79-84.

[2] U. Wappler and C. Fetzer, “Software encoded processing: Building
dependable systems with commodity hardware,” in 26th Int. Conf. on
Comp. Safety, Reliability, and Security (SAFECOMP °'07), F. Saglietti
and N. Oster, Eds. Heidelberg, Germany: Springer, 2007, pp. 356-369.

[3] P. Ulbrich, M. Hoffmann, R. Kapitza, D. Lohmann, W. Schroder-
Preikschat, and R. Schmid, “Eliminating single points of failure in
software-based redundancy,” in 9th Eur. Dep. Computing Conf. (EDCC
’12). Washington, DC, USA: IEEE, May 2012, pp. 49-60.

[4] S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection via

simultaneous multithreading,” in Proceedings of the 27th International

Symposium on Computer Architecture (ISCA ’00). New York, NY, USA:

ACM Press, 2000, pp. 25-36.

OSEK/VDX Group, “Operating system specification 2.2.3,” OSEK/VDX

Group, Tech. Rep., Feb. 2005, http://portal.osek-vdx.org/files/pdf/specs/

0s223.pdf, visited 2011-08-17.

[6] D. Lohmann, W. Hofer, W. Schroder-Preikschat, J. Streicher, and

O. Spinczyk, “CiAO: An aspect-oriented operating-system family

for resource-constrained embedded systems,” in 2009 USENIX

ATC. Berkeley, CA, USA: USENIX, Jun. 2009, pp. 215-

228. [Online]. Available: http://www.usenix.org/event/usenix09/tech/full _

papers/lohmann/lohmann.pdf

F. Scheler and W. Schroder-Preikschat, “The RTSC: Leveraging the

migration from event-triggered to time-triggered systems,” in /3th IEEE

Int. Symp. on OO Real-Time Distributed Computing (ISORC ’10). Wash-

ington, DC, USA: IEEE, May 2010, pp. 34-41.

[5

—

[7

—

http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://www.usenix.org/event/usenix09/tech/full_papers/lohmann/lohmann.pdf
http://www.usenix.org/event/usenix09/tech/full_papers/lohmann/lohmann.pdf

