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Abstract—The use of traditional defense mechanisms

or intrusion detection systems presents a disadvantage

for defenders against attackers since these mechanisms

are essentially reactive. Moving target defense (MTD) has

emerged as a proactive defense mechanism to reduce this

disadvantage by randomly and continuously changing the

attack surface of a system to confuse attackers. Although

significant progress has been made recently in analyzing

the security effectiveness of MTD mechanisms, critical

gaps still exist, especially in maximizing security levels

and estimating network reconfiguration speed for given

attack power. In this paper, we propose a set of Petri

Net models and use them to perform a comprehensive

evaluation regarding key security metrics of Software-

Defined Network (SDNs) based systems adopting a time-

based MTD mechanism. We evaluate two use-case scenarios

considering two different types of attacks to demonstrate

the feasibility and applicability of our models. Our analyses

showed that a time-based MTD mechanism could reduce

the attackers’ speed by at least 78% compared to a system

without MTD. Also, in the best-case scenario, it can reduce

the attack success probability by about ten times.

Index Terms—Security, Moving Target Defense, Software

Defined Networks, Petri nets
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PRDC’22 proceedings.

I. INTRODUCTION

Traditional defense measures for dealing with mali-

cious threats include installing anti-malware software,

deploying firewalls, blocking network traffic and appli-

cations, and denying permissions to specific resources.

Also, many intrusion detection systems (IDSs) have

been developed to identify various kinds of attacks and

trigger responsive actions. However, IDSs and traditional

defense mechanisms are reactive. They act only after

having identified malicious activities, which often is too

late and therefore ineffective against agile and intelligent

cybercriminals (e.g., attackers). Late defense actions

increase the attackers’ chances of launching effective

and efficient cyberattacks since they have enough time

to gather and exploit information [1].

Fortunately, Moving Target Defense (MTD) has been

proposed as a proactive defense mechanism. It secures

systems by introducing continuous change in the pro-

tected computer systems or their networks (e.g., by

altering network settings, replacing the guest Operat-

ing System of a Virtual Machine (VM), or alternating

versions of the hypervisor to execute a VM). In doing

so, MTD aims to raise uncertainty in the attacker,

requiring him to spend time adjusting the attack to the

present configuration [2]. MTD techniques operate in an
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arbitrary combination of time- and event-triggered re-

configurations. A pure event-triggered MTD reconfigures

the system only after a particular event occurs. Time-

triggered MTDs act periodically at configurable rates.

Furthermore, hybrid approaches [3] mix the previous op-

tions to act periodically but also in response to triggering

events. See [4] for a recent survey of MTD techniques.

The philosophy behind MTD, in comparison to con-

ventional cybersecurity techniques, is to assume systems

will get compromised even if a lot of effort is spent on

defending it. In consequence, MTD advocates adapting

to threats by change. Classical cybersecurity aims for

identifying new attack vectors and vulnerabilities, patch-

ing them as quickly as possible in order to raise more and

more defenses. On the other hand, MTD concerns with

ensuring sufficient diversity to avoid common mode fail-

ures while guaranteeing that the rate of change remains

sufficiently high to outpace the adversary in compromis-

ing components. To that end, MTD techniques include

shuffling network addresses (real and virtual) and ports,

switching over VM and containers, and changing the

hardware by selecting diverse subsets among a pool of

spare nodes [4].

More recently, Sharma et al. [5], Alavizadeh et

al. [6], and Alhozaimy and Menascé [7] have ana-

lyzed the effectiveness of MTD techniques, identifying

two significant gaps: (1) finding the optimal time to

trigger MTD operations, such that system security is

maximized, is a largely unsolved task, particularly for

time-triggered systems; and (2) attack speeds remain

largely unknown and have proven difficult to estimate

correctly. Therefore, in this paper, we set out to fill

these gaps by proposing a set of Petri nets models to

analyze the security aspects of systems, applying virtual

IP (vIP) shuffling as a time-based MTD mechanism.

Our proposed models consider crucial phases of cyber

attacks as defined by the Cyber Kill Chain [8], such

as Reconnaissance and Exploitation. The parameterized

characteristics of the model also allow one to evaluate

different behaviors of attackers, such as the number of

scanning packets sent during an attack. The models also

adopt the MTD technique proposed by Sharma et al. [5],

namely Flexible Randomisation Virtual IP Multiplexing

(FRVM), and extend it by relaxing the assumption that

the attack rate and the rate to trigger the MTD operation

should be equal.

Our results show substantial improvement in the secu-

rity levels when adopting a time-based MTD mechanism.

Among the analyzed scenarios, the security improvement

can surpass 600% compared to a solution without MTD,

but it comes with a high reconfiguration rate for the

MTD operation. In the worst case, adopting an MTD

mechanism increases the security results by at least 78%

when applying a reconfiguration rate smaller than 600

seconds. Also, the two use cases show that the proposed

models can be adopted and extended to evaluate different

scenarios and types of attacks to analyze security trade-

offs between different system settings. More precisely,

our contributions are as follows:

• we proposed extendable, and easily usable, security

models by means of a Petri net abstraction, capa-

ble of capturing different attackers’ behaviors and

phases of a cyberattack;

• we extended the FRVM, proposed by Sharma et

al. [5], removing the assumption that the attack rate

and the rate to trigger the MTD operation should

be equal. It allows evaluating security metrics for

more broad and realistic scenarios;

• we identify three key security metrics — Attack

Success Probability (ASP), Mean Time to Compro-

mise (MTC), and a Security Improvement metric

(SI) — and evaluate them in two use-case scenarios

where we consider SQL injection and Dictionary
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attacks.

The remainder of this paper is structured as follows.

§II provides background information regarding Software

Defined Networks (SDNs), System security, security

analysis and modeling, and the MTD technique of IP

shuffling. §III presents a motivating example of an

MTD-enabled SDN-based environment. §IV presents the

proposed models for quantitative security analysis. §V

demonstrates the applicability and feasibility of the pro-

posed models, discussing their numerical results, trade-

offs and limitations. §VI discusses related work on MTD

for system and networks. §VII concludes this paper.

II. PRELIMINARIES

A. SDN-based systems

SDNs ensure first programmability and easy manage-

ment of networks [9]. They separate data transmission

from a network control layer, which administrators can

use to shape traffic using a logically centralized con-

troller rather than reaching out to all network compo-

nents individually.

The above ease of configuration and maintenance has

led to the wide adoption of SDN technology. They

have become a core technology in cloud computing.

Moreover, the centralized control over the network sim-

plifies deploying defense mechanisms, such as MTD.

However, one should note that MTD is not limited to

SDNs and can as well be applied in traditional networks

(e.g., through hardware-specific appliances), although at

potentially higher operational costs [10].

B. System security

Distinct reference models have mapped the cyber-

attack phases as presented by Mazurczyk and Cav-

iglione [11] to easily track the multi-stage characteristics

of cyberattacks, showing that launching effective attacks

requires gathering information about the victim network,

a phase commonly referred to as reconnaissance phase.

Cyber Kill Chain [8] identifies seven cyberattack phases:

(1) Reconnaissance, (2) Weaponization, (3) Delivery, (4)

Exploitation, (5) Installation, (6) Command and Con-

trol, and (7) Act on Objective. During (1), adversaries

collect information about the network topology, service

dependencies, and unpatched vulnerabilities [12]. Con-

sequently, applying MTD mechanisms at the network

level has a good chance of canceling the finding of

such information by changing the system before the

attack is deployed (in steps (3-5)). MTD can also help

complicate subsequent steps of the Cyber Kill Chain,

however, it remains crucial to implement changes as

early as possible and before the adversary has time to

begin with subsequent steps.

Various MTD techniques have been proposed as an

attempt to increase the difficulty of reconnaissance [11],

including IP address and port shuffling [5] (see §II-D).

SDNs facilitate the implementation and deployment of

such MTD techniques.

C. Security Analysis & Modeling

The security of systems can be analyzed through

measurements, simulation, and analytical modeling [13].

Analytical models, such as Petri nets [14], Markov

chains [15] and the Hierarchical Attack Representation

Model (HARM) [16] have been used for quantifying the

security of systems and MTD mechanisms [17], [18],

[16]. Their success motivated us to adopt an extension of

Petri nets, called Deterministic and Stochastic Petri Nets

(DSPN) [14] to evaluate services in SDN environments

with and without MTD mechanisms.

DSPNs are ideal for modeling time-based MTD mech-

anisms since it allows deterministic transitions — that

can be applied to trigger an MTD operation regularly —

and stochastic transitions — that can be used to represent

events with some time variance since they follow an
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exponential time distribution. DSPNs follow the regular

Petri nets notation. Tokens are kept in places, and

transitions consume tokens from a place generating new

tokens in another place. We denote tokens by small black

circles, places by white circles, and transitions by rect-

angles. Immediate transitions are thin black, stochastic

transitions white, and deterministic transitions black bold

rectangles. Arcs (represented by arrows) connect places

and transitions. It rules the tokens flow through the

places and can have weights. Inhibitor arcs (represented

by an arrow ending with a small white circle) can disable

a transition when its weight is met. We refer the reader

to [14] and [19] for further details.

D. MTD technique IP shuffling

IP shuffling [1] randomly changes IP addresses and

port numbers to create a moving target of how com-

ponents can be reached through the network. The shuf-

fling frequency, which is the triggering interval for this

MTD technique, crucially impacts security. For example,

Sharma et al. [5] proposed FRVM to proactively change

a host’s vIP address and invalidate adversary knowledge

on how the associated service can be reached. FRVM

further demonstrates that the success probability for

scanning attacks in static networks (without MTD) is

at least 37% higher than in MTD-enabled networks. We

will refer to this probability as the Scanning Success

Probability (SSP).

Let us provide further details on FRVM to the extent

that they are relevant for this work. FRVM concludes that

the SSP is determined by a hypergeometric distribution

for static networks because it draws a vIP sequence of

size K from a finite population without replacement. For

static networks, the SSP is therefore

P (X = x) =

 n

x

 N − n

K − x


 N

K

 (1)

where an attacker has successfully obtained x of the

n hosts in the address space N ≥ n by scanning the

system K ≥ x times. This means the SSP to find at

least one host in the static network is given by Eq. 2:

P (X > 0) = 1− P (X = 0) = 1−

 N − n

K


 N

K

 (2)

In an MTD-enabled network (using the FRVM), the

SSP can be defined through a binomial distribution

representing the number of successes when drawing a

sequence of length K from a finite population with

replacement (see Eq. 3).

P (X = x) =

 K

x

 px(1− p)K−x (3)

Here p = n
N stands for the probability of an attacker

discovering a host and K ≥ x.

However, the FRVM, as an MTD approach, presents

one strong assumption, namely that the attack rate and

the MTD trigger rate should be equal. This assump-

tion may affect the model accuracy since it would be

reconfigured at runtime, collecting the current system

attack rate and adapting the MTD operation interval.

The proposed models in this paper extend FRVM by

incorporating it and removing this assumption by al-

lowing system representations where those rates are not

necessarily equal.

III. AN MTD-ENABLED SDN-BASED SYSTEM

We illustrate our approach with the help of an example

SDN environment that employs a time-based IP shuffling
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MTD, which we introduce in the following. Figure 1

shows our environment composed of an SDN controller

(e.g., Ryu [20]), a domain name system (DNS server)

to resolve virtual (vIP) and real (rIP) IP addresses of

network components. The SDN further contains unman-

aged switches (SSW1, SSW2, USW1, and USW2) and

servers (Server1 and Server2) that offer web-services to

users over the Internet.

Normal userNormal user

SDN Controller DNS server

SSW2

SSW1 Server2

Server1

SDN-based environment

Requesti

rIP1

rIP2

vIP1

vIP2

AttackerAttacker

USW1

Attackj

Usual request

Attacker request

InternetInternet

USW2

 USW:   Unmanaged switch

 SSW:    SDN switch

Fig. 1: An example of an SDN-based environment.

In this environment, we consider attackers trying to

compromise a specific server (e.g., Server2), requiring

that the network systems protect Servers2 from unau-

thorized access while guaranteeing service execution to

regular users. We further assume that FRVM is applied

as an MTD technique to mitigate cyberattacks. However,

since FRVM adopts multiplexing and demultiplexing

vIPs for the communication between network compo-

nents, we also consider that the shuffling is applied for

vIPs only. vIP shuffling can break active connections

when changing a server’s vIP. When the SDN controller

performs vIP shuffling, it changes the switch flow rules.

Consequently, ongoing attacks are disrupted since the

attacker does not know the new vIP assigned to the

server. In summary, we assume the following for this

environment and the adversaries in it:

• the combination of [vIP: Port] or a domain name

must be used to access a service. The domain name

only redirects traffic to port 80 of a server;

• active connections are closed (broken) when a

server’s vIP gets shuffled in response to the MTD

triggering;

• there is only one attacker in the system, and she/he

does not scan the vIP twice unless the entire net-

work address space has been already scanned;

• an attacker uses scanning software (e.g.,

Nmap [21]) for the reconnaissance phase, trying to

identify valid vIPs;

• an attacker knows the size of the network and its

subnets. The latter can, for example, be guessed

using utilities like Whois [22];

• we condense weaponization, delivery, and exploita-

tion into one phase and assume that, after an

attacker has successfully exploited a host, it gains

full control over it;

• the attacker persists in attacking the target system

until she/he compromises at least one host.

IV. PROPOSED MODELS

In this section, we introduce our models for quan-

titatively evaluating the security aspects of SDN-based

systems, which employ IP shuffling as the MTD tech-

nique. First, we explain how the models work and how

they extend FRVM. After that, we detail the metrics that

can be computed using these models.

A. Security Models

Our DSPN models represent attacker and system be-

havior in both a non-defending environment (i.e., w/o

MTD) and in an environment where MTD is enabled

using time-based vIP shuffling. They follow the defined

environment constraints in §III. First, we present the

model for an SDN without MTD and then for an SDN

using MTD.
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PinitScanTna

Ts

Pattacker

N/K

Pnet

Pscan Tss

Tsf

Pscanned

Ta

Treset
[g2]

[g1]

(N/K) - #Pnet

PsysComp

Fig. 2: DSPN model for a service under attacks in an SDN environment without deployed MTD.

Model 1: No MTD. This model represents an environ-

ment where no MTD mechanism is adopted. Figure 2

presents the proposed DSPN model for a non-defensive

environment under attack. The presence of a token in

the place Pattacker represents the attacker is idle and

does not initiate the attack. This marking activates the

exponential transition Tna, which represents the time the

attacker waits to initiate the attack. When Tna fires, it

generates a token in the place PnitScan, indicating the

attacker can start the reconnaissance phase. In order to

enable the transition Ts both PinitScan and Pnet

places must have tokens. The place Pnet stores the

number of tokens representing the maximum number of

scans an attacker should perform to discover at least one

valid vIP. N
K represents this number since N is the subnet

size and K is the number of scanning packets sent by

the attacker (see §II-D). When Ts fires, it generates a

token in place Pscan.

At this marking, both immediate transitions Tss and

Tsf can be enabled. The guard functions — Boolean

functions based on the current marking, disabling a

transition from being fired when they return false —

g1 and g2 (see Table I) and the weight functions (see

Table II) determine which transition will be fired. The

weight functions are based on FRVM model Eq. 2, where

the result is the SSP, given by a number between 0 and

1. In this way, transitions Tss and Tsf receive different

weights, representing, in this case, the firing probability

of each one. The case of Tsf firing represents the

attacker did not find a valid vIP, and a token is deposited

in the place Pattacker, where the attacker waits some

time and then initiates a new scanning process again. The

case of Tss firing represents the attacker found a valid

vIP, and can start to exploit vulnerabilities in the host. A

token is generated into the place Pscanned to indicate

this behavior.

TABLE I: Guard functions for the DSPN models.

Guard Enabling Function

g1 (#Pscanned + #PsysComp) < 1

g2
(#Pnet > 0) OR (#Pnet=0) AND

((#Pscanned + #PsysComp) > 0))

g3 (#Pmtd = 1)

g4 (#Paa < DLI)

The presence of a token in the place Pscanned en-

ables the transition Ta, representing the attacker starting

the exploitation phase. Note that this transition can rep-

resent the time an attacker spends in a given attack (e.g.,

SQL injection), or it can be replaced to represent a more

complex attack behavior (we demonstrate in §V-C how

this can be done by representing a dictionary attack).

When Ta fires, it generates a token in place PsysComp,

indicating the vulnerability exploitation was successful,
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TABLE II: Immediate transitions configurations adopted.

Transition Priority Weight

Tss 1

IF(#Pnet=0): 0.99999

ELSE(1-((((#Pnet + 1) × K) - K)

÷ ((#Pnet + 1) × K)))

Tsf 1

IF(#Pnet=0): 0.00001

ELSE((((#Pnet + 1) × K) - K)

÷ ((#Pnet + 1) × K))

Trc 0 1

Td1, Td2, Tdan,

Tdac, Tna
1 1

and the attacker gained access to the host. Transition

Treset and the arcs in red are used only as an artifact

to compute a metric through steady-state analysis. We

detail this approach in the next Section §IV-B. Also, note

that the command #<place_name> present in Tables I

and II is used to capture the number of tokens in a place

(e.g., #PsysComp).

Model 2: MTD. Figure 3 presents the proposed DSPN

model for an environment using vIP shuffling as MTD.

Different from the previous model, this one is divided

into two submodels. Figure 3 (a) representing the Clock

Model for the MTD mechanism and Figure 3 (b) rep-

resenting the Attacker and system model. The Clock

Model is responsible for controlling the frequency in

which the vIP shuffling occurs (i.e., the MTD trigger

interval). The presence of a token in the place Pclock

enables the deterministic transition Tt. Unlike exponen-

tial transitions, where the firing delay varies following

an exponential distribution, deterministic transitions fire

within the specific delay when enabled. Thus, this type of

transition represents the time-based behavior to trigger

the MTD mechanism well. When Tt fires, a token is

generated in the place Pmtd. This marking enables the

guard function g3 in the Attacker and system model

(see Table I). Also, the transition Trc is enabled, but

it will wait to fire until other transitions enabled by g3

have fired because Trc has lower priority than other

immediate transitions (see Table II).

The Attacker and system model works similarly to the

no MTD model shown in Figure 2. However, when the

guard function g3 returns true, it activates the transitions

Tna and Td1. The activation and firing of Tna means

that place Pnet will have N
K tokens again. It represents

that the SDN controller assigned new vIPs to the network

components. Consequently, the previous scans made by

the attacker are not useful since the newer vIP could

be in the range already scanned by the attacker. Thus,

this model representation extends FRVM by resetting the

SSP independently of the MTD or attack rate used.

When an attacker has already found a valid vIP in the

network, and she/he is exploiting the host vulnerabilities,

there is a token in the place Pscanned to represent this

behavior. The enabling of Td1 by g3 removes the token

from Pscanned and deposits a token in Pattacker.

It means the attacker loses communication with the host

and cannot proceed with the exploitation since it does

not know the new vIP assigned to the host. Therefore,

to successfully compromise a host, an attacker should

find a valid vIP and exploit a vulnerability within the

MTD trigger interval. Finally, similarly to the no MTD

model, the transition Treset and arcs in red is only a

modeling approach to compute a steady-state metric.

B. Computed Metrics

Using the proposed models, we focus on computing

three key security-related metrics: the Attack Success

Probability (ASP), Mean Time to Compromise (MTC),

and Security Improvement (SI). The ASP is computed

through transient analysis, where it measures the proba-

bility of a token being in the place PsysComp over time.

To obtain this metric, it is not necessary to use the red

components of the model. MTC computes the mean time
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Pattacker

N/K
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Tsf

Pscanned PsysComp

Ta

[g2]

[g1]

PmtdTtPclock

Trc

[g3]

(N/K)
Tna

[g3]
Td1

(a) MTD Clock Model

(b) Attacker and System Model

Treset

(N/K) - #Pnet

Fig. 3: DSPN model for an SDN adopting a time-based MTD under attacks.

for place PsysComp to receive a token, representing the

attacker has compromised a host. This metric is obtained

through stationary analysis. We use the models with the

red part to get the result of this metric because every

time a token arrives at the place PsysComp, it resets

the token numbers of places Pnet and Pattacker,

executing the model and get the result until a stationary

state. We employ the Little’s law [23] to calculate the

MTC by dividing the expected number of tokens in the

model (Nt) by the throughput of the transition Treset

(TPTreset) as showed in Eq. (4). TPTreset is defined in

Eq. (5), where p is the probability of a marking that

enables Treset and Tr represents the delay assigned

to Treset.

MTC =
Nt

TPTreset
(4)

TPTreset = p× 1

Tr
(5)

The SI is obtained by calculating the percentage dif-

ference between the MTC result for a system with-

out MTD and a system using MTD. Lastly, Table III

details the expressions used to obtain the ASP and

MTC using the proposed DSPN models. The func-

tion P{<logical_expression>} gives the prob-

ability of a marking occur (e.g., P{#PsysComp >

0}) and the function E{#<place_name>} indi-

cates the expected number of tokens in a place (e.g.,

E{#PsysComp}).

TABLE III: Expressions used in the DSPN models to

obtain the metrics results.

Metric Expression

ASP P{#PsysComp > 0}

MTC
(E{#Pattacker} + E{#PinitScan} + E{#Pscanned}

+ E{#PsysComp}) ÷ (P{#PsysComp > 0}/Tr)

V. CASE STUDIES

This section presents two case studies to demonstrate

the applicability and feasibility of the proposed models.

First, we present the experimental setup used to analyze

the models. Next, we describe and present the first use

case results, where we consider an attacker who wants

to perform a SQL injection attack. Then, in the second

use case, we show how to extend the proposed models to

represent more complex attack behaviors, representing a
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dictionary attack scenario. We choose to represent these

attacks because they are among the highly ranked web

application attacks [24]. Lastly, we discuss the main

results obtained and the implications of adopting the

proposed models.

A. Experimental Setup

We employed the TimeNET tool [25] to run and ana-

lyze the DSPN models. Other tools such as Mercury [26]

or SHARPE [27] can be used similarly. Table IV de-

scribe the input parameters and their values assigned to

the transitions of the DSPN models. Note that some

parameters are only used in a specific use case. The

parameters Tsc, Tsql, and Tdic were obtained through

experiments in an SDN testbed similar to the Figure 1.

We used the Nmap [21] for scanning the network. Nmap

was configured to send 10 TCP packets/vIP for a range

of 4096 vIPs in the SDN. Then, we measured the total

time spent to scan the vIPs and divided the result by

4096 to obtain the mean time to scan one vIP. We

used the sqlmap [28] for automated SQL injection. The

tool continually inserted malicious SQL queries into

input data fields with the goal of retrieving valid user

credentials of a server running a Damn Vulnerable Web

Application (DVWA). We collected the mean time in

which the tool has found the valid credentials. The

Patator [29] tool was used to perform the dictionary

attack. We passed a pre-defined dictionary to the tool,

and configured the tool to attempt to log in to a web

service using usernames and passwords from the dictio-

nary. Then, we collected the mean time the tool could

successfully login into the web service based on the

valid credentials position index in the dictionary. The

achieved mean values in all experiments are assigned

to the respective input parameters in Table IV. Others

https://github.com/digininja/DVWA

parameters were reasonably estimated, but they can be

easily adapted for the models.

TABLE IV: Default input parameters for the DSPN

models.

Par. Description Transition Value

N # subnet address space - 65536 (class C)

K # scanning vIPs - 4096

DLI Password location in the dic. - 10

Tna Mean time to launch new attack Tna 60 s

Tsc Mean time to scan Ts 0.03557 s × K

Tsql Mean time to exploit SQL inj. Ta 124.6406 s

Tdic Mean time to exploit dictionary Tda 4.87 s × DLI

Ti MTD interval Tt 120 s

Tr Aux. reset time Treset 0.01 s

B. CS#1. SQL injection representation

This case study aims to demonstrate the applicability

of the proposed to compare security metrics between

a system without and with MTD. In this case study,

we consider an attacker who executes a SQL injection

on a host. We use the DSPN models shown in §IV-A

to represent this scenario. The SQL injection action is

translated into the model by the transition Ta. So, the

attacker first needs to perform a reconnaissance (i.e.,

scanning) in the network (Ts), find a valid host vIP

(Tss), and then exploit the vulnerability by executing

a SQL injection attack (Ta).

Figures 4a and 4b display the ASP obtained for this

scenario by using the input parameters shown in Table IV

and varying the parameter K. Recalling the parameter

K represents the number of packets configured by the

attacker to be sent during a scanning execution, Fig-

ures 4a and 4b show the ASP results for different values

of K. We choose to vary this parameter because when

executing scanning attacks, an attacker may attempt

to avoid being detected by security systems, such as

an Intrusion Detection Systems (IDS), sending fewer

packets through the target network.
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Through the plots, we can notice a considerable dif-

ference between the ASP for the system configuration of

no MTD and with MTD. In the no MTD configuration

(Figure 4a), the ASP reaches the maximum value after

5,000 seconds for most of the K values. The exception

is for K=1024, when the attacker sends fewer packets,

the maximum ASP is reached around t = 7,000 seconds.

Differently, in the MTD configuration (Figure 4b), the

ASP only reaches the maximum value around the 50,000

seconds and around 70,000 seconds for the K=1024. It

means the maximum ASP value is improved by around

10x.

We also computed the MTC for this scenario. Table V

presents the MTC for the different values of K adopted.
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(a) no MTD configuration
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Time (s) ×104
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K=4096
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(b) MTD configuration

Fig. 4: ASP over time for the system without adopting

the MTD (a), and with MTD enabled (b) considering

different values for K and Ti.

The MTC shows an attacker’s average time to exploit

and compromise a host successfully. Thus, these values

do not necessarily relate to the time when the ASP

reaches the maximum value, but it is more likely the

MTC correspond with the time when the ASP reaches

0.5 - 0.65. A greater MTC means better security for the

environment. The MTC results make clear the security

improvements of deploying an MTD mechanism against

scanning attacks. When calculating the SI, we can notice

that an MTD mechanism enhances the environment

security by 388% in the worst configuration (K = 8192)

considering the adopted parameters.

TABLE V: MTC obtained considering different values

for K.

MTC (s)

Config. no MTD w/ MTD

K = 1024 3,258.22 17,280.00

K = 2048 2,316.68 11,931.51

K = 4096 1,873.04 9,259.77

K = 8192 1,705.90 8,338.32

C. CS#2. Dictionary attack representation

This case study demonstrates how it is possible to

extend the proposed DSPN models to represent the

behavior of different attacks. In this case study, we

consider an attacker who executes a dictionary attacker

in a host after finding it. A dictionary attack uses a list of

predefined words with a correspondent hash to compare

with the password hash, and when there is a hash

matching, the attacker can identify the password [30].

In this use case, we consider an attacker executes the

dictionary attack following a sequential order, from the

first word to the N-st word, and the system has a weak

password listed in the position DLI of the attacker’s

dictionary.
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Figures 5a and 5b present the DSPN models to eval-

uate the proposed scenario of this use case, considering

the environment without MTD and with MTD, respec-

tively. The highlighted part (in blue) is the part that was

extended from the original DSPN model of Figures 2

and 3. Note that the transition Ta in the original models

was replaced by the highlighted part. This part represents

the dictionary attack behavior. In this submodel, when

an attacker has successfully scanned a host (token in

the place Pscanned), she/he initiates executing the

dictionary attacks (Tda) until the password position DLI.

When the attacker has executed DLI attempts, the place

Paa will have DLI tokens, and the place PatckGoing

will have one token, enabling the transition Tdac, which

means the attacker successfully exploited and compro-

mised the host. The new guard function g4 and the

properties of the new immediate transitions are defined

in Tables I and II, respectively. Note that since the net

structure changed, the MTC metric expression should

also be adapted to consider in the sum the expected

number of tokens of the place Paa (i.e., E{#Paa}).

Next, we measured the ASP and MTC for the models

using the parameters in Table IV. The plot in Figure 6

presents the ASP achieved over time for a system without

MTD and when a system adopts a time-based MTD.

Also, the plot shows the ASP when adopting two differ-

ent MTD intervals (Ti). In the no MTD configuration,

the ASP reaches 0.5 at t= 1,320 s and 1 at t= 3,400

s. On the other hand, in the MTD configuration, the

ASP reaches 0.5 at t= 2,040 s using Ti = 360 and

at t= 3,360 s using Ti = 120. The ASP reaches its

maximum value (1) at t= 15,280 s using Ti = 360 and

at t = 25,500 s using Ti = 120. Therefore, it is notable

that the security improvements when adopting an MTD

mechanism would be capable of delaying the system’s

compromise.

The analysis of the ASP over time is also valuable

PinitScanTna
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Pattacker

N/K
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Pscan Tss

Tsf

Pscanned PsysComp

Tda

[g2]
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PatckGoing
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Tdan
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[g4]
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(a) no MTD configuration
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(a) MTD Clock Model

(b) Attacker and System Model
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Fig. 5: DSPN model for system under a dictionary

attack without adopting MTD (a) and using an MTD

mechanism (b).
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Fig. 6: ASP obtained for system under a dictionary

attack considering the configurations (i) no MTD and

(ii) adopting a time-based MTD with different MTD

intervals.

when defining the desired security levels on Service

Level Agreement (SLA) contracts. Security engineers

can analyze different configurations when using the

proposed models to choose the most suitable for the
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TABLE VI: Example of an ASP analysis considering

different configurations for finding an ASP threshold.

w/ MTD, Ti (s)

t (s) no MTD 120 240 360

600 0.21 0.1 0.15 0.17

1000 0.37 0.17 0.25 0.28

1400 0.54 0.24 0.33 0.38

1800 0.7 0.3 0.41 0.45

defined threshold. For instance, consider a system where

the ASP should be kept below 30% for at least 30

min. Table VI presents an ASP analysis considering

different configurations for the MTD interval. In the con-

figurations analyzed in Table VI, the only configuration

capable of keeping the ASP equal to 30% within 30

minutes is when adopting MTD with the trigger interval

of 120 seconds.

Next, we analyze the MTC and SI for the scenario.

Figure 7a presents the MTC achieved for the different

configurations of Ti and DLI, while Figure 7b shows

the SI when using different MTD trigger intervals and

assuming other values for the DLI. While assuming

distinct values for the DLI have a negligible impact

on the MTC when using the no MTD configuration,

there is a more significant difference when an MTD

mechanism is used. For instance, the MTC for the no

MTD configuration are 1,821.74s (DLI = 5) and 2,016.57

s (DLI = 10), while for the MTD configurations the

values reaches 5,610.7 (DLI = 5, Ti = 60) and 14,943.85

(DLI = 10, Ti = 60). The security enhancement is evident

when we analyze the plot in Figure 7b. For the Ti = 60

the SI is more than 600% (DLI = 10) and 200% (DLI =

5) when compared with the environment without MTD.

However, the SI is more marginal when using a Ti > 300

stabilizing near 100% and reaching 78% at Ti = 600 for

both configurations of DLI.
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(a) MTC results
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(b) SI results

Fig. 7: MTC (a) and SI (b) analysis considering different

MTD trigger intervals (Ti) and the password index in the

attacker’s dictionary (DLI).

Lastly, since we notice an MTC variation when as-

suming different values for the DLI, Figure 8 shows a

plot analyzing the MTC for various values of DLI. In

the scenario considered in this case study (sequential

dictionary attempts), the DLI significantly impacts the

MTC, especially when adopting an MTD mechanism.

For the no MTD configuration changing the DLI from

5 to 25 increases the MTC by around 82%, and using

the MTD 92% (Ti = 360). When Ti < (DLI × Tdic)

the MTC grows exponentially, making it more hard for

an attacker to compromise a system through a dictionary
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attack. This situation is shown for the DLI = 25 and Ti

= 120 in the plot of Figure 8, when the MTC reaches a

value of 52,223.72 seconds.
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Fig. 8: MTC comparison between configurations by

varying the DLI.

D. Discussion

Security enhancement. The various analyses per-

formed using the proposed DSPN models have shown

that adopting a time-based MTD mechanism improves

the security aspects of a system under cyber attacks that

need a reconnaissance phase. The attack success proba-

bility (ASP) can drop significantly, as shown in the CS#1

(§V-B) where the maximum ASP value (1) dropped 10x

if compared with the system without MTD. Also, the

mean time to compromise a system (MTC) could be

improved by at least 78% when an MTD mechanism

was adopted (see §V-C). We also demonstrate the impact

of assuming different MTD intervals. We could observe

that the more significant security improvements in a

dictionary attack scenario were when an MTD trigger

interval (Ti) < 300 seconds was adopted.

Models usability. The case studies showed how the

proposed DSPN models could help analyze systems

regarding security aspects. Our proposed models that

implemented and extended an existent MTD mecha-

nism, agree with the initial FRVM model (refer to

paper [5]), and the experimental analyses carried out

by [31], showing that a time-based MTD can increase

the security of an SDN environment. Additionally, our

models relaxed a previous assumption on FRVM where

the trigger interval and attack rate should be the same.

Also, the adopted metrics can quantitatively evaluate

different system configurations in order to achieve the

desired security levels, which is especially useful for

environments subject to SLA contracts. Besides, the case

studies showed how security engineers could extend

them to represent different types of attacks. However,

in order to extend the models, one should comprehend

DSPN modeling. Although it limits the models’ usability,

in future work, we can leverage modeling techniques

that translate high-level models into Petri nets models,

like in [32], which could facilitate the adoption of our

proposed models.

Security trade-offs. Some research has been carried out

regarding the trade-offs of adopting MTD mechanisms.

Most of the works individually explored the security,

performance, or availability impacts of MTD adoption.

Few of those works could quantitatively analyze two

of these aspects together. Quantitatively evaluating these

three aspects of a system and correlating them together

is a great challenge. Although the proposed models pre-

sented in this paper can be used to evaluate key security

metrics, we understand that adopting an MTD mech-

anism can also impact the systems’ performance and

availability. In our recent paper [33], we evaluated the

performance and availability aspects of systems adopting

MTD. However, integrating security modeling increases

models’ complexity due to the different analyses that

need to be carried out (e.g., transient and steady-state) to

capture different metrics. Therefore, in future work, we

will integrate the security models proposed in this paper



14

with the performance and availability models to capture

and analyze security, performance, and availability trade-

offs.

VI. RELATED WORK

Alavizadeh et al. [6] analyzed the metrics of risk, reli-

ability, and unattackability when combining two different

MTD techniques, shuffle and redundancy, in a cloud

computing environment. The authors adopted Stochastic

Reward Nets (SRN) and HARM models to conduct the

analysis. They defend combining these two techniques to

minimize risk while increasing system reliability. Simi-

larly, El-Mir et al. [34] introduced a stochastic model to

evaluate the security and downtime of virtual machines

(VMs) in cloud computing environments. The models

considered VM migration across different subnets as

an MTD mechanism. Torquato et al. [35], [17] also

presented SRN models to compute the attack success

probability and availability of a system using VM migra-

tion scheduling as an MTD mechanism. Chen et al. [36]

and Chang et al. [37] also employed SRNs to model and

evaluate systems adopting MTD mechanisms regarding

performance and security aspects. The first evaluated

an MTD-enabled system concerning the job completion

time, attack success probability, and system availability.

The latter focused on analyzing only the mean job finish

time of systems adopting an MTD mechanism.

Cai et al. [38] presented DSPN models to evaluate

MTD mechanisms regarding performance. Their model

could analyze performance metrics, such as the response

time and system throughput. On the other hand, Maleki

et al. [39] proposed a Markov model-based framework

to analyze MTD-enabled systems. They introduced the

concept of security capacity as a measure of MTD

effectiveness and could estimate the probability of attack

success and attack cost to evaluate the effectiveness

of the proposed MTD mechanism. Connell et al. [12],

[18] investigated system reconfiguration benefits when

an MTD mechanism is applied in a pool of VMs. The

focus of the works was to maximize the performance

and availability of the VM pool. They developed an

analytic model to evaluate the resource availability and

performance when applying generic MTD mechanisms.

The results found an optimal reconfiguration rate for

the system concerning performance and availability con-

straints.

In a prior work [33], we used DSPN models, but to

evaluate the performance and dependability of services

in a network adopting a time-based MTD. Nguyen et

al. [40] also evaluated the performance and dependability

aspects of a system adopting a time-based MTD, but

using SRN models. Their work provided helpful insights

for our modeling strategy. In both works, authors mea-

sured performance and dependability metrics such as re-

sponse time, throughput, host utilization, and availability.

Sharma et al. [5] developed an MTD technique called

FRVM to protect against network reconnaissance and

scanning attacks. It allows a network component (e.g.,

a host) to have random vIP addresses multiplexed to

its real IP address. The paper offered relevant insights

into our model design and parameterization. In further

work, Dishington et al. [31] used Mininet [41] to ex-

perimentally evaluate the deployment of FRVM in an

SDN environment regarding security and performance

aspects. The experiments demonstrated that IP address

multiplexing was effective at further obfuscating and

prolonging the network scans, but it comes with a

significant performance loss.

The discussed works above mainly investigated the

effectiveness of MTD mechanisms regarding security,

performance, or dependability. However, none of them

proposed extendable models capable of evaluating se-

curity key metrics such as ASP, MTC, and SI. Unlike

the works above, this paper focuses on investigating the
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impact on systems’ security introduced by deploying the

vIP shuffling as a time-based MTD mechanism in an

SDN environment. Therefore, our proposed models con-

tribute to advancing the state-of-art on security modeling

of MTD mechanisms. They are also suitable for identi-

fying optimal configurations regarding distinct security

system requirements based on their critical trade-offs.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented a security modeling and evalu-

ation approach for SDN environments adopting MTD

mechanisms. We proposed a set of extendable and

easily reusable DSPN models to capture the behavior

of different cyberattacks in such an environment and

analyze three key security metrics — Attack Success

Probability (ASP), Mean Time to Compromise (MTC),

and Security Improvement (SI). Using the proposed

models, we evaluated two use cases considering highly

ranked types of web-based attacks, SQL injection, and

Dictionary attacks. The performed evaluation showed

that the security significantly increased in both use

cases thanks to the adoption of an MTD mechanism.

Moreover, the use case evaluation also showed that the

proposed models allow for flexible experimentation and

tweaking the configuration of the non-MTD and MTD

security schemes. This indicates that Petri Net modeling

is perfect for security architecture trade-off analyses.

Furthermore, in future work, we aim to advance our

modeling approach by combining our security models

with performance and dependability models to be able to

evaluate the trade-off between these three characteristics.
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