Quality Aware Approximate Memory in RISC-V
Linux Kernel

Giulia Stazi, Antonio Mastrandrea, Mauro Olivieri, Francesco Menichelli
Sapienza University of Rome
Dept. of Information Engineering, Electronics and Telecommunications (DIET)
Rome, Italy
Email: {g.stazi,antonio.mastrandrea,mauro.olivieri,francesco.menichelli } @uniromal..it

Abstract—Improving power consumption and performance of
error tolerant applications is the target of the design paradigm
known as approximate computing. The memory subsystem is
one of the units of a computational architecture where approx-
imations can be introduced, leveraging on the resilience of an
application to maintain an acceptable output quality even if its
input data are subject to imprecision and errors.

This paper proposes and implements the management, in the
Linux kernel, of multiple approximate memory banks. Appli-
cations can then allocate approximate memory for their data
structures selecting between different levels of approximation,
depending on the requirements on output quality. This allows
to design an architecture where approximate physical memory,
instead of being composed of a unit intercepting a single point
in the energy-quality tradeoff curve, can be split into multiple
banks trading off levels of approximation and energy savings.

We finally show a case study in the results, where we explore
the allocation of different data structures of a signal processing
application, depending on sensitivity to errors and desired output
quality.

Index Terms—Approximate Computing,
Tradeoff, Low Power

Energy Quality

I. INTRODUCTION

The increasing requirements on energy consumptions and
performance in modern digital systems have led to the research
of new design approaches that were able to go beyond the
established energy-performance tradeoff. A viable proposal,
known as approximate computing, has demonstrated to be
particularly prolific. Many applications in the domain of signal
processing, multimedia, computer vision, machine learning,
etc. (ETAs, Error Tolerant Applications) are known to be
particularly resilient on errors occurring on their input data
and during computation, producing an output that, although
degraded, is still largely acceptable from the point of view
of quality. Approximate computing design paradigm leverages
on ETAs characteristics to develop circuits, architectures,
algorithms that perform their computations in an approximate
or inexact manner, saving on energy consumption.

According to this paradigm, approximate memories are
memory circuits designed with relaxed constraints on data
integrity in exchange of large energy savings during oper-
ations. Depending on the technology (i.e SRAM, DRAM),

978-1-7281-3549-6/19/$31.00 ©2019 European Union

many implementations have been proposed at circuit and
architectural level [1]-[4].

In general ETAs, albeit being error-resilient on a large
portion of their input data, will require also exact storage for
part of their data structures (e.g. see the distinction between
critical and non-critical data in [5]). Moreover considering that
operating systems are not error tolerant, keeping a portion of
exact memory is always required.

Once asserted the possible energy benefits of systems with
approximate memory, their management has been considered
and implemented in lightweight [2] and full operating sys-
tems [6]. In this way, after characterizing and profiling their
memory allocation requests, applications and algorithms can
be converted to straightforwardly use approximate memory for
portions of their data structures [7].

This paper proposes a new approach to introduce, in the
Linux OS, the ability to allocate approximate data in separate
memory zones according to quality requirements. The poten-
tial of having quality aware memory zones opens the way
to further investigations, tailoring allocations of approximate
memory depending on, for example: (a) different sensitivity of
output quality to errors in input data structures; (b) variable-
time output quality requirements; (c) requirements of different
applications in a multitasking environment.

The new kernel can run in architectures containing several
physical memory banks with different levels of approximation.
In this context, we will refer often to the term level of approxi-
mation of a memory in order to classify different approximate
memories. This definition is related to error rate (i.e. higher
error rate corresponds to higher level of approximation), but
also, depending on approximate memory circuits, to the weight
of bits affected by errors (i.e. on equal conditions, a memory
with approximate cells limited to the least significant bits of
a word has a lower level of approximation [1]). The multiple
levels of approximation could be realized, for example, using
several DRAM banks with different refresh rates, lower than
required by specifications.

In particular, this work makes the following contributions:

« we introduced approximate memory support for the first

time in 64-bit Linux kernel, specifically for RISC-V
architectures [8];

o we introduced the capability of configuring up to four

approximate memory zones (in addition to standard Linux

memory zones), where each of these zones corresponds
to physical memory with a certain level of approximation;
« we implemented an internal data allocation scheme, ca-
pable of handling separately the allocation requests in
quality aware approximate zones;
« we developed a user space data allocation mechanism and
support library.

We tested and evaluated our implementation on the emulator
AppropinQuo [9], after integrating the latter with models of
quality-configurable approximate memory regions.

The rest of this paper is organized as follows. Section II
presents the current state of the art. Section III illustrates
the implementation of the quality aware approximate mem-
ory zones in 64-bit Linux kernel. Section IV describes the
simulation setup in AppropinQuo and the results on a case
study.

II. RELATED WORK

Approximate computing techniques have been explored for
arithmetic units and memory units. Concerning the former,
authors in [10] present the implementation of variable bit ap-
proximate addition and multiplication on a RISC-V platform,
exploring the effects on a filter application.

In [2], [11] the authors introduce a methodology for con-
structing a quality aware approximate memory system based
on DRAM. The core idea is to refresh DRAM with a single but
reduced rate, characterizing portions of the memory array and
splitting them in several quality bins, based on the frequency,
location and nature of bit errors in each physical page. During
program execution, non-critical data can be allocated to bins
sorted in descending order of quality. The setup included the
use of the lightweight operating system pC/OS-II for memory
management and task creation. However, the paper proposes
to use the quality bins in a descending order, ensuring that
lower quality bins (i.e. having a higher level of approximation)
are always used as last resource. The work does not explore
the possibility of selecting the quality bins at program level,
depending on data. In this paper we take the notion of quality
bins in approximate memory and implement their management
in the Linux Kernel OS.

In [6] the approximate memory support on 32-bit Linux
OS is described. Approximate memory management has been
integrated in the kernel memory management, relying on the
internal concept of Linux physical zone. In this way the Linux
kernel is aware of exact physical memory pages (grouped
in ZONE_DMA, ZONE_NORMAL and ZONE_MOVABLE) and
approximate physical memory pages (grouped in a new
ZONE_APPROXIMATE), managing them as a whole for the
common part (e.g. optimization algorithms, page reuse, de-
fragmentation) but distinguishing them in terms of allocation
requests and page pools management. Compared to that work,
this paper includes the approximate memory support to 64-
bit architectures, that can manage larger memory sizes, but
also has the ability to support up to 8 memory zones (32-bit
kernel is limited to four zones, including the always active
ZONE_NORMAL and ZONE_MOVABLE). We also inserted the

instantiation and management of up to four approximate zones,
each one corresponding to physical memory pages with differ-
ent levels of approximation. The whole system was finalized
and compiled for RISC-V 64-bit architecture and executed on
ApproinQuo emulator [9].

III. QUALITY AWARE APPROXIMATE MEMORY ZONES IN
LiNnUux OS

A. Memory Zones

Introducing multiple approximate memory zones within the
Linux OS is mainly architecture independent, while a reduced
number of modifications (as the definition of the memory map)
is required in architecture dependent source files. For this
first implementation, we chose as target the RISC-V 64-bit
architecture.

The architecture independent part includes the creation of
new memory zones and the implementation of the correspond-
ing data allocation policy. Both should be consistent with
the requirements for the approximate memory management
already defined in [6]. We should note that, due to the
Linux kernel memory management implementation, on 32-bit
architectures it is possible to define and create up to 4 memory
zones, while on 64-bit architectures this limit is extended up
to 8. Considering that ZONE_NORMAL and ZONE_MOVABLE
are always enabled and required, while ZONE_DMA and
ZONE_DMA32 could be enabled depending on architecture
requirements for managing DMA devices, on 64-bit archi-
tectures, with the current implementation, it is possible to
create up to 4 zones for approximate memory (that we called
ZONE_APPROXIMATEx, x = 1...4). The rationale behind
these multiple zones is that each ZONE_APPROXIMATEZ is
filled with pages backed by physical memories with different,
and decreasing, level of approximation (i.e. the approximate
memory zone with the lowest index corresponds to memory
with the highest level of approximation).

Defining an order is important since it has an impact
on internal allocation policies. The former organization is
compliant with the fallback mechanism of the Linux OS,
which is activated if a memory zone is not able to satisfy
an allocation request. In other words, if an allocation request
for memory with a certain level of approximation cannot be
satisfied (e.g. because the requested size is not available), the
allocator will fallback to a hierarchically higher approximate
zone, characterized with a lower level of approximation, up to
the exact zones (ZONE_NORMAL, ZONE_DMA, etc.).

The mapping of the layout of approximate memory
zones into physical RAM is architecture dependent. A
function inside the kernel computes the available physical
memory; this information is then used in the initializa-
tion phase to group physical memory pages into memory
zones. Each zone must be characterized by its start pfn
and end pfn (page frame number), corresponding to the
physical address bounds of each memory (expressed in as
page_number = physical_address/page_size). On the 64-
bit RISC-V architecture two memory zones are present by

DMA_32 DMA_32 DMA_32 DMA_32
NORMAL NORMAL NORMAL NORMAL
APPROX_4

APPROX_1 APPROX_2 =

= APPROX_3

APPROX_2

APPROX_1
APPROX_1

Fig. 1. Configuration of physical memory layout

default: ZONE_DMA32 and ZONE_NORMAL. In order to in-
troduce quality aware approximate zones, we partitioned the
physical memory into five parts. The first one corresponds
to exact memory and it will be used for ZONE_DMA32 and
ZONE_NORMAL; the others are used for approximate memory
zones (1 to 4). The pfn bounds of these zones are assigned
statically, depending on the number of quality aware memory
zones that are present (Fig. 1). Moreover, the start pfn of the
highest enabled ZONE_APPROXIMATE is used as the current
limit inside the allocation algorithm of the Linux bootmem
allocator. This implementation ensures that pages belonging
to ZONE_APPROXIMATEz are never selected by the kernel to
initialize page allocators data structures.

B. Data Allocation

The Linux OS manages each allocation request using a
set of internal flags, called GFP flags, in order to drive the
allocation algorithm. These flags are used, among others,
to define which memory zone should be selected for the
current request. More specifically, the zone requested is not
completely binding since there are policies (fallbacks) that
allow to go back in the memory zone hierarchy (e.g. in case
a memory zone is full).

To correctly manage allocation requests in multiple ap-
proximate memory zones, it was necessary to define
new GFP flags, one for each approximate memory zone
(GFP_APPROXIMATEx, x = 1...4). According to the re-
quirements described in [6], the priorities and fallback mech-
anism were configured to ensures that (a) the allocation in
approximate zones can only take place on explicit request;
(b) the memory zone hierarchy guarantees that the fallback
mechanism will always move from a higher to a lower level
of approximation.

To allow user space applications to request data allocation
in different approximate memory zones, we implemented a
new approx_malloc library function. This function takes as
input parameters the size of data that should be allocated and
the level of approximation required. The level parameter is
propagated inside the kernel and then it is associated to the
GFP flag of the corresponding approximate memory zone.

Zone ranges:

DMA32 [mem 0x0000000080200000-0x0000000080f£fffff]

Normal [mem 0x0000000081000000-0x0000000087fff£fff]
Approximate2 [mem 0x0000000088000000-0x000000008bffffff])
Approximate [mem 0x000000008c000000-0x000000008fff£ffff]
Movable zone start for each node

Early memory node ranges

node 0: [mem 0x0000000080200000-0x000000008£f£f£fffff]

Fig. 2. Boot messages printing the physical memory layout

69-tap FIR

input ‘ output

N Xto Xt Xtes N
Buffer Buffer
— i —> > .. — —
in out

= B

Fig. 3. Digital FIR architecture

IV. EXPERIMENTAL RESULTS
A. Evaluation setup

We analyzed the usage of quality aware approximate mem-
ory in an application, setting up an emulation of a hardware
platform with the following characteristics:

o RISC-V 64-bit CPU, for which the kernel was compiled;

e RISC-V SiFiveU platform, with 256MB RAM memory.
The 256MB are partitioned into 128MB exact RAM,
64MB approximate memory (level 1), 64MB approximate
memory (level 2), as shown by the boot messages in Fig.
2

o destructive error on read (EOR, see [9] for the definition
of error on access for approximate RAM).

o destructive error on write (EOW, see [9] for the definition
of error on access for approximate RAM).

The AppropinQuo emulator [9] was used for the whole
setup.

B. Case study

As case study we present the application of quality aware
memory allocation on a digital filter, as a typical ETA, working
on audio signals. We chose a software FIR filter, composed of
69 taps and implemented in C language using 32 bit integer
arithmetic.

In particular, Fig. 3 shows the diagram of data (audio
samples) flowing from the input to the output. The appli-
cation has been implemented in order to allocate the in-
put and output buffers (indicated in green in Fig. 3) in
ZONE_APPROXIMATEI and the tap registers (showed in blue)
in ZONE_APPROXIMATE?2. This choice is due to the fact that,
in the implementation, the input and output buffer locations
are accessed less frequently with respect to the tap registers.

Table I reports the relevant data. The input and output
buffers size is 100Kbyte (containing 25,000 32-bit samples),
while the tap registers size is 276 bytes (for 69 32-bit regis-
ters). Access tracing reveals that, as expected, the tap registers

array is accessed about two orders of magnitude more than the
input and output buffers.

We analyzed different combinations of levels
of approximation for ZONE_APPROXIMATEI] and
ZONE_APPROXIMATE2. Considering the order showed

in Fig. 1, fault rate of ZONE_APPROXIMATE] is higher or
equal than ZONE_APPROXIMATE2. An interesting point is
when fault rate is equal, since it corresponds to the case
of having just one ZONE_APPROXIMATE for all non critical
data.

Table II and Table IIT show the results considering the two
opposite corners of an approximate SRAMs, EOR and EOW.
As quality metric, we used SNR, measured considering noise
as the difference between the output of the exact filter and
the output of the approximated filter. The diagonal values
correspond to the case of a single ZONE_APPROXIMATE for
all approximate data; on a row, moving from the diagonal to
the adiacent element reveals that if tap registers are allocated
in memory with a fault rate 10 times lower, a gain of 7 to 8
dB in SNR is obtained for the EOR case. This gain is quite
repeatable across all cases, while further reducing fault rate for
factors of 100, 1000, etc. produces minor advantages. Table
IIT shows how the same concept is valid in the EOW corner,
but, since in this case study tap register reads are about twice
than write accesses, SNR gain is 6 to 7 dB.

TABLE 1
FIR, ACCESS COUNT ON APPROXIMATE DATA STRUCTURES
buffer_in | buffer_out tap regs
size [bytes] 100,000 100,000 276
#read/location 196 196 10,035,200
#write/location 196 196 5,017,601
#total_reads 4,900,000 | 4,900,000 | 692,428,800
#total_writes 4,900,000 | 4,900,000 | 346,214,469
TABLE II

FIR, ouTPUT SNR [dB] FOR SRAM, EOR

Fault rate (buffers) Fault rate (taps) [errors/access]
[errors/access] 10~2 1073 104 10~° 10-6
EOR 102 32.9 37.52 43.64 44.17 44.19
EOR 1073 _ 42.8 50.92 53.57 53.96
EOR 1074 _ _ 53.4 60.85 63.84
EOR 10-° _ _ _ 63.09 71.01
EOR 10-6 _ _ _ _ 72.92
TABLE III
FIR, ouTtpPUT SNR [dB] FOR SRAM, EOW
Fault rate (buffers) Fault rate (taps) [errors/access]
[errors/access] 10~2 1073 10~4 1072 106
EOW 10—2 353 41.18 43.94 44.12 44.1
EOW 10-3 _ 45.5 52.17 53.34 53.79
EOW 10~ _ _ 56.4 61.58 63.19
EOW 10-° _ _ _ 65.69 69.84
EOW 10~ _ _ _ _ 78.11

V. CONCLUSION

In the present paper we describe the implementation, inside
the Linux kernel, of the management of approximate memory,
including support for multiple zone with different levels of
approximation. Applications can select the level of approxi-
mation of their data structures, trading off more efficiently the
approximation level of data (and, hence, energy consumption)
with quality of the output.

An example case study was analyzed, showing how, even
with just two levels of approximation and manual allocation
strategy, output quality can be risen by moving a reduced
number of more sensitive data to memory with lower level
of approximation, while leaving the large buffers on memory
with higher level of approximation.

Future works will target more complex applications re-
quiring larger memory size, exploring the use of multiple
approximate zones. Automatic allocation strategies will also
be considered as a way of reaching more significant savings.

REFERENCES

[1] F. Frustaci, D. Blaauw, D. Sylvester, and M. Alioto, “Approximate srams
with dynamic energy-quality management,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 24, no. 6, pp. 2128-2141,
2016.

[2] A. Raha, S. Sutar, H. Jayakumar, and V. Raghunathan, “Quality config-
urable approximate dram,” IEEE Transactions on Computers, vol. 66,
no. 7, pp. 1172-1187, 2017.

[3] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “Raidr: Retention-aware
intelligent dram refresh,” in ACM SIGARCH Computer Architecture
News, vol. 40, no. 3. IEEE Computer Society, 2012, pp. 1-12.

[4] M. Jung, D. M. Mathew, C. Weis, and N. Wehn, “Efficient reliabil-
ity management in socs-an approximate dram perspective,” in Design
Automation Conference (ASP-DAC), 2016 21st Asia and South Pacific.
IEEE, 2016, pp. 390-394.

[51 A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “Enerj: Approximate data types for safe and general low-
power computation,” in ACM SIGPLAN Notices, vol. 46. ACM, 2011,
pp. 164-174.

[6] G. Stazi, F. Menichelli, A. Mastrandrea, and M. Olivieri, “Introducing
approximate memory support in linux kernel,” in Ph. D. Research in
Microelectronics and Electronics (PRIME), 2017 13th Conference on.
IEEE, 2017, pp. 97-100.

[7]1 G. Stazi, L. Adani, A. Mastrandrea, M. Olivieri, and F. Menichelli,
“Impact of approximate memory data allocation on a h.264 software
video encoder,” in Approximate and Transprecision Computing on
Emerging Technologies ATCET2018, Workshop on, 2018.

[8] A.S. Waterman, “Design of the risc-v instruction set architecture,” Ph.D.
dissertation, UC Berkeley, 2016.

[9] G. Stazi, A. Mastrandrea, M. Olivieri, and F. Menichelli, “Appropinquo:
A platform emulator for exploring the approximate memory design
space,” in 2018 New Generation of CAS (NGCAS). IEEE, 2018, pp.
66-69.

[10] G. Ndour, T. T. Jost, A. Molnos, Y. Durand, and A. Tisserand, “Eval-
uation of approximate operators case study: sobel filter application
executed on an approximate risc-v platform,” in Proceedings of the 18th
International Conference on Embedded Computer Systems: Architec-
tures, Modeling, and Simulation. ACM, 2018, pp. 146-149.

[11] A. Raha, H. Jayakumar, S. Sutar, and V. Raghunathan, “Quality-aware
data allocation in approximate dram,” in Proceedings of the 2015
International Conference on Compilers, Architecture and Synthesis for
Embedded Systems. 1EEE Press, 2015, pp. 89-98.

