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Abstract—This paper introduces a novel method of analysis
for System-on-Chip (SoC) development building upon commonly
used tools and techniques to approximate and automate the
human process of investigation. Knowledge of the interactions
between components within a SoC is essential for understanding
how a system works so the presented method provides a way
of visualizing these interactions. The mathematical basis for the
method is explained and justified, then the method is demon-
strated using two representative case studies. Visualizations from
the case studies are used to exhibit the usefulness of the method
for system optimization, monitoring, and validation.

I. INTRODUCTION

The SoCs comprising modern silicon products are often
built with the result of lifetime’s of work by hundreds of en-
gineers which makes it all but impossible for a single systems
architect to have a complete understanding of every part in
a design. This means that while at first glance a system may
appear to be functioning, unforeseen behaviours may appear
within the interactions between system components, possibly
leading to undesirable behaviour such as reduced performance,
increased energy usage, information leakage, or unexpected
susceptiblity to faults. UltraSoC Technologies Ltd (UltraSoC)
is a silicon IP supplier specializing in embedded analytics
which uses highly configurable monitoring components to
address these issues. Analysing so much data using traditional
methods such as assertions is difficult and time consuming
due to systemic complexity and dynamic behaviour. In this
research we propose a visual tool and mathematical framework
that can help to understand these behaviours and build upon
the instrumentation technology developed by project partner
UltraSoC. Two cases studies are used to illustrate the method-
ology: A synthesizable model of a simple SoC, and a complex
SoC with lightweight software instrumentation enabled by the
use of UltraSoC tools.

The main contributions of this paper are: 1) A mathe-
matical framework for approximating the human process of
investigation for binarized time series SoC data. 2) A novel
visualization technique for behavioural relationships.

This project is supported by the Engineering and Physical Sciences Re-
search Council (EP/I028153/ and EP/L016656/1); the University of Bristol
and UltraSoC Technologies Ltd. Supervised by Dr Jose Nunez-Yanez and
Professor Kerstin Eder.

II. PREVIOUS WORK

An examination of currently available hardware and low-
level software profiling methods is given by Lagraa [1] which
covers well known techniques such as using counters to
generate statistics about both hardware and software events
– effectively a low cost data compression. Lagraa’s thesis is
based on profiling SoCs created specifically on Xilinx MP-
SoC devices, which although powerful, ensures it may not be
applied to data from other sources, such as in post-silicon. Lo
et al [2] described a system for describing behaviour with a
series of statements using a search space exploration process
based on boolean set theory. While this work has a similar goal
of finding temporal dependencies it is acknowledged that the
mining method does not perform adequately for the very long
traces often found in real-world SoC data. Another limitaton
here is our receptiveness to information in the form of long
lists of statements versus a visual representation. Ivanovic et
al [3] review time series analysis models and methods where
characteristic features of economic time series are described
such as high auto-dependence and inter-dependence, high
correlation, non-stationarity, and drawn from noisy sources.
SoC data is expected to have these same features, together
with full binarization and much greater length. Explainability
is a key requirement to understanding so related approaches
such as the use of Neural Network (NN)s has been avoided
at this stage although these may be useful for higher level
analysis.

III. METHODOLOGY

This methodology has been designed to approximate and
mimic the process of an experienced SoC engineer trying to
understand how waveforms are related to each other. It is
assumed that the measurements are taken at discrete times
t, often referred to as a number of clock cycles, and that all
values are binary, fi(t) ∈ {0, 1}. Additionally it is assumed
that data for every time is able to be recorded, or accurately
inferred, which depends on the changes in measurement values
to be sparse for storing data at a physically feasible rate.

The first approximation utilized is the application of a bell-
shaped windowing function w which is similar to how we
focus attention on the centre of a time period t ∈ [u, v). A
power-of-sine window windowing function w is used to create978-1-7281-3549-6/19/$31.00 ©2019 IEEE
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a weighted average of each measurement giving the expected
value.

w(t) =

{
sinα

(
tπ

v−u−1

)
: t ∈ [u, v)

0 : otherwise
(1)

E[fi] =
1∑
w

∑
t∈[u,v)

w(t) ∗ fi(t) ∈ [0, 1] (2)

Bayes theorem in Equation (3) and the definition of indepen-
dence in Equation (5) to allow the conditional expectation and
a measure of dependency, Ḋep, to be calculated. In order to
reduce the amount of information stored, a threshold is intro-
duced which approximates the process of putting relationships
in natural language form.

Pr(X|Y ) =
Pr(Y |X) Pr(X)

Pr(Y )
; Pr(Y ) 6= 0 (3)

E[fx|fy] =
E[fx ∗ fy]
E[fy]

; E[fy] 6= 0 (4)

X ⊥⊥ Y ⇐⇒ Pr(X) = Pr(X|Y ) (5)

let ϕ =
E[fx|fy]− E[fx]

E[fx|fy]
= 1− E[fx]E[fy]

E[fx ∗ fy]

Ḋep(fx, fy) :=

{
ϕ : 0 6 ϕ

0 : otherwise
(6)

Ċov is a measure of covariance as shown in Equation (9).
Here the use of a weighted average and a threshold func-
tion approximate the human processes of focusing attention
and discarding pairwise correlations which are insignificantly
small or negative.

cov(X,Y ) = E[XY ]− E[X]E[Y ] (7)

X,Y ∈ [0, 1] =⇒ −1
4

6 cov(X,Y ) 6
1

4
(8)

let ϕ = 4
(
E[fx ∗ fy]− E[fx]E[fy]

)
Ċov(fx, fy) :=

{
ϕ : 0 6 ϕ

0 : otherwise
(9)

The measures Ḋep, and Ċov are symmetric, i.e. Ḋep(X,Y ) =
Ḋep(Y,X), share the same codomain [0, 1] and operate in the
same domain [0, 1] which allows their output to form new
measurements for a meta-analysis.

Each measurement lends itself to implied relationships,
e.g. “X high leads or . . . ” or “X rising leads to . . . ”. This
methodology is focused on binary measurements so four
implied measurements are considered:

1) Measurement f(t) ∈ [0, 1].
2) Reflection, ¬(t) := (1− f).
3) Rising edge, ↑(t) := max

(
0, f(t)− f(t− 1)

)
.

4) Falling edge, ↓(t) := max
(
0,¬(t)− ¬(t− 1)

)
.

Using these four implied measurements for each real one
means that the use of thresholds to effectively discard neg-
ative dependencies and covariances does not miss significant
relationships, but puts them into the more natural form e.g. “X

f ↑

↓¬ .558 .914

.112 .358

.132 .134

b.axi.dma3.
ar.imem.
page4

E[↓|¬] Ċov(↓,¬)

E[↑| f ] Ċov(↑, f)

measurement
name

E[ f ]

Ċov(f, f)

2D colorspace

(E[↑| f ], Ċov(↑, f))
(E[ f ], Ċov(f, f))

(E[↓|¬], Ċov(↓,¬))

Fig. 1: Mockup of the representation of a single measurement.
Colours from the 2D colourspace allow the viewer to quickly
estimate the values of 6 values of interest.

Fig. 2: Colourspace for visualization of 2-dimensional
bounded values described by Equation (10) thru Equation (14).

low . . . ” vs “X not high . . . ”. The technique used to visualize
some information about each measurement in a single time
window combines these into a quad, as shown in Fig. 1. This
allows some important information to be gleaned from just
the colour of the quad sections, allowing some usage even in
a blurred, low-resolution or faraway view where the text is
unclear.

A novel visualization has been developed in order to repre-
sent data points in the space [0, 1]2 which allows the viewer
to quickly determine the rough location of a point from its
colour. Equation (10) thru Equation (14) show the mapping
from [0, 1]2 to 8-bit Red/Green/Blue (RGB) values as depicted
in Fig. 2. This colourspace displays equally well on screen and
printed paper and looks similar to people with protanopia, the
most common form of colourblindness.

When looking for a pairwise relationship it is necessary
to look slightly forward or backward in time to find a
result such as “X is likely 5 cycles after Y”. The notation
fi〈δ〉(t) := fi(t + δ) has been used to represent the notion
of measurement i being shifted by δ cycles. A link between
two measurements fx and fy〈δ〉 is said to be significant when



both Ḋep(fx, fy〈δ〉) and Ċov(fx, fy〈δ〉) are greater than zero.
For a high level understanding, knowing that a significant link
exists is more important than knowing the exact values of
dependency and covariance, and a rough estimate may often
be good enough. By arranging all measurements in a circle and
drawing edges, again using the colourspace described above,
a network of behavioural relationships is formed, as shown in
the diagrams generated from case studies Fig. 3 and Fig. 4.
This arrangement shows behaviour as connections of a graph
with node attributes providing a summary of the measured
behaviour in an easily digestible manner, ultimately saving
engineering time by automating a large part of the human
analysis process.

θ =

(
1−
√
a2 + b2√

2

)γ
(10)

φ = arctan
b

a
(11)

red = b255× θc (12)

green = b255× θmax(0, π
4−φ)+1c (13)

blue = b255× θmax(0, φ−π
4 )+1c (14)

IV. CASE STUDY 1

The first experiment named probsys is based on a system
consisting of a single Advanced/ARM eXtensible Interface
(AXI) [4] master communicating with a single AXI slave.
To give some familiar context three additional binary states
are measured on the slave component (busy, stall, and
idle). A simulation is run to produce a Value Change Dump
(VCD) file containing measurment data. The rates at which
transactions are made on the five AXI channels (AW, W, B, AR,
R) are controlled with a probability distributon via fixed inputs.
On the source side stall this means dropping *READY and on
the destination side this means dropping *VALID. Observing
the measurements in a waveform viewer in order to validate
system behaviour is not trivial due to the density and format
of information. Some expected behaviours may be expressed
as formal properties and proven. E.g. Assertions may be used
to check that busy and idle are never high at the same
time. However, listing and forming all of these properties is
time consuming and gives no hints to what behaviours a user
might have forgotten to specify.

This visualization can be inspected interactively and intu-
itively to find more information at deeper levels such as the
precise conditional probability, dependency, and covariance of
each edge. Even at the static and low resolution of printed
paper, much useful information is immediately available with
its significance denoted by the darkness of the ink. The edges
correctly identify the measurements which are expected to be
related to each other, e.g. AXI read replies strongly related
to AXI read requests. It can be quickly seen that the read
channels are not interacting with the write channels, validating
(or invalidating) expectations. This gives the system designer
some confidence that the read and write parts of the system
have not been accidentally linked through some unexpected
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.31 .26
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b.axi.ar
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.10 0
.11 .33

b.axi.aw

.62 .30
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.14 .30

b.axi.b
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.13 .29

b.axi.b.decerr
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0 0
.01 0

b.axi.b.okay

1 0

0 0
0 0

b.axi.b.slverr
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.32 .27
.30 .62

b.axi.r
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b.axi.r.decerr
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.02 0

b.axi.r.okay
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0 0
0 0
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.32 .31
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b.slv.busy

.37 .13

.04 0
.09 .13
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.81 .26

.08 0
.09 .26

b.slv.stall

(a) Plot showing measurement relationships from probsys. Interactions
are clearly visible from the more densely connected nodes. Clusters of
relations are outlined in red. Top-right busy and idle are strongly
related. Middle AXI read request (AR) is strongly related to read
reply (R) and read-decode error. Bottom-right AXI write request (AW)
is strongly related to write reply (B) and write-decode error. Read
measurements are related to write measurements via busy.

(b) Closeup view of rightmost measurement node from the same plot.
Each edge is drawn as a line from a black dot just outside one of
the quad’s corners, to the centre of another quad corner. Location of
the dot depends on the value of δ. The size of the dots, weight, and
thickness of the drawn edges are further visual indicators of the Ḋep
and Ċov values.

Fig. 3

mechanism. This example is analogous to the many use-
cases where it is desired to visualize the cooperation between
channels, non-cooperation between channels, or iteraction with
a side-channel like busy.

V. CASE STUDY 2

A system which is more representative of the complex SoCs
used today is required to demonstrate the method in a real-
world application. The application chosen for this experiment
is a software-based NN performing handwritten-digit recogni-
tion, running on a standard prototyping FPGA SoC [5] with



two RISC-V processors and communicating with the outside
world over USB. The C software of 17 functions running on
2 processors, is based on Tinn [6] [7] and modified such that
the smaller processor ACPU collects batches and passes them
to the processor which has the full floating point unit SCPU.

Ease of instrumentation is essential for real world systems
as non-standard modifications can alter observed behaviour
is subtle but important ways. The only modifications re-
quired are an additional GCC flag in the compile stage
(-finstrument-functions), and to optionally disable
instrumentation on uninteresting functions [8]. Network dia-
grams were generated using the methodology described above,
two of which are shown in Fig. 4. Since each of these diagrams
corresponds to a single time window it is natural to view them
in sequence like a movie. Using the Scalable Vector Graphics
(SVG) image format also allows the diagrams to be browsed
and examined interactively to extract more detail and exact
values as desired. Nodes with darker colours in the centre
bands indicate more time spent in those functions. E.g. SCPU
spends most of its time it the train function and ACPU
spends most of its time waiting during the training phase in
Fig. 4a.

VI. CONCLUSION

Although the experiment in Section IV may be a proof
of concept example the case of monitoring transactions on
multiple communication channels to ensure they are (or are
not) cooperating is not uncommon where traditional tools are
often unable to provide useful visualizations. Similarly, the
experiment in Section V represents a realistic use case where
an engineer is able to quickly, and with minimal manual effort,
gain useful knowledge about the workings of the software,
without looking at the source code. These case studies and
the example results shown in the figures demonstrate that the
methodology may be applied to a wide variety of situations
in order to aid the understanding and validation of complex
systems. Further work is being done with additional case
studies which combine hardware probes such as those in the
probsys experiment with software instrumentation such as that
in the tinn experiment.
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(a) Behaviour graph of tinn during training phase.
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(b) Behaviour graph of tinn during inference phase.

Fig. 4: The difference in behaviour graphs is clear, allowing a
viewer to get a fast and useful overview of the main component
interactions and how they change over time. The pattern of
edges stays fairly constant in each phase, with the transition
marked by many edges fading in and out as the ‘training’ pat-
tern morphs into the ‘inference’ pattern. Immediately obvious
is that most nodes are unconnected, and closer inspection of
the connected nodes reveals that the connections are as one
would expect from a NN application.
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