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Abstract. Reverse inference, or “brain reading”, is a recent paradigm for analyzing functional magnetic res-
onance imaging (fMRI) data, based on pattern recognition and statistical learning. By predicting some cognitive
variables related to brain activation maps, this approach aims at decoding brain activity. Reverse inference takes
into account the multivariate information between voxels and is currently the only way to assess how precisely some
cognitive information is encoded by the activity of neural populations within the whole brain. However, it relies on
a prediction function that is plagued by the curse of dimensionality, since there are far more features than samples,
i.e., more voxels than fMRI volumes. To address this problem, different methods have been proposed, such as,
among others, univariate feature selection, feature agglomeration and regularization techniques. In this paper, we
consider a sparse hierarchical structured regularization. Specifically, the penalization we use is constructed from a
tree that is obtained by spatially-constrained agglomerative clustering. This approach encodes the spatial structure
of the data at different scales into the regularization, which makes the overall prediction procedure more robust to
inter-subject variability. The regularization used induces the selection of spatially coherent predictive brain regions
simultaneously at different scales. We test our algorithm on real data acquired to study the mental representation of
objects, and we show that the proposed algorithm not only delineates meaningful brain regions but yields as well
better prediction accuracy than reference methods.

Key words. brain reading, structured sparsity, convex optimization, sparse hierarchical models, inter-subject
validation, proximal methods.

AMS subject classifications. -

1. Introduction. Functional magnetic resonance imaging (or fMRI) is a widely used
functional neuroimaging modality. Modeling and statistical analysis of fMRI data are com-
monly done through a linear model, called general linear model (GLM) in the community,
that incorporates information about the different experimental conditions and the dynamics
of the hemodynamic response in the design matrix. The experimental paradigm consists of
a sequence of stimuli, e.g., visual and auditory stimuli, which are included as regressors in
the design matrix after convolution with a suitable hemodynamic filter. The resulting model
parameters—one coefficient per voxel and regressor—are known as activation maps. They
represent the local influence of the different experimental conditions on fMRI signals at the
level of individual voxels. The most commonly used approach to analyze these activation
maps is called classical inference. It relies on mass-univariate statistical tests (one for each
voxel), and yields so-called statistical parametric maps (SPMs) [19]. Such maps are useful for
functional brain mapping, but classical inference has some limitations: it suffers from mul-
tiple comparisons issues and it is oblivious of the multivariate structure of fMRI data. Such
data exhibit natural correlations between neighboring voxels forming clusters with different
sizes and shapes, and also between distant but functionally connected brain regions.

To address these limitations, an approach called reverse inference (or “brain-reading”) [14,
13] was recently proposed. Reverse inference relies on pattern recognition tools and statis-
tical learning methods to explore fMRI data. Based on a set of activation maps, reverse
inference estimates a function that can then be used to predict a target (typically, a variable
representing a perceptual, cognitive or behavioral parameter) for a new set of images. The
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challenge is to capture the correlation structure present in the data in order to improve the
accuracy of the fit, which is measured through the resulting prediction accuracy. Many stan-
dard statistical learning approaches have been used to construct prediction functions, among
them kernel machines (SVM, RVM) [54] or discriminant analysis (LDA, QDA) [22]. For the
application considered in this paper, earlier performance results [13, 32] indicate that we can
restrict ourselves to mappings that are linear functions of the data.

Throughout the paper, we shall consider a training set composed of n pairs (x, y) ∈
Rp × Y , where x denotes a p-dimensional fMRI signal (p voxels) and y stands for the target
we try to predict. Each fMRI data point x will correspond to an activation map after GLM
fitting. In the experiments we carry out in Section 5, we will encounter both the regression and
the multi-class classification settings, where Y denotes respectively the set of real numbers
and a finite set of integers. An example of a regression setting is the prediction of a pain level
from fMRI data [37] or in the context of classification, the prediction of object categories [13].
Typical datasets consists of a few hundreds of measurements defined each on a 2×2×2-mm
voxels grid forming p ≈ 105 voxels when working with full brain data. Such numbers, given
as illustration, are not intrinsic limitation of MRI technology and are still regularly improved
by experts in the field.

In this paper, we aim at learning a weight vector w ∈ Rp and an intercept b ∈ R
such that the prediction of y can be based on the value of w>x + b. This is the case for
the linear regression and logistic regression models that we use in Section 5. The scalar b
is not particularly informative, however the vector w corresponds to a volume that can be
represented in brain space as a volume for visualization of the predictive pattern of voxels. It
is useful to rewrite these quantities in matrix form; more precisely, we denote by X ∈ Rn×p
the design matrix assembled from n fMRI volumes and by y ∈ Rn the corresponding n
targets. In other words, each row of X is a p-dimensional sample, i.e., an activation map of p
voxels related to one stimulus presentation.

Learning the parameters (w, b) remains challenging since the number of features (104

to 105 voxels) exceeds by far the number of samples (a few hundreds of volumes). The
prediction function is therefore prone to overfitting in which the learning set is predicted
precisely whereas the algorithm provides very inaccurate predictions on new samples (the
test set). To address this issue, dimensionality reduction attempts to find a low dimensional
subspace that concentrates as much of the predictive power of the original set as possible for
the problem at hand.

Feature selection is a natural approach to perform dimensionality reduction in fMRI,
since reducing the number of voxels makes it easier to identify a predictive region of the
brain. This corresponds to discarding some columns of X. This feature selection can be uni-
variate, e.g., analysis of variance (ANOVA) [33], or multivariate. While univariate methods
ignore joint information between features, multivariate approaches are more adapted to re-
verse inference since they extract predictive patterns from the data as a whole. However, due
to the huge number of possible patterns, these approaches suffer from combinatorial explo-
sion, and some costly suboptimal heuristics (e.g., recursive feature elimination [21, 39]) can
be used. That is why ANOVA is usually preferred in fMRI. Alternatively, two more adapted
solutions have been proposed: regularization and feature agglomeration.

Regularization is a way to encode a priori knowledge about the weight vector w. Pos-
sible regularizers can promote for example spatial smoothness or sparsity which is a natural
assumption for fMRI data. Indeed, only a few brain regions are assumed to be significantly
activated during a cognitive task. Previous contributions on fMRI-based reverse inference
include [6, 51, 52, 64]. They can be presented through the following minimization problem:

min
(w,b)∈Rp+1

L(y,X,w, b) + λΩ(w) with λ ≥ 0, (1.1)
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where λΩ(w) is the regularization term, typically a non-Euclidean norm, and the fit to the
data is measured through a convex loss function (w, b) 7→ L(y,X,w, b) ∈ R+. The choice
of the loss function will be made more specific and formal in the next sections. The coef-
ficient of regularization λ balances the loss and the penalization term. In this notation, a
common regularization term in reverse inference is the so-called Elastic net [67, 20], which
is a combined `1 and `2 penalization:

λΩ(w) = λ1‖w‖1 + λ2‖w‖22 =

p∑
j=1

{
λ1|wj |+ λ2w

2
j

}
. (1.2)

For the squared loss, when setting λ1 to 0, the model is called ridge regression, while when
λ2 = 0 it is known as Lasso [58] or basis pursuit denoising (BPDN) [9]. The essential
shortcoming of the Elastic net is that it does not take into account the spatial structure of
the data, which is crucial in this context [43]. Indeed, due to the intrinsic smoothing of the
complex metabolic pathway underlying the difference of blood oxygenation measured with
fMRI [61], statistical learning approaches should be informed by the 3D grid structure of the
data.

In order to achieve dimensionality reduction, while taking into account the spatial struc-
ture of the data, one can resort to feature agglomeration. Precisely, new features called
parcels are naturally generated via averaging of groups of neighboring voxels exhibiting
similar activations. The advantage of agglomeration is that no information is discarded a
priori and that it is reasonable to hope that averaging might reduce noise. Although, this ap-
proach has been successfully used in previous work for brain mapping [18, 57], existing work
does typically not consider the supervised information (i.e., the target y) while exploring the
parcels. A recent approach has been proposed to address this issue, based on a supervised
greedy top-down exploration of a tree obtained by hierarchical clustering [42]. This greedy
approach has proven to be effective especially for inter-subject analyzes, i.e., when training
and evaluation sets are related to different subjects. In this context, methods need to be robust
to intrinsic spatial variations that exist across subjects: although a preliminary co-registration
to a common space has been performed, some variability remains between subjects, which
implies that there is no perfect voxel-to-voxel correspondence between volumes. As a result,
the performances of traditional voxel-based methods are strongly affected. Therefore, aver-
aging in the form of parcels is a good way to cope with inter-subject variability. This greedy
approach is nonetheless suboptimal, as it explores only a subpart of the whole tree.

Based on these considerations, we propose to integrate the multi-scale spatial structure
of the data within the regularization term Ω, while preserving convexity in the optimization.
This notably guarantees global optimality and stability of the obtained solutions. To this end,
we design a sparsity-inducing penalty that is directly built from the hierarchical structure of
the spatial model obtained by Ward’s algorithm [62] using a contiguity-constraint [45]. This
kind of penalty has already been successfully applied in several contexts, e.g., in bioinformat-
ics, to exploit the tree structure of gene networks for multi-task regression [30], in log-linear
models for the selection of potential orders [53], in image processing for wavelet-based de-
noising [3, 28, 49], and also for topic models [28]. Other applications have emerged in natural
language [40] and audio processing [55].

We summarize here the contributions of our paper:
• We explain how the multi-scale spatial structure of fMRI data can be taken into

account in the context of reverse inference through the combination of a spatially
constrained hierarchical clustering procedure and a sparse hierarchical regulariza-
tion.
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• We provide a convex formulation of the problem and propose an efficient optimiza-
tion procedure.

• We conduct an experimental comparison of several algorithms and formulations on
fMRI data and illustrate the ability of the proposed method to localize in space and
in scale some brain regions involved in the processing of visual stimuli.

The rest of the paper is organized as follows: we first present the concept of structured
sparsity-inducing regularization and then describe the different regression/classification for-
mulations we are interested in. After exposing how we handle the resulting large-scale convex
optimization problems thanks to a particular instance of proximal methods—the forward-
backward splitting algorithm, we validate our approach both in a synthetic setting and on a
real dataset.

2. Combining agglomerative clustering with sparsity-inducing regularizers. As sug-
gested in the introduction, it is possible to construct a tree-structured hierarchy of new features
on top of the original voxels using hierarchical clustering. Moreover, spatial constraints can
be enforced in the clustering algorithm so that the underlying voxels corresponding to each
of these features form localized spatial patterns on the brain similar to the ones we hope to re-
trieve [10]. Once these features constructed, instead of selecting features in the tree greedily,
we propose to cast the feature selection problem as supervised learning problem of the form
(1.1). One of the qualities of the greedy approach however is that it is only allowed to select
potentially more noisy features, corresponding to smaller clusters, after the a priori more sta-
ble features associated with ancestral clusters in the hierarchy have been selected. As we will
show, it is possible to construct a convex regularizer Ω that has the same property, i.e. that
respects the hierarchy, and prioritizes the selection of features in the same way. Naturally, the
regularizer has to be constructed directly from the hierarchical clustering of the voxels.

2.1. Spatially-constrained hierarchical clustering. Starting from n fMRI volumes
X = [x1, . . . ,xp] ∈ Rn×p described by p voxels, we seek to cluster these voxels so as
to produce a hierarchical representation of X.

To this end, we consider hierarchical agglomerative clustering procedures [29]. These
begin with every voxel xj representing a singleton cluster {j}, and at each iteration, a selected
pair of clusters—according to a criterion discussed below—is merged into a single cluster.
This procedure yields a hierarchy of clusters represented as a binary tree T (also often called
a dendrogram) [29], where each nonterminal node is associated with the cluster obtained by
merging its two children clusters. Moreover, the root of the tree T is the unique cluster that
gathers all the voxels, while the leaves are the clusters consisting of a single voxel. From now
on, we refer to each nonterminal node of T as a parcel, which is the union of its children’s
voxels (see Figure 2.1).

Among different hierarchical agglomerative clustering procedures, we use the variance-
minimizing approach of Ward’s algorithm [62]. In short, two clusters are merged if the result-
ing cluster minimizes the sum of squared differences of the fMRI signal within all clusters
(also known as inertia criterion). More formally, at each step of the procedure, we merge the
clusters c1 and c2 that minimize the criterion

∆(c1, c2) =
∑

j∈c1∪c2

‖xj − 〈X〉c1∪c2‖22 −
(∑
j∈c1

‖xj − 〈X〉c1‖22 +
∑
k∈c2

‖xk − 〈X〉c2‖22
)

=
|c1||c2|
|c1|+ |c2|

‖〈X〉c1 − 〈X〉c2‖22, (2.1)

where we have introduced the average vector 〈X〉c , 1
|c|
∑
j∈c xj . In order to take into

account the spatial information, we also add connectivity constraints in the hierarchical clus-
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tering algorithm, so that only neighboring clusters can be merged together. In other words,
we try to minimize the criterion ∆(c1, c2) only for pairs of clusters which share neighbor-
ing voxels (see Algorithm 1). This connectedness constraint is important since the resulting
clustering is likely to differ from standard Ward’s hierarchical clustering.

FIG. 2.1. Example of a tree T when p = 5,
with three voxels and two parcels. The parcel 2 is de-
fined as the averaged intensity of the voxels {1, 2},
while the parcel 1 is obtained by averaging the val-
ues of the voxels {1, 2, 3}. In red dashed lines are
represented the five groups of variables that com-
pose G. For instance, if the group containing the
parcel 2 is set to zero, the voxels {1, 2} are also (and
necessarily) zeroed out. Best seen in color.

Parcel 1

Parcel 2

Voxel 1 Voxel 2 Voxel 3

2.1.1. Augmented space of features. Based on the output of the hierarchical clustering
presented previously, we define the following augmented space of variables (or features):
instead of representing the n fMRI volumes only by its individual voxel intensities, we add
to it a vector with levels of activation of each of the parcels at the interior nodes of the
tree T , which we obtained from the agglomerative clustering algorithm. Since T has q ,
|T | = 2p − 1 nodes,1, the data obtained in the augmented space can be gathered in a matrix
X̃ ∈ Rn×q .

In the following, the level of activation of each parcel is simply the averaged intensity
of the voxels it is composed of (i.e., local averages) [18, 57]. This produces a multi-scale
representation of the fMRI data that has the advantage of becoming increasingly invariant to
spatial shifts of the encoding regions within the brain volume. We summarize the procedure
to build the enlarged matrix X̃ ∈ Rn×q in Algorithm 1. Let us now illustrate on the example

Algorithm 1 Spatially-constrained agglomerative clustering and augmented feature space.
Input: n fMRI volumes X = [x1, . . . ,xp] ∈ Rn×p described by p voxels.
Output: n fMRI volumes X̃ ∈ Rn×q in the augmented feature space.
Initialization: C =

{
{j}; j ∈ {1, . . . , p}

}
, X̃ = X.

while |C| > 1 do
Find a pair of clusters c1, c2 ∈ C which have neighboring voxels and minimize (2.1).
C ← C \ {c1, c2}.
C ← C ∪ (c1 ∪ c2).
X̃← [X̃, 〈X〉c1∪c2 ].

end while
Return: X̃.

of linear models (such as those we use in Section 3) what are the implications of considering
the augmented space of features. For a node j of T , we let denote by Pj ⊆ {1, . . . , p} the set
of voxels of the corresponding parcel (or, equivalently, the set of leaves of the subtree rooted

1We can then identify nodes (and parcels) of T with indices in {1, . . . , q}.
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at node j). In this notation, and for any fMRI volume x̃ ∈ Rq in the augmented feature space,
linear functions indexed by w ∈ Rq take the form

fw(x̃) = w>x̃ =

q∑
j=1

wj

[ 1

|Pj |
∑
k∈Pj

xk

]
=

p∑
k=1

[ ∑
j∈Ak

wj

|Pj |

]
xk,

where Ak stands for the set of ancestors of a node k in T (including itself).

2.2. Hierarchical sparsity-inducing norms. In the perspective of inter-subject vali-
dation, the augmented space of variables can be exploited in the following way: Since the
information of single voxels may be unreliable, the deeper the node in T , the more variable
the corresponding parcel’s intensity is likely to be across subjects. This property suggests
that, while looking for sparse solutions of (1.1), we should preferentially select the variables
near the root of T , before trying to access smaller parcels located further down in T .

Traditional sparsity-inducing penalties, e.g., the `1-norm Ω(w) =
∑p
j=1 |wj |, yield

sparsity at the level of single variables wj , disregarding potential structures—for instance,
spatial—existing between larger subsets of variables. We leverage here the concept of struc-
tured sparsity [3, 7, 66, 24, 26, 25, 41, 16], where Ω penalizes some predefined subsets, or
groups, of variables that reflect prior information about the problem at hand.

When these groups form a partition of the space of variables, the resulting penalty has
been shown to improve the prediction performance and/or interpretability of the learned mod-
els, provided that the block structure is relevant (e.g., see [60, 65, 35, 31, 56, 23] and refer-
ences therein).

If the groups overlap [3, 66, 24, 26, 25, 36], richer structures can then be encoded. In
particular, we follow [66] who first introduced hierarchical sparsity-inducing penalties. Given
a node j of T , we denote by gj ⊆ {1, . . . , q} the set of indices that record all the descendants
of j in T , including itself. In other words, gj contains the indices of the subtree rooted at j; see
Figure 2.1. If we now denote by G the set of all gj , j ∈ {1, . . . , q}, that is, G , {g1, . . . , gq},
we can define our hierarchical penalty as

Ω(w) ,
∑
g∈G
‖wg‖2 ,

∑
g∈G

[∑
j∈g

w2
j

]1/2
. (2.2)

As formally shown in [26], Ω is a norm on Rq , and it promotes sparsity at the level of groups
g ∈ G, in the sense that it acts as a `1-norm on the vector (‖wg‖2)g∈G . Regularizing by
Ω therefore causes some ‖wg‖2 (and equivalently wg) to be zeroed out for some g ∈ G.
Moreover, since the groups g ∈ G represent rooted subtrees of T , this implies that if one
node/parcel j ∈ g is set to zero by Ω, the same occurs for all its descendants [66]. To put it
differently, if one parcel is selected, then all the ancestral parcels in T will also be selected.
This property is likely to increase the robustness of the methods to voxel misalignments be-
tween subjects, since large parcels will be considered for addition in the model before smaller
ones.

The family of norms with the previous property is actually slightly larger and we consider
throughout the paper norms Ω of the form [66]:

Ω(w) ,
∑
g∈G

ηg‖wg‖, (2.3)

where ‖wg‖ denotes either the `2-norm ‖wg‖2 or the `∞-norm ‖wg‖∞ , maxj∈g |wj | and
(ηg)g∈G are (strictly) positive weights that can compensate for the fact that some features are
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overpenalized as a result of being included in a larger number of groups than others. In light
of the results from [28], we will see in Section 4 that a large class of optimization problems
regularized by Ω—as defined in (2.3)— can be solved efficiently.

3. Supervised learning framework. In this section, we introduce the formulations we
consider in our experiments. As further discussed in Section 5, the target y we try to pre-
dict corresponds to (discrete) sizes of objects, i.e., a one-dimensional ordered variable. It is
therefore sensible to address this prediction task from both a regression and a classification
viewpoint. In the remainder of this section, we shall denote by {w∗, b∗} (or {W∗,b∗}) a
solution of the optimization problems we present below.2 For simplicity, the formulations
we review next are all expressed in terms of a matrix X ∈ Rn×p with p-dimensional param-
eters, but they are of course immediately applicable to the augmented data X̃ ∈ Rn×q and
q-dimensional parameters.

3.1. Regression. In this first setting, we naturally consider the squared loss function, so
that problem (1.1) can be reduced to

min
w∈Rp

1

2n
‖y −Xw‖22 + λΩ(w) with λ ≥ 0.

Note that in this case, we have omitted the intercept b since we can center the vector y and
the columns of X instead. Prediction for a new fMRI volume x is then simply performed by
computing the dot product x>w∗.

3.2. Classification. We can look at our prediction task from a multi-class classification
viewpoint. Specifically, we assume that Y is a finite set of integers {1, . . . , c}, c > 2, and
consider both multi-class and “one-versus-all” strategies [50]. We need to slightly extend the
formulation (1.1): To this end, we introduce the weight matrix W , [w1, . . . ,wc] ∈ Rp×c,
composed of c weight vectors, along with a vector of intercepts b ∈ Rc.

A standard way of addressing multi-class classification problems consists in using a
multi-logit model, also known as multinomial logistic regression (see, e.g., [22] and refer-
ences therein). In this case, class-conditional probabilities are modeled for each class by a
softmax function, namely, given a fMRI volume x, the probability of having the k-th class
label reads

Prob(y = k|x; W,b) =
exp{x>wk + bk}∑c
r=1 exp{x>wr + br}

for k ∈ {1, . . . , c}. (3.1)

The parameters {W,b} are then learned by maximizing the resulting (conditional) log-
likelihood, which leads to the following optimization problem:

min
W∈Rp×c
b∈Rc

1

n

n∑
i=1

log
[ c∑
k=1

ex
>
i (wk−wyi )+bk−byi

]
+ λ

c∑
k=1

Ω(wk) .

Whereas the regularization term is separable with respect to the different weight vectors wk,
the loss function induces a coupling in the columns of W. As a result, the optimization has
to be carried out over the entire matrix W. In this setting, and given a new fMRI volume
x, we make predictions by choosing the label that maximizes the class-conditional probabil-
ities (3.1), that is, argmaxk∈{1,...,c}Prob(y = k|x; W∗,b∗).

In Section 5, we consider another multi-class classification scheme. The “one-versus-all”
strategy (OVA) consists in training c different (real-valued) binary classifiers, each one being

2In the absence of strong convexity, we cannot in general guarantee the uniqueness of w∗ (and W∗).
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trained to distinguish the examples in a single class from the observations in all remaining
classes. In order to classify a new example, among the c classifiers, the one which outputs
the largest (most positive) value is chosen. In this framework, we consider binary classifiers
built from both the squared and the logistic loss functions. If we denote by Ȳ ∈ {−1, 1}n×c
the indicator response matrix defined as Ȳk

i , 1 if yi = k and −1 otherwise, we obtain

min
W∈Rp×c

1

2n

c∑
k=1

‖Ȳk −Xwk‖22 + λ

c∑
k=1

Ω(wk),

and

min
W∈Rp×c
b∈Rc

1

n

n∑
i=1

c∑
k=1

log
[
1 + e−Ȳ

k
i (x>i wk+bk)

]
+ λ

c∑
k=1

Ω(wk).

By invoking the same arguments as in Section 3.1, the vector of intercepts b is again omitted
in the above problem with the squared loss. Moreover, given a new fMRI volume x, we
predict the label k that maximizes the response x>[w∗]k among the c different classifiers. The
case of the logistic loss function parallels the setting of the multinomial logistic regression,
where each of the c “one-versus-all” classifiers leads to a class-conditional probability; the
predicted label is the one corresponding to the highest probability.

The formulations we have reviewed in this section can be solved efficiently within the
same optimization framework that we now introduce.

4. Optimization. The convex minimization problem (1.1) is challenging, since the penalty
Ω as defined in (2.3) is non-smooth and the number of variables to consider is large (we have
q ≈ 105 variables in the following experiments). These difficulties are well addressed by
forward-backward splitting methods, which belong to the broader class of proximal methods.
Forward-backward splitting schemes date back (at least) to [38, 34] and have been further
analyzed in various settings (e.g., see [59, 8, 12]); for a thorough review of proximal splitting
techniques, we refer the interested readers to [11].

Our convex minimization problem (1.1) can be handled well by such techniques since it is
the sum of two semi-lower continuous, proper, convex functions with non-empty domain, and
where one element—the loss function L(y,X, .)—is assumed differentiable with Lipschitz-
continuous gradient (which notably covers the cases of the squared and simple/multinomial
logistic functions, as introduced in Section 3).

To describe the principle of forward-backward splitting methods, we need to introduce
the concept of proximal operator. The proximal operator associated with our regularization
term λΩ, which we denote by ProxλΩ, is the function that maps a vector w ∈ Rp to the
unique solution of

min
v∈Rp

1

2
‖v −w‖22 + λΩ(v). (4.1)

This operator was initially introduced by Moreau [44] to generalize the projection operator
onto a convex set; for a complete study of the properties of ProxλΩ, see [12]. Based on defi-
nition (4.1), and given the current iterate w(k),3 the typical update rule of forward-backward
splitting methods has the form4

w(k+1) ← Prox λ
LΩ

(
w(k) − 1

L
∇Lw(y,X,w(k))

)
, (4.2)

3For clarity of the presentation, we do not consider the optimization of the intercept that we leave unregularized
in all our experiments.

4For simplicity, we only present a constant-stepsize scheme; adaptive line search can also be used in this context
and can lead to larger stepsizes [11].
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where L > 0 is a parameter which is a upper bound on the Lipschitz constant of the gradient
of L. In the light of the update rule (4.2), we can see that solving efficiently problem (4.1) is
crucial to enjoy good performance. In addition, when the non-smooth term Ω is not present,
the previous proximal problem (4.2), also known as the implicit or backward step, exactly
leads to the standard gradient update rule.

For many regularizations Ω of interest, the solution of problem (4.1) can actually be
computed in closed form in simple settings: in particular, when Ω is the `1-norm, the proximal
operator is the well-known soft-thresholding operator [15]. The work of [28] recently showed
that the proximal problem (4.1) could be solved efficiently and exactly with Ω as defined in
(2.3). The underlying idea of this computation is to solve a well-ordered sequence of simple
proximal problems associated with each of the terms ‖wg‖ for g ∈ G. We refer the interested
readers to [28] for further details on this norm and to [2] for a broader view.

In the subsequent experiments, we focus on accelerated multi-step versions of forward-
backward splitting methods (see, e.g., [46, 4, 63]),5 where the proximal problem (4.2) is not
solved for a current estimate, but for an auxiliary sequence of points that are linear combina-
tions of past estimates. These accelerated versions have increasingly drawn the attention of a
broad research community since they can deal with large non-smooth convex problems, and
their convergence rates on the objective achieve the complexity bound of O(1/k2), with k
denoting the iteration number. As a side comment, note that as opposed to standard one-step
forward-backward splitting methods, nothing can be said about the convergence of the se-
quence of iterates themselves. In our case, the cost of each iteration is dominated by the com-
putation of the gradient (e.g., O(np) for the squared loss) and the proximal operator, whose
time complexity is linear, or close to linear, in p for the tree-structured regularization [28].

5. Experiments and results. We now present experimental results on simulated data
and real fMRI data.

5.1. Simulations. In order to illustrate the proposed method, the hierarchical regular-
ization with the `2-norm and ηg = 1 for all g ∈ G was applied in a regression setting on
a small two-dimensional simulated dataset consisting of 300 square images (40 × 40 pixels
i.e. X ∈ R300×1600). The weight vector w used in the simulation— itself an image of the
same dimension— is presented in Fig. 5.1-a. It consists of three localized regions of two
different sizes that are predictive of the output. The images x(i) are sampled so as to obtain
a correlation structure which mimics fMRI data. Precisely, each image x(i) was obtained by
smoothing a completely random image — where each pixel was drawn i.i.d from a normal
distribution — with a Gaussian kernel (standard deviation 2 pixels), which introduces spatial
correlations between neighboring pixels. Subsequently, additional correlations between the
regions corresponding to the three patterns were introduced in order to simulate co-activations
between different brain regions, by multiplying the signal by the square-root of an appropriate
covariance matrix Σ. Specifically, Σ ∈ R1600×1600 is a spatial covariance between voxels,
with diagonal set to Σi,i = 1 for all i, and with two off-diagonal blocks. Let us denote C1 and
C2 the set of voxels forming the two larger patterns, and C3 the voxels in the small pattern.
The covariance coefficients are set to Σi,j = 0.3 for i ∈ C1 and j ∈ C2, and Σi,j = −0.2 for
i ∈ C2 and j ∈ C3. The covariance is of course symmetric.

The choice of the weights and of the correlation introduced in images aim at illustrat-
ing how the hierarchical regularization estimates weights at different resolutions in the im-
age. The targets were simulated by forming w>x(i) corrupted with an additive white noise
(SNR=10dB). The loss used was the squared loss as detailed in Section 3.1. The regular-

5More precisely, we use the accelerated proximal gradient scheme (FISTA) taken from [4]. The Matlab/C++
implementation we use is available at http://www.di.ens.fr/willow/SPAMS/.



10 R. Jenatton, A. Gramfort, V. Michel, G. Obozinski, E. Eger, F. Bach and B. Thirion

True

a)

Scale 1

b)

Scale 2

c)

Scale 3

d)

Scale 4

e)

Scale 5

f)

Scale 6

g)

Scale 7

h)

FIG. 5.1. Weights w∗ estimated in the simulation study. The true coefficients are presented in a) and the
estimated weights at different scales, i.e., different depths in the tree, are presented in b)-h) with the same colormap.
The results are best seen in color.

ization parameter was estimated with two-fold cross-validation (150 images per fold) on a
logarithmic grid of 30 values between 103 and 10−3.

The components of the estimated weight vector w∗ at different scales are presented in
the images of Fig. 5.1 , with each image corresponding to a different depth in the tree. For
a given tree depth, an image is formed from the corresponding parcellation. All the voxels
within a parcel are colored according to the associated scalar in w∗. It can be observed that
all three patterns are present in the weight vector but at different depths in the tree. The small
activation in the top-right hand corner shows up mainly at scale 3 while the bigger patterns
appear higher in the tree at scales 5 and 6. This simulation clearly illustrates the ability of the
method to capture informative spatial patterns at different scales.

5.2. Description of the fMRI data. We apply the different methods to analyze the data
of ten subjects from an fMRI study originally designed to investigate object coding in visual
cortex (see [17] for details). During the experiment, ten healthy volunteers viewed objects
of two categories (each one of the two categories is used in half of the subjects) with four
different exemplars in each category. Each exemplar was presented at three different sizes
(yielding 12 different experimental conditions per subject). Each stimulus was presented four
times in each of the six sessions. We averaged data from the four repetitions, resulting in a
total of n = 72 volumes by subject (one volume of each stimulus by session). Functional
volumes were acquired on a 3-T MR system with eight-channel head coil (Siemens Trio,
Erlangen, Germany) as T2*-weighted echo-planar image (EPI) volumes. Twenty transverse
slices were obtained with a repetition time of 2s (echo time, 30ms; flip angle, 70◦; 2× 2× 2-
mm voxels; 0.5-mm gap). Realignment, spatial normalization to MNI space, slice timing
correction and GLM fit were performed with the SPM5 software6. In the GLM, the time
course of each of the 12 stimuli convolved with a standard hemodynamic response function
was modeled separately, while accounting for serial auto-correlation with an AR(1) model
and removing low-frequency drift terms with a high-pass filter with a cut-off of 128s (7.8 ×
10−3Hz). In the present work we used the resulting session-wise parameter estimate volumes.

6http://www.fil.ion.ucl.ac.uk/spm/software/spm5.
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Contrary to a common practice in the field the data were not smoothed with an isotropic
Gaussian filter. All the analysis are performed on the whole acquired volume.

The four different exemplars in each of the two categories were pooled, leading to vol-
umes labeled according to the three possible sizes of the object. By doing so, we are interested
in finding discriminative information to predict the size of the presented object.

This can be reduced to either a regression problem in which our goal is to predict the class
label of the size of the presented object (i.e., y ∈ {0, 1, 2}),7 or a three-category classification
problem, each size corresponding to a category. We perform an inter-subject analysis on the
sizes both in regression and classification settings. This analysis relies on subject-specific
fixed-effects activations, i.e., for each condition, the six activation maps corresponding to
the six sessions are averaged together. This yields a total of 12 volumes per subject, one
for each experimental condition. The dimensions of the real data set are p ≈ 7 × 104 and
n = 120 (divided into three different sizes). We evaluate the performance of the method by
cross-validation with a natural data splitting, leave-one-subject-out. Each fold consists of 12
volumes. The parameter λ of all methods is optimized over a grid of 30 values of the form
2k, with a nested leave-one-subject-out cross-validation on the training set. The exact scaling
of the grid varies for each model to account for different Ω.

5.3. Methods involved in the comparisons. In addition to considering standard `1-
and squared `2-regularizations in both our regression and multi-class classification tasks, we
compare various methods that we now review.

First of all, when the regularization Ω as defined in (2.3) is employed, we consider three
settings of values for (ηg)g∈G which leverage the tree structure T . More precisely, we set
ηg = ρdepth(g) for g in G, with ρ ∈ {0.5, 1, 1.5} and where depth(g) denotes the depth of the
root of the group g in T . In other words, the larger ρ, the more averse we are to selecting
small (and variable) parcels located near the leaves of T . As the results illustrate it, the
choice of ρ can have a significant impact on the performance. More generally, the problem of
selecting ρ properly is a difficult question which is still under investigation, both theoretically
and practically, e.g., see [1].

The greedy approach from [42] is included in the comparisons, for both the regression
and classification tasks. It relies on a top-down exploration of the tree T . In short, start-
ing from the root parcel that contains all the voxels, we choose at each step the split of the
parcel that yields the highest prediction score. The exploration step is performed until a
given number of parcels is reached, and yields a set of nested parcellations with increasing
complexity. Similarly to a model selection step, we chose the best parcellation among those
found in the exploration step. The selected parcellation is thus used on the test set. In the
regression setting, this approach is combined with Bayesian ridge regression, while it is as-
sociated with a linear support vector machine for the classification task (whose regularization
parameter, often referred to as C in the literature [54], is found by nested cross-validation in
{0.01, 0.1, 1}).

5.3.1. Regression setting. In order to evaluate whether the level of sparsity is critical
in our analysis, we implemented a reweighted `1-scheme [5]. In this case, sparsity is encour-
aged more aggressively as a multi-stage convex relaxation of a concave penalty. Specifically,
it consists in using iteratively a weighted `1-norm, whose weights are determined by the so-
lution of previous iteration. Moreover, we additionally compare to Elastic net [67], whose
second regularization parameter is set by cross-validation as a fraction of λ, that is, αλ with
α ∈ {0.5, 0.05, 0.005, 0.0005}.

7An interesting alternative would be to consider some real-valued dimension such as the field of view of the
object.
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To better understand the added value of the hierarchical norm (2.3) over unstructured
penalties, we not only consider the plain `1-norm in the augmented feature space, but also
another variant of weighted `1-norm. The weights are manually set and reflect the under-
lying tree structure T . By analogy with the choice of (ηg)g∈G made for the tree-structured
regularization, we take exponential weights depending on the depth of the variable j, where
ηj = ρdepth(j) with ρ ∈ {0.5, 1.5}.8 We also tried weights (ηj)j∈{1,...,p} that are linear
with respect to the depths, i.e., ηj = depth(j)

maxk∈{1,...,p} depth(k) , but those led to worse results. In
Table 5.1, we only present the best result of this weighted `1-norm, obtained with the ex-
ponential weight and ρ = 1.5. We now turn to the models taking part in the classification
task.

5.3.2. Classification setting. As discussed in Section 3.2, the optimization in the clas-
sification setting is carried out over a matrix of weights W ∈ Rp×c. This makes it possible
to consider regularization schemes that couple the selection of variables across rows of that
matrix.

In particular, we apply ideas from multi-task learning [47] by viewing each class as a
task. More precisely, we use a regularization norm defined by Ωmulti-task(W) ,

∑p
j=1 ‖Wj‖,

where ‖Wj‖ denotes either the `2- or `∞-norm of the j-th row of W. The rationale for the
definition of Ωmulti-task is to assume that the set of relevant voxels is the same across the c
different classes, so that sparsity is induced simultaneously over the columns of W. It should
be noted that , in the “one-versus-all” setting, although the loss functions for the c classes
are decoupled, the use of Ωmulti-task induces a relationship that ties the optimization problems
together.

Note that the tree-structured regularization Ω we consider does not impose a joint pattern-
selection across the c different classes. It would however be possible to use Ω over the matrix
W, in a multi-task setting. More precisely, we would define Ω(W) =

∑
g∈G ‖Wg‖, where

‖Wg‖ denotes either the `2- or `∞-norm of the vectorized sub-matrix Wg , [Wjk]j∈g,k∈{1,...,c}.
This definition constitutes a direct extension of the standard non-overlapping `1/`2- and
`1/`∞-norms used for multi-task. Furthermore, it is worth noting that the optimization tools
from [28] would still apply for this tree-structured matrix regularization.

5.4. Results. We present results comparing our approach based on the hierarchical
sparsity-inducing norm (2.3) with the regularization listed in the previous section. For each
method, we computed the cross-validated prediction accuracy and the percentage of non-zero
coefficients, i.e., the level of sparsity of the model.

5.4.1. Regression results. The results for the inter-subject regression analysis are re-
ported in Table 5.1. The lowest error in prediction accuracy is obtained by both the greedy
strategy and the proposed hierarchical structured sparsity approach (Tree `2 with ρ = 1)
whose performances are essentially indistinguishable. Both also yield one of the lowest stan-
dard deviation indicating that the results are most stable. This can be explained by the fact
that the use of local signal averages in the proposed algorithm is a good way to get some
robustness to inter-subject variability. We also notice that the sparsity-inducing approaches
(Lasso and reweighted `1) have the highest error in prediction accuracy, probably because
the obtained solutions are too sparse, and suffer from the absence of perfect voxel-to-voxel
correspondences between subjects.

In terms of sparsity, we can see, as expected, that ridge regression does not yield any
sparsity and that the Lasso solution is very sparse (in the feature space, with approximately

8Formally, the depth of the feature j is equal to depth(gj), where gj is the smallest group in G that contains j
(smallest is understood here in the sense of the inclusion).
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Loss function: Squared loss

Error (mean,std) P-value w.r.t. Tree `2 (ρ = 1) Median fraction of non-zeros (%)
Regularization:
`2 (Ridge) (13.8, 7.6) 0.096 100.00
`1 (20.2, 10.9) 0.013∗ 0.11
`1 + `2 (Elastic net) (14.4, 8.8) 0.065 0.14
Reweighted `1 (18.8, 14.6) 0.052 0.10
`1 (augmented space) (14.2, 7.9) 0.096 0.02
`1 (tree weights) (13.9, 7.9) 0.032∗ 0.02
Tree `2 (ρ = 0.5) (13.0, 7.4) 0.137 99.99
Tree `2 (ρ = 1) (11.8, 6.7) - 9.36
Tree `2 (ρ = 1.5) (13.5, 7.0) 0.080 0.04
Tree `∞ (ρ = 0.5) (13.6, 7.8) 0.080 99.99
Tree `∞ (ρ = 1) (12.8, 6.7) 0.137 1.22
Tree `∞ (ρ = 1.5) (13.0, 6.8) 0.096 0.04

Error (mean,std) P-value w.r.t. Tree `2 (ρ = 1) Median fraction of non-zeros (%)
Greedy (12.0, 5.5) 0.5 0.01

TABLE 5.1
Prediction results obtained on fMRI data (see text) for the regression setting. From the left, the first column

contains the mean and standard deviation of the test error (mean squared error), computed over leave-one-subject-
out folds. The best performance is obtained with the greedy technique and the hierarchical `2 penalization (ρ = 1)
constructed from the Ward tree. Methods with performance significantly worse than the latter is assessed by Wilcoxon
two-sample paired signed rank tests (The superscript ∗ indicates a rejection at 5%). Levels of sparsity reported are
in the augmented space whenever it is used.

7 × 104 voxels). Our method yields a median value of 9.36% of non-zero coefficients (in
the augmented space of features, with about 1.4 × 105 nodes in the tree). The maps of
weights obtained with Lasso and the hierarchical regularization for one fold, are reported
in Fig. 5.2. The Lasso yields a scattered and overly sparse pattern of voxels, that is not
easily readable, while our approach extracts a pattern of voxels with a compact structure,
that clearly outlines brain regions expected to activate differentially for stimuli with different
low-level visual properties, e.g., sizes; the early visual cortex in the occipital lobe at the back
of the brain. Interestingly, the patterns of voxels show some symmetry between left and right
hemispheres, especially in the primary visual cortex which is located at the back and center of
the brain. This observation is consistent with the current understanding in neuroscience that
the symmetric parts of this brain region process respectively the visual contents of each of the
visual hemifields. The weights obtained at different depth level in the tree, corresponding to
different scales, show that the largest coefficients are concentrated at the higher scales (scale
6 in Fig. 5.2), which suggest that the object sizes cannot be well decoded at the voxel level
but require features corresponding to larger clusters of voxels.

5.4.2. Classification results. The results for the inter-subject classification analysis are
reported in Table 5.2. The best performance is obtained with a multinomial logistic loss
function, also using the hierarchical `2 penalization (ρ = 1).

It should be noted that the sparsity level of the different model estimated vary widely
depending on the loss and regularization used. With the squared loss, `1 type regularization,
including the multi-task regularizations based on the `1/`2 and `1/`∞ norm tend to select
quite sparse models, which keep around 0.1% of the voxels. When using logistic type losses,
these regularizations tend to select a significantly large number of voxels, which suggests that
the selection problem is really difficult and that these methods are unstable. For the methods
with hierarchical regularization, on the contrary, the sparsity tends to improve with the choice
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of loss functions that are better suited to the classification problem and tuning ρ trades off
smoothly sparsity of the model against performance, from models that are not sparse when
ρ is small to very sparse models when ρ is large. In particular a better compromise between
sparsity and prediction performance can probably be obtained by tuning ρ ∈ [1, 1.5].

For both `1 and hierarchical regularizations, one of the three vectors of coefficients ob-
tained for one fold and for the loss leading to sparser models are presented in Fig. 5.3. For
`1, the active voxels are scattered all over the brain, and for other losses than the squared-loss
the models selected tend not to be sparse. By contrast, the tree `2 regularization yields clearly
delineated sparsity patterns located in the visual areas of the brain. Like for the regression
results, the highest coefficients are obtained at scale 6 showing how spatially extended is
the brain region involved in the cognitive task. The symmetry of the pattern at this scale is
also particularly striking in the primary visual areas. It also extends more anteriorly into the
inferior temporal cortex, known for high-level visual processing.

6. Conclusion. In this article, we introduced a hierarchically structured regularization,
which takes into account the spatial and multi-scale structure of fMRI data. This approach
copes with inter-subject variability in a similar way as feature agglomeration, by averaging
neighboring voxels. Although alternative agglomeration strategies do exist, we simply used
the criterion which appears as the most natural, Ward’s clustering, and which builds parcels
with little variance.

Results on a real dataset show that the proposed algorithm is a promising tool for min-
ing fMRI data. It yields similar or higher prediction accuracy than reference methods, and
the map of weights it obtains exhibit a cluster-like structure. It makes them easily readable
compared to the overly sparse patterns found by classical sparsity-promoting approaches.

For the regression problem, both the greedy method from [42] and the proposed algo-
rithm yield better results than unstructured and non-hierarchical regularizations, whereas in
the classification setting, our approach leads to the best performance. Moreover, our pro-
posed methods enjoy the different benefits from convex optimization. In particular, while
the greedy algorithm relies on a two-step approach that may be far from optimal, the hierar-
chical regularization induces simultaneously the selection of the optimal parcellation and the
construction of the optimal predictive model, given the initial hierarchical clustering of the
voxels. Moreover, convex methods yield predictors that are essentially stable with respect to
perturbations of the design or the initial clustering, which is typically not the case of greedy
methods. It is important to distinguish here the stability of the predictors from that of the only
learned map w, which could be enforced via a squared `2-norm regularization.

Finally, it should be mentioned that the performance achieved by this approach in inter-
subject problems suggests that it could potentially be used successfully for medical diagnosis,
in a context where brain images –not necessarily functional images– are used to classify indi-
viduals into diseased or control population. Indeed, for difficult problems of that sort, where
the reliability of the diagnostic is essential, the stability of models obtained from convex
formulations and the interpretability of sparse and localized solutions are quite relevant to
provide a credible diagnostic.
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FIG. 5.2. Maps of weights obtained using different regularizations in the regression setting. (a) `1 regulariza-
tion - We can notice that the predictive pattern obtained is excessively sparse, and is not easily readable despite being
mainly located in the occipital cortex. (b-d) tree `2 regularization (ρ = 1) at different scales - In this case, the reg-
ularization algorithm extracts a pattern of voxels with a compact structure, that clearly outlines early visual cortex
which is expected to discriminate between stimuli of different sizes. 3D images were generated with Mayavi [48].
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Loss function: Squared loss (“one-versus-all”)

Error (mean,std) P-value w.r.t. Tree `2 (ρ = 1)-ML Median fraction of non-zeros (%)
Regularization:
`2 (Ridge) (29.2, 5.9) 0.004∗ 100.00
`1 (33.3, 6.8) 0.004∗ 0.10
`1/`2 (Multi-task) (31.7, 9.5) 0.004∗ 0.12
`1/`∞ (Multi-task) (33.3,13.6) 0.009∗ 0.22
Tree `2 (ρ = 0.5) (25.8, 9.2) 0.004∗ 99.93
Tree `2 (ρ = 1) (25.0, 5.5) 0.027∗ 10.08
Tree `2 (ρ = 1.5) (24.2, 9.9) 0.130 0.05
Tree `∞ (ρ = 0.5) (30.8, 8.8) 0.004∗ 59.49
Tree `∞ (ρ = 1) (24.2, 7.3) 0.058 1.21
Tree `∞ (ρ = 1.5) (25.8, 10.7) 0.070 0.04

Loss function: Logistic loss (“one-versus-all”)

Error (mean,std) P-value w.r.t. Tree `2 (ρ = 1)-ML Median fraction of non-zeros (%)
Regularization:
`2 (Ridge) (25.0, 9.6) 0.008∗ 100.00
`1 (34.2, 15.9) 0.004∗ 0.55
`1/`2 (Multi-task) (31.7, 8.6) 0.002∗ 47.35
`1/`∞ (Multi-task) (33.3, 10.4) 0.002∗ 99.95
Tree `2 (ρ = 0.5) (25.0, 9.6) 0.007∗ 99.93
Tree `2 (ρ = 1) (20.0, 11.2) 0.250 7.88
Tree `2 (ρ = 1.5) (18.3, 6.6) 0.500 0.06
Tree `∞ (ρ = 0.5) (30.8, 10.4) 0.004∗ 59.42
Tree `∞ (ρ = 1) (24.2, 6.1) 0.035∗ 0.60
Tree `∞ (ρ = 1.5) (21.7, 8.9) 0.125 0.03

Loss function: Multinomial logistic loss (ML)

Error (mean,std) P-value w.r.t. Tree `2 (ρ = 1)-ML Median fraction of non-zeros (%)
Regularization:
`2 (Ridge) (24.2, 9.2) 0.035∗ 100.00
`1 (25.8, 12.0) 0.004∗ 97.95
`1/`2 (Multi-task) (26.7, 7.6) 0.007∗ 30.24
`1/`∞ (Multi-task) (26.7, 11.6) 0.002∗ 99.98
Tree `2 (ρ = 0.5) (22.5, 8.8) 0.070 83.06
Tree `2 (ρ = 1) (16.7, 10.4) - 4.87
Tree `2 (ρ = 1.5) (18.3, 10.9) 0.445 0.02
Tree `∞ (ρ = 0.5) (26.7, 11.6) 0.015∗ 48.82
Tree `∞ (ρ = 1) (22.5, 13.0) 0.156 0.34
Tree `∞ (ρ = 1.5) (21.7, 8.9) 0.460 0.05

Error (mean,std) P-value w.r.t. Tree `2 (ρ = 1)-ML Median fraction of non-zeros (%)
Greedy (21.6, 14.5) 0.001∗ 0.01

TABLE 5.2
Prediction results obtained on fMRI data (see text) for the multi-class classification setting. From the left, the

first column contains the mean and standard deviation of the test error (percentage of misclassification), computed
over leave-one-subject-out folds. The best performance is obtained with the hierarchical `2 penalization (ρ = 1)
constructed from the Ward tree, coupled with the multinomial logistic loss function. Methods with performance sig-
nificantly worse than this combination is assessed by Wilcoxon two-sample paired signed rank tests (The superscript
∗ indicates a rejection at 5%). Levels of sparsity reported are in the augmented space whenever it is used.
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FIG. 5.3. Maps of weights obtained using different regularizations in the classification setting. (a) `1 regu-
larization (with squared loss) - We can notice that the predictive pattern obtained is excessively sparse, and is not
easily readable with voxels scattered all over the brain. (b-d) tree regularization (with multinomial logistic loss) at
different scales - In this case, the regularization algorithm extracts a pattern of voxels with a compact structure, that
clearly outlines early visual cortex which is expected to discriminate between stimuli of different sizes.


