
Decoding spontaneous brain activity from fMRI using Gaussian Processes: tracking
brain reactivation

Jessica Schrouff∗†, Caroline Kussé∗, Louis Wehenkel†‡, Pierre Maquet∗§ and Christophe Phillips∗†
∗Cyclotron Research Centre, University of Liège, Belgium

†Department of Electrical Engineering and Computer Science, University of Liège, Belgium
‡Giga-R, Systems Biology and Chemical Biology, University of Liège, Belgium

§Department of Neurology, Liège University Hospital, Belgium

Abstract—While Multi-Variate Pattern Analysis techniques
based on machine learning have now been regularly applied
to neuroimaging data, decoding brain activity is usually per-
formed in highly controlled experimental paradigms. In more
realistic conditions, the number, sequence and duration of
mental states are unpredictably generated by the individual,
resulting in complex and imbalanced fMRI data sets. Moreover,
in the case of spontaneous brain activity, the mental states
can not be linked to any external or internal stimulation,
which makes it a highly difficult condition to decode. This
study tests the classification of brain activity, acquired on 14
volunteers using fMRI, during mental imagery, a condition
in which the number and duration of mental events were
not externally imposed but self-generated. Application of the
obtained model on rest sessions allowed classifying spontaneous
brain activity linked to the task which, overall, correlated with
their behavioural performance to the task.
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I. INTRODUCTION

Multivariate methods, also known as brain decoding or

mind reading, aim at associating a particular cognitive, be-

havioural or perceptual state to specific patterns of regional

brain activity [1]. During the last years, methods such as

Support Vector Machines (SVM, [2]) or Gaussian Processes

(GP, [3]) classifiers were applied to functional Magnetic

Resonance Imaging (fMRI) times series to predict, from

individual brain activity, the patterns of perceived objects [4]

mental states related to memory retrieval [5] or even hidden

intentions [6]. GP classifiers, which provide a principled

probabilistic approach to kernel machine learning, have been

recently developed to allow for classifying more difficult

data sets, such as predicting subjective pain intensity [7]. In

most of these studies, the experimental design completely

controlled the nature, timing and duration of experimental

trials, and temporally isolated experimental conditions from

one another. However, in some contexts, decoding more re-

alistic data sets would be desirable. An example is the study

of memory traces: patterns of brain activity present during

a memory task should be reactivated during a post-task rest

period [8], [9]. Due to the complexity of this phenomenon,

few studies could investigate the reactivation of distributed

memory traces in humans using non-invasive neuroimaging.

To the best of our knowledge, Tambini et al [9] are the only

group who could investigate off-line transfer of information

using fMRI. They showed an enhanced marginal correlation

between the hippocampus and neocortex (lateral occipital

cortex) during post-task rest compared to baseline rest,

which predicted individual differences in later associative

memory. They however used seed regions in a univariate

fashion whilst the reactivation of distributed patterns is an

intrinsically multivariate problem. In this work, we acquired

a memory task flanked by two rest sessions and followed

by a recall or mental imagery session. The aim of this work

was to (i) classify the mental imagery session comprising

uneven numbers of short events with possibly overlapping

patterns of brain activity, (ii) apply the computed model to

the different rest sessions and (iii) establish the relationship

between the outputs of such classifications and behavioural

data.

II. MATERIALS AND METHODS

A. Population

A group of 14 volunteers (7 females), aged between 19

and 29 years (mean 24.44), participated in the study. This

study was approved by the Ethical Committee of the Faculty

of Medicine of the University of Liège. All subjects were

fully informed and gave their written informed consent.

They were screened for anxiety, depression, sleep quality,

chronotype and excessive daytime sleepiness.

B. Experimental design

All subjects underwent two main conditions: a memory

condition and a control condition, their order being random-

ized (see fig.1). The memory task consisted in an exploration
session, during which images of faces, buildings and animals

were displayed one at a time for 3 seconds, each image

being assigned a specific location on the screen. The order of

presentation followed a predefined sequence of contiguous

screen positions in such a way that volunteers had the

impression of following a path throughout a bidimensional

maze. The complete maze consisted of three blocks of 27

consecutive images within which the 3 categories of images
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Figure 1. Experimental design: subjects underwent a control task flanked
by two rest sessions and a memory task, flanked by two rest sessions and
followed by a recall or mental imagery session.

were always presented in the same order (i.e. 9 faces, 9

buildings and 9 animals). This session was flanked by two

rest sessions (referred to as ‘R1m’ and ‘R2m’ respectively,

each lasting 10 minutes, [8]) and followed by a mental
imagery session, in which volunteers were presented with 54

memory tests. During each test, two images, simultaneously

displayed on the screen for 4 seconds, represented the start-

ing and target positions of a path that the volunteers would

have to follow mentally. The mental trajectories included 3

to 6 images (average 4.5) of a same category. Volunteers had

to signal by a key press each image that they could conjure

up during this mental travel. The control task consisted in

an oddball experiment (discriminative auditory task), flanked

by two rest sessions (10 minutes, referred to as ‘R1o’ and

‘R2o’ respectively).

A memory test was finally performed outside the scanner, in

order to behaviourally assess the accuracy of both the spatial

and content knowledge acquired by the volunteers.

C. Data acquisition and image preprocessing

fMRI time series were acquired on a 3T head-only scanner

(Magnetom Allegra, Siemens Medical Solutions, Erlangen,

Germany). The images were preprocessed using SPM8 1

to correct for spatial deformations induced by the field

inhomogeneities and differences in slice acquisition time.

They were then simultaneously realigned and unwrapped to

account for the subject movements in the scanner, and finally

smoothed using a Gaussian function with a 4mm FWHM

kernel.

D. Functional MRI data analysis

The selected methodology is based on [10], in which the

authors compared different (combinations of) techniques to

classify exploration and mental imagery sessions. The clas-

sification technique considered here was used in a within-

subject and binary way.

1) Signal extraction: For the different sessions, the whole

time series of all voxels were extracted. A GLM [11] was

used to regress out movement effects and low frequency

1www.fil.ion.ucl.ac.uk/spm

drifts. The signal corresponding to stimulus onsets was then

extracted, considering a hemodynamic response function

(HRF) delay of 6 seconds [12]. To avoid decoding the

signal linked to motor activity in the mental imagery session,

the scans selected for further classification were the ones

preceding the key presses (after correction for HRF delay).

Overlapping events were also handled with care, preventing

the inclusion of two different stimuli in the same TR. For

spontaneous brain activity, each scan of the rest session was

considered as an ‘event’.

2) Feature selection: From [10], the best results were

obtained using a double-step feature selection comprising

both a univariate and multivariate technique. The univariate

technique consisted in a GLM which selected the subset

of 1000 most ‘active’ voxels. The multivariate feature se-

lection was based on an SVM classifier 2. It consisted in

a Recursive Feature Addition, which recursively adds the

most discriminant voxels until a decrease or plateau in the

global accuracy (i.e. the sum of the accuracies of each binary

comparison) was observed. Care was taken to perform the

feature selection on the training set only, to ensure unbiased

estimations of the accuracy.

3) Classification method: Gaussian Process (GP) classi-

fication 3, was performed using the Expectation Propagation

approximation of the posterior mode [3], which recursively

updates local parameters of the distribution. The covariance

matrix was modelled by a linear kernel matrix.

4) Mental imagery: For mental imagery, the outputs of

the classification consisted in accuracy (balanced and class

accuracies) measured on a Leave-One block-Out cross-

validation. To obtain a multiclass accuracy measure for each

subject (instead of one measure for each binary comparison),

an Error-Correcting Output Code approach (ECOC, [13])

was considered, inspired from [14]. In this work, three

classes were considered (i.e. faces, buildings and animals,

N = 3), leading to codewords of length three. The code-

words were defined in terms of probabilities obtained from

each GP binary classification (table I), and the distance was

computed as the sum of the absolute differences between

the class-specific codewords and the probabilities obtained

from each binary classifier. The significance of the results

was then assessed using permutations of the training labels

(100 permutations per block, i.e. 900 permutations in total).

5) Rest sessions: The model built on the mental imagery

session was then applied to the rest sessions. In this case,

the ECOC approach was not used to associate a label to

each scan but to assess the ‘confidence’ of the prediction by

taking the distance between the two most probable classes

(in terms of distances to the table, [13]). A unique measure,

2LIBSVM, Chang C. C. and Lin, C. J., http://www.csie.ntu.edu.tw/~cjlin/
libsvm/, interfaced in PROBID (A. Marquand and J. Mourao-Miranda, http:
//www.brainmap.co.uk/)

3GPML toolbox, C.E. Rasmussen and C.K.I. Williams, http://www.
gaussianprocess.org/gpml/, interfaced in PROBID
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Table I
ECOC PROBABILISTIC CODEWORDS FOR FACES (F), BUILDINGS (B)
AND ANIMALS (A) CATEGORIES. THE ‘TEST’ LINE REPRESENTS THE

OUTPUTS OF THE BINARY CLASSIFIERS FOR AN EXAMPLE TEST POINT,
ITS DISTANCE TO EACH CLASS CODEWORD (Di) BEING COMPUTED IN

THE LAST COLUMN.

Class F vs B F vs A B vs A Di

F 1 1 0.5 1.4

B 0 0.5 1 0.8

A 0.5 0 0 1.2

test 0.5 0.4 0.8 Class B

referred to as ‘L’, is therefore attributed to each scan and is

computed as:

L = min(|Di −Dj |), i, j = 1..N, i �= j (1)

In table I, L = |1.2 − 0.8| = 0.4. The base-level of

this L measure was then computed using 1000 permu-

tations of the training labels. For each permutation, the

maximum of L was considered, which allowed comparing

the L value of each scan to the 1000 L values of the

permutations and thereby associating a p-value to each scan.

The proportion of scans linked to the memory task was

then computed as the percentage of scans for which the

associated p-value <0.05. For each subject, four values

were obtained (one per rest session), referred to as Pr. The
subjects were then sorted in descending order according

to Pr(R2m)− Pr(R1m) and correlations were computed

between Pr(R2m)− Pr(R1m) and the subjects’ behavioural

performance. To assess the significance of the correlation,

non-parametric testing was performed by permuting 1000

times the behavioural performance and computing the cor-

relations between the shuffled subjects’ behavioural perfor-

mance and both Pr(R2m)−Pr(R1m) and Pr(R2o)−Pr(R1o)
(correlations referred to as ‘Cm’ and ‘Co’, respectively).

The difference between the two correlation values was

also calculated at each permutation. P-values could then be

associated to Cm, Co and their difference.

III. RESULTS

A. Behavioural data

The screening revealed that subjects S4 and S8 were

statistical outliers regarding anxiety and depression.

During mental imagery, the number of extracted events

and their corresponding duration were variable depending

on the volunteer’s ability to retrieve the different images

forming the requested mental path. Dprime measures [15]

were computed from the memory test led outside the scanner

to assess the behavioural performance of each subject. The

results revealed that subject S6 was a statistical outlier

regarding Dprime.

Table II
CORRELATION COEFFICIENT C BETWEEN PR(R2m/o)-PR(R1m/o) AND

THE SUBJECTS’ BEHAVIOURAL PERFORMANCE, AND THEIR P-VALUES.
P(DIF) REPRESENTS P(Cm > Co).

Selection Cm p(Cm) Co p(Co) p(dif)

All subjects -0.0565 0.5880 0.0024 0.5060 0.3970

No outliers 0.4968 0.0580 -0.0137 0.5040 0.0400

B. Mental imagery

1) Feature selection: The selected voxels were mostly

comprised in the ventral visual path (primary areas, Fusiform

Face Area), parietal regions linked to spatial features and

hippocampus related to navigation. Activation in these areas

represented properly the different aspects of the task.

2) Classification: The optimal subsets of features defined

by GLM and RFA were associated with mean balanced

accuracies ranging from 32.98 to 69.78 % (figure 2). Non-

significant results were found for subjects S10, S11 and S13

(p>0.05). Significant correlations were found between the

Figure 2. Balanced accuracy obtained from classifying the mental imagery
session. Significant results are marked by a *. Please note that due to
imbalances in the number of events, the chance level is different from
33% and varies across subjects.

number of events in the buildings and faces category and the

corresponding class accuracy. Trends indicated a relationship

between the behavioural performances of the subjects and

the performance of the classifier.

C. Rest sessions

The values for Cm, Co, p(Cm), p(Co) and p(Cm > Co)

are displayed in table II, when considering all subjects and

when discarding the statistical outliers (i.e. S4, S6 and S8)

in terms of behaviour (‘No outliers’).

Results show significant Cm value when discarding the

statistical outliers in terms of behaviour. On the contrary,

Co values are close to zero with non-significant asso-

ciated p-values. The difference between the correlations

obtained from the 2 sessions were also significant for
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the second subset of subjects. These results suggest that

Pr(R2m)−Pr(R1m) correlated significantly with the sub-

jects’ behavioural performance and that this correlation is

significantly higher than when considering the control task.

IV. DISCUSSION

In this paper, the authors applied machine learning based

MVPA to two complex fMRI datasets: a mental imagery

session characterized by imbalanced and self-paced trials

and rest sessions, during which no external or internal

stimulation was imposed. Based on [10], the combination

of a univariate and a multivariate feature selection followed

by Gaussian Processes Classification led to a significant

classification of the mental imagery session for 11 subjects

out of 14. The obtained models were then applied to the

different rest sessions which resulted in the computation of

the proportion of scans of spontaneous brain activity linked

to the memory task (Pr).

We observed that the results from both classifications

correlated significantly with behavioural data. For mental

imagery, it is the number of events in each category which

mostly affects the class accuracies. For spontaneous brain

activity however, it was the performance of the subjects

which correlated significantly with the results of most

subjects (i.e. when discarding statistical outliers in terms

of behaviour and performance). Moreover, this correlation

could not be achieved when considering permutations of

the behavioural measure and was significantly higher than

the correlation value obtained from a control task (Co).

This result suggests that the larger the difference between

the proportions of spontaneous brain activity linked to a

task before and after this task (i.e. Pr(R2m)−Pr(R1m)),

the better the memorization of task features by the subject.

However, investigations on the subjects not verifying the

hypothesis (i.e. the statistical outliers) should be performed.

In particular, the effect of thresholding at p < 0.05 to

determine the proportions Pr should be investigated.

V. CONCLUSION

The classification of rest sessions could be performed

by applying previously built models on a mental imagery

session. While the results should be more deeply investi-

gated, a significant correlation between the proportions of

spontaneous brain activity linked to the memory task and the

subjects’ performance to memorize the task features suggests

that reactivations during post-experience rest are linked to

the memorization of the conducted experiment.
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