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Abstract—Inferring the functional specificity of brain regions
from functional Magnetic Resonance Images (fMRI) data is
a challenging statistical problem. While the General Linear
Model (GLM) remains the standard approach for brain mapping,
supervised learning techniques (a.k.a. decoding) have proven to
be useful to capture multivariate statistical effects distributed
across voxels and brain regions. Up to now, much effort has been
made to improve decoding by incorporating prior knowledge in
the form of a particular regularization term. In this paper we
demonstrate that further improvement can be made by account-
ing for non-linearities using a ranking approach rather than
the commonly used least-square regression. Through simulation,
we compare the recovery properties of our approach to linear
models commonly used in fMRI based decoding. We demonstrate
the superiority of ranking with a real fMRI dataset.

Index Terms—fMRI, supervised learning, decoding, ranking

I. INTRODUCTION

The prediction of behavioral information or cognitive states
from brain activation images such as those obtained with fMRI
can be used to assess the specificity of several brain regions for
certain cognitive or perceptual functions. This kind of analysis
is implemented by learning a classifier or regression function
that fits a given target variable given fMRI activations. The
accuracy of this prediction depends on whether it uses the
relevant variables i.e. the correct brain regions. Recovering
the truly predictive pattern has proven to be challenging from
a statistical point of view: the high dimensionality of the data
together with the limited number of images makes the problem
of brain pattern recovery an ill-posed problem.

So far, the approaches proposed to address this issue have
relied on linear models, with univariate, i.e. voxel-based,
Anova (analysis of variance) for hypothesis testing, or, for
predictive modeling, with the choice of a regularizer using
a priori domain-specific knowledge, such as the `1-norm to
promote sparsity [1], [2], total variation to promote spatial
smoothness [3]. Various data fit terms have been used, Logistic
Regression (LR) [2], Linear SVM [4], Lasso [1]. While
Linear SVM and LR cannot address the recovery problem for
multiclass problems, linear regression models assume a linear
relationship between the quantity to predict and the amplitude
of the fMRI signals. If the linear relationship does not hold
in practice, then the estimation of the predictive patterns may
suffer from a loss of statistical power. This can be particularly

relevant with Blood Oxygen-Level Dependent (BOLD) signals
observed in fMRI, where a saturation effect is expected as the
level of signal increases.

When targets to predict consist of ordered values, as in a
parametric design, such as clinical scores, pain levels or the
complexity of a cognitive task, the response to these different
conditions can reflect the non-linearities in the data. In such
situation, we propose to use a data fit term, known as loss
function, not relying on an assumption of linearity but only
of increasing response. We show on simulations that this new
formulation opens the door to capturing the non-linearity and
leads to better recovery of the predictive brain patterns. On
an fMRI dataset we show that the new formulation leads to
models with better recovery properties.

a) Notations: We write vectors in bold, a ∈ Rn, matrices
with capital bold letters, A ∈ Rn×p. The dot product between
two vectors is denoted 〈a, b〉. We denote by ‖a‖ =

√
〈a,a〉

the `2 norm of a vector.

II. LEARNING A LINEAR MODEL FROM FMRI DATA

Following standard statistical learning notations we denote
by xi ∈ Rp, 1 ≤ i ≤ n, the data and yi ∈ Y the target
variables. In this paper, we aim at learning a weight vector
w ∈ Rp such that the prediction of y can be non-linearly
related to the value of wTx. The vector w corresponds here to
a brain map that can be represented in brain space as a volume
for visualization of the predictive pattern of voxels. It is useful
to rewrite these quantities in matrix form; more precisely, we
denote by X ∈ Rn×p the design matrix assembled from n
fMRI volumes and by y ∈ Rn the corresponding n targets. In
other words, each row of X is a p-dimensional sample, i.e., an
activation map of p voxels related to one stimulus presentation.

A standard approach to perform the estimation of w leads
to the following minimization problem

ŵ = argmin
w
L(y,X,w) + λΩ(w) , λ ≥ 0 (1)

where λΩ(w) is the regularization term and L(y,X,w) is
the loss function. The parameter λ balances the loss function
and the penalty Ω(w).

If the explained variable is a linear combination of the
images, y = Xw + ε, we can estimate ŵ using the mean
squared error loss function L(y,X,w) = ‖y − Xw‖2.
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However, with fMRI the linearity assumption may not be valid.
Instead, we model our explained variable as y = F (Xw) +ε,
where F is a non-decreasing function.

We introduce the use of pairwise loss functions. These loss
functions only assume the target values to be a non-decreasing
function of the data. They have been widely used in ranking,
a type of supervised machine learning problem whose goal
is to automatically construct an order from the training data.
A pairwise loss function operates on pairs of images: given
a pair of images (xi,yi) and (xj ,yj), yi 6= yj we build a
model that predicts the sign of yi − yj .

Let I denote the index set of all considered pairs. Note that
in some settings it might be important to restrict ourselves to
a selected subgroup of all pairs, e.g. to the pairs of images of
a single subject or to the pairs of images corresponding to a
single session. For this purpose we define aij ∈ R, (i, j) ∈ I
to be a weight associated to each pair. We will now present
the pairwise loss functions used in this article:
• Pairwise hinge loss [5]. This is a natural extension of the

loss function used by Support Vector Machines and has
been successfully used in information retrieval [6].∑

(i,j)∈I

aij [1−wT (xi − xj)]+ (2)

where [z]+ = max{z, 0}.
• Pairwise logistic loss [7]. This is the pairwise extension

of the logistic regression loss function.∑
(i,j)∈I

aij log(1 + exp(wT (xi − xj))) (3)

When noise is present in the model, the order of two
samples might get inverted, a phenomenon known as label
switching. Because this only affects labels that lie close, it is
natural to penalize more the misclassification of distant labels.
By setting the sample weights to aij to a value that increases
as labels become more separated, we become more robust to
label switching. In the case of hinge loss functions, several
strategies for choosing the appropriate weights are discussed
in [6].

On the implementation side, both pairwise hinge loss and
pairwise logistic loss can be implemented on top of existing
SVM and Logistic Regression solvers, respectively, by taking
the difference of pairs as input values. In practice, we used
the liblinear [8] library via the scikit-learn [9] library.

III. SIMULATION

b) Data generation: The simulated data X contains
volumes of size 5× 5× 5 and 7× 7× 7, each one consisting
of Gaussian white noise smoothed by a Gaussian kernel
with standard deviation of 2 voxels. This mimics the spatial
correlation structure observed in real fMRI data. The simulated
vector of coefficients w has a support restricted to four cubic
Regions of Interest (ROIs) of size (2× 2× 2). The values of
w restricted to these ROIs are {1, 1,−1,−1}.
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Fig. 1. Correlation between the estimated vector ŵ and the ground truth
w for different loss functions as the number of considered samples increases
(higher is better) for dimensions 5×5×5 and 7×7×7 respectively. Pairwise
loss functions outperform linear regression as the number of samples increases
and tend to a perfect recovery.
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Fig. 2. Correlation between the estimated vector ŵ and the ground truth
w for different loss functions with a noise level of 5%. Appropriately setting
the weights plays a major role in robustness. Without the correct weighting
and under noisy conditions, pairwise logistic loss function fails to recover the
correct model.

The target variable yl ∈ Rn is simulated as a linear model:

yl = Xw + ε (4)

where the noise εi ∈ [−σ2 ,
σ
2 ] follows a uniform distribu-

tion. σ is chosen such that the signal-to-noise ratio verifies
‖ε‖/‖Xw‖ = 5%. We then define another target variable ynl
to be a sigmoid function of yl, that is,

ynl =
1

1 + exp (−yl)
(5)



For each of the loss functions introduced earlier and
mean squared error, we compute the correlation coefficient
ρ(w, ŵ) = 〈w, ŵ〉/(‖w‖‖ŵ‖). This gives us the goodness of
fit for the estimated ŵ. A method with correlation coefficient
of 1 is able to recover perfectly the ground truth. Since we
are interested in the estimation of w, we restricted ourselves
to linear models, leaving out models such as kernel ridge or
support vector regression with Gaussian kernel.

For all models we added `2 regularization in the form of
λ‖w‖2 and we cross-validated λ separately for each loss.
In this setting, the model with mean squared error loss is
equivalent to ridge regression. In order to focus on the effect of
non-linearity, we first considered a noiseless simulation using
trivial weights aij = 1.

Once we learned a vector ŵ for each method we compute
the correlation coefficient with the ground truth for different
sizes of the training data. The experiment is repeated 10
times with different initialization of the pseudorandom number
generator. We compute errorbars and show the results in
figure 1. As the number of samples increases, the linear
model stalls and pairwise loss functions outperform MSE
on both 5 × 5 × 5 and 7 × 7 × 7 dimension. As expected,
the higher dimensionality of the second simulation makes
the correlation coefficient decrease. However, unlike MSE,
ranking tends to a perfect recovery as the number of samples
increases. Both pairwise loss functions perform equivalently
and have a significatively higher correlation coefficient than
MSE. In the rest of the paper we will use pairwise logistic
as loss function. As a result, pairwise loss functions should
be preferred over MSE in situations where underlying model
is non-linear. Notice that we fixed the non-linearity to be a
sigmoid function, but the pairwise loss functions only assume
that this function is non-decreasing. Unlike linear regression
models, pairwise loss functions are indeed able to learn the
structure on the non-linear transform F .

We now consider the model with noise as in (4) and use
non-trivial weights aij . To account for label switching, we set
aij to zero for pairs with too similar labels:

aij =

{
0 if |yi − yj | < σ

1 otherwise .
(6)

In the case of discrete values, this would be equivalent to zero-
ing weights for which the labels are adjacent. We now compute
the correlation coefficient for weighted and unweighted pair-
wise logistic models and linear ridge regression model. The
result can be seen in figure 2 for dimension 5 × 5 × 5. The
unweighted logistic model breaks down in presence of noise
and performs worse than linear ridge regression. On the other
hand, appropriately setting the weights aij has a major effect
on robustness, where this model outperforms MSE in a noisy
setting. Note also that weighted pairwise logistic has smaller
variance than MSE.

IV. RESULTS ON FMRI DATA

This dataset, described in [10], consists of 34 healthy volun-
teers scanned while listening to 16 words sentences with five

Fig. 3. Scores obtained with the pairwise logistic on the 4 different ROIs.
The regions with the best predictive power are the temporal pole the anterior
superior temporal sulcus.

different levels of complexity. These were 1 word constituent
phrases (the simplest), 2 words, 4 words, 8 words and 16
words respectively, corresponding to 5 levels of complexity
which was used as class label in our experiments. To clarify, a
sentence with 16 words using 2 words constituents is formed
by a series of 8 pairs of words. Words in each pair have a
common meaning but there is no meaning between each pair.
A sentence has therefore the highest complexity when all the
16 words form a meaningful sentence.

The dataset consists of 8 manually labeled ROIs, some in-
formative and some not. For each ROI separately, we split the
data into 60% training samples, 20% for parameter selection
and 20% for validation. We trained a pairwise logistic model
and set the `2 regularization by cross validation. We choose
aij to be zero if classes are adjacent, i.e. if |yi − yj | ≤ 1
and if xi and xj do not belong to the same subject, in order
to consider exclusively non-adjacent pairs of images from
the same subject. In all other cases, aij was set to one. We
computed the generalization score on the validation set as the
mean number of inversions with respect to the order in labels,
i.e. the sign flips sgn((Xi −Xj)ŵ) 6= sgn(yi − yj) for all
pairs of images in the validation set.

We kept the four ROIs with highest scores (see figure 3).
These are: Anterior Superior Temporal Sulcus (aSTS), Tem-
poral Pole (TP), Inferior Frontal Gyrus Orbitalis (IFGorb) and
Inferior Frontal Gyrus triangularis (IFG tri).

In order to inspect the properties of the estimated functions
F for each ROI, we estimated ŵ using a pairwise logistic
model. We then projected our data X along this vector
ŵ and regularized the result using non parametric locally
weighted scatterplot smoothing (LOWESS). Results in figure 4
show that the linearity varies in shape across ROIs which
suggests that different regions exhibit different sensitivities to
the complexity parameter under investigation. We see however
a trend in the figures towards non-linear and non-decreasing
functions with some saturation effect of the BOLD signal as
in the temporal pole (TP).

In the case of the Temporal Pole (TP), which is the ROI
revealing the highest saturation effect, an F-test on the data
(Xŵ, y) reveals that the quadratic polynomial model fits
better the data than a linear model (p-value < 0.03). As
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Fig. 4. Data projected along ŵ showing the non-linear effect in the 4 regions
of interest. This projection gives an insight on the relationship between the
BOLD signal and the explained variable. We observe that the the shape of
the non-linearity varies across brain regions. Apart from IFG tri, all regions
show a saturation effect in the BOLD response.

shown in the simulations, in this particular case pairwise loss
functions are likely to improve the recovery of active brain
regions.

V. CONCLUSION

In this paper, we investigated the use of pairwise loss
functions to improve the problem of brain pattern recovery
with supervised learning applied to fMRI data. Through
simulations, we showed the benefit of such loss functions
when the target to predict is non-linearly related to the voxel
amplitudes. Experimental results on fMRI data confirmed the
presence of such non-linear effects in the data which suggest
that the pairwise approach should improve the identification
of predictive brain patterns on experimental data.

This work shows that improvements in recovery of brain
activation patterns should not only rely on the choice of a
particular regularizer, but also on an appropriate loss function.
Here we have only considered `2-penalized models, but a
natural extension to work with full brain data would be to con-
sider pairwise loss functions combined with sparse structured
penalizations which incorporate domain-specific knowledge.
This opens the path to further improvements and refinements
in the recovery of brain pattern activation via supervised
learning.
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