Structured Sparsity Models for Brain Decoding from fMRI data
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Abstract—Structured sparsity methods have been re-
cently proposed that allow to incorporate additional
spatial and temporal information for estimating models
for decoding mental states from fMRI data. These meth-
ods carry the promise of being more interpretable than
simpler Lasso or Elastic Net methods. However, despite
sparsity has often been advocated as leading to more
interpretable models, we show that by itself sparsity and
also structured sparsity could lead to unstable models.

We present an extension of the Total Variation method
and assess several other structured sparsity models on
accuracy, sparsity and stability. Our results indicate
that structured sparsity via the Sparse Total Variation
can mitigate some of the instability inherent in simpler
sparse methods, but more research is required to build
methods that can reliably infer relevant activation pat-
terns from fMRI data.
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ity; fMRI

I. INTRODUCTION

Supervised machine learning techniques are being
increasingly used in the analysis of brain imaging data
for their inherent ability to deal with multi-variate
data, higher sensibility and possibility of incorporating
specific prior-information.

Given the high-dimensionality of neuroimaging,
and especially fMRI, data and the few number of sam-
ples, linear models have been proven to be sufficient
in order produce effective classifiers [1], [2], [3], [4].

However, ordinary linear models, for example Least
Squares or Ridge Regression [5], are incapable of dis-
criminating which areas of the brain mostly contribute
to the model’s predictions, in the sense that all voxels
contribute to generate a predictive function.

Sparse methods, like the Lasso [6] or the Elastic
Net [7], are able to estimate solutions for which
only few voxels are deemed relevant, therefore aiding
interpretation. However, often these models provide
overly sparse solutions, or activation patterns, where
the non-zero coefficients are assigned to disparate
regions across the brain, without exploiting any spatial
or temporal prior information [3], [4], [8].

Recently, structured sparsity models [9], [10] have
been proposed to extend the well-known methods of
Lasso and Elastic Net by enforcing more structured
constraints on the solution. These include constancy

or closeness of the regression coefficients over neigh-
bouring or connected regions or graph structures.

Despite sparsity has traditionally been connected
with interpretability, in the sense that sparser models
are easier to interpret, these new structured sparsity
models promise an even greater ease of interpretation
of the activation patterns, because the active voxels are
grouped together in possibly few clusters, which fits
well with our knowledge about the brain’s specialized
regions and networks. However, sparsity alone is not
sufficient for making reasonable inferences from these
models, because a sparse model could be unstable
under resampling or slight changes of the experi-
mental conditions. Therefore, we advocate stability
as the natural counterpart of sparsity in order to
obtain interpretable inferences from sparse supervised
learning methods.

In this paper, we assess several structured sparsity
methods that have been recently used for decoding
fMRI data and assess their performance with respect
to accuracy, sparsity and stability. The methods we
consider include Lasso [6] and Elastic Net [7], Total
Variation [3], Graph Laplacian Elastic Net (Graph-
NET) [4] and an extension of the Total Variation
method which, up our knowledge, is applied to fMRI
data for the first time.

For our comparison we use a dataset of fMRI scans
collected from 16 healthy volunteers while watching
pleasant or unpleasant images in a block experimental
design [1], [2], [11]. We discuss the relevance of our
findings with respect to using classification accuracy
as a proxy for statistical significance of a given model.

II. SUPERVISED LEARNING FOR CLASSIFICATION

Given a training set of input-output pairs D =
{(zi,y:) 172, with z; € RP and y; € R, a supervised
learning method infers the relationship between x and
y by estimating a prediction function f : RP — R
such that, for every x € RP, f(x) provides the
prediction of y given z.

For neuroimaging studies, the x; represent the brain
scans in vector format and the number of variables p
corresponds to the number of recorded voxels. In the
present paper we consider a binary classification task,
so that y € {—1,1}, but our results can easily be



extended to the regression or the multi-class setting.
Furthermore, we limit our analysis to linear models,
so that the decision function can be written as f(z) =
sign(zT ), where 3 € RP is a vector of coefficients
to be estimated, one associated to each voxel.

The aim of a machine learning algorithm is to
find a coefficient vector 3 able to correctly classify
new examples and with specific properties such as
sparsity (i.e. few non-zero coefficients) or smoothness.
Regularized methods find 8 minimizing an objective
function consisting of a data fit term I(8) and a
penalty term §2(/3) that favours certain properties and
improves the generalization over unseen examples
(outside the training set D).

As data fit term we consider the square loss that
can be concisely written as

1
18) = —IXB - Y13

where X € R™*P is the matrix that contains the
training examples as rows and Y = (y1,...,ym)7.

A. Structured Sparsity Models

Note that, since for a linear model each regression
coefficient is associated to a voxel, the vector S can
also be interpreted as 3D matrix of the same size as
the brain scans and we use this 3D structure to define
particular penalty terms §2(5). We define the ¢; norm
of B as |81 = > i, |8i]; the discrete gradient of /3
in 3 dimensions as V3, with

(vﬁ)},j,k = 5(7’7]7 k) - ﬁ(l - 17j7 k)
(VB jx = Blig. k) = Blirj — 1, k)

and (V) , = 0if (i, 7, k) is on the boundary w.r.t.
the direction £. Finally, >, (8 — ;)? means that
the sum is only for neighbouring voxels ¢ and j.

For each method, the estimated model B is the
minimizer of the functional I(3)+ Q(8), where Q(5)
is defined as follows.

Elastic Net and Lasso:

Q(B) = MlIBl1 + A2lIBI3 -

This method favours coefficients vectors that have
few non-zero components whose location is not con-
strained in any manner. For A\, = 0, we obtain the
Lasso, while Ay # 0 allows for correlated features to
be selected together.

Total Variation:

Q(B) = AVl -

This method favours solutions that have constant value
in contiguous regions and has its origins in image de-
noising applications [12], however it does not enforce
any coefficient to be exactly zero.

Sparse Total Variation:

QB) = AUIVBIL + [1811) -

By adding a {¢;-penalty term to the Total Variation
functional, this method favours solutions whose co-
efficients are constant within contiguous regions, but
also promotes sparsity. This hybrid method has been
proposed in other domains, such as image de-noising
using Fourier or wavelet representations (e.g. [13]),
and, up to our knowledge, this is its first application
to brain decoding.
Sparse Laplacian (SLAP):

QB) = A1 —a) Y (8 — B;)* + AallBl: -
invj
This method relaxes the constancy requirement of the
Total Variation method, allowing for smooth variations
within regions, but it still enforces sparsity. It is
equivalent to the GraphNET model [4], with A\; = A«
and \g = A(1 — ).

In all cases, A and « are regularization parameters
that control the trade-off between fitting the training
data and minimizing the penalties. These parameters
must be chosen in an unbiased way during learning.

We compare these methods to two least squares
models: one trained on all variables and one trained
only on 10% of the variables selected via thresholding
the p-values obtained by performing a two-sample t-
test for each variable with respect to the two classes.

B. Optimization

In order to estimate the solutions for each method,
given the high-dimensionality of the problem (p ~ 10°
in the following experiments), we implemented in
MATLAB accelerated proximal methods [14], which
are a form of gradient-descent that can deal with non-
smooth functions and scale nicely to large problem
sizes. They rely on the computation of the gradient of
the smooth data-fit term, I(/3), and on the computation
of the proximity operator [15] associated to (). For
the Lasso and the SLAP methods, this operator can
be computed analytically, while for the methods that
employ the Total Variation penalty, we use a recently
proposed efficient algorithm [16]. The efficacy of
accelerated proximal methods when the proximity
operator is computed numerically has been studied in
[17], [18]. We use the weaker requirements in [17] on
the decay of the errors.

C. Experimental Protocol and Assessment

We performed two nested loops of Leave-One-
Subject-Out Cross-Validation (LOSO-CV): the exter-
nal loop is used for assessing the classification accu-
racy, the sparsity and the stability of the methods; the
internal loop is used for selecting the model hyper-
parameters (A and «). Hence, for each method, we



train N different models, where N is the number of
subjects in the dataset.

A recent work [8] studies the impact of model
selection on the reproducibility and stability of the
estimated models for simpler learning methods. In the
present work, we select the hyper-parameters in the
usual way of maximizing the classification accuracy
over the internal LOSO-CV and we assess the stability
of the resulting models in the external LOSO-CV. Our
comparison is focused on the effects of structured
sparsity on the stability and not on the particular
method of model selection, which might still have an
impact and will be subject to future research.

Due to the large number of voxels, the optimiza-
tion algorithms were slow to reach convergence. We
stopped the iterations when the relative decrease in the
objective function was smaller than 10~3. This choice
had the impact that some of the estimated coefficients
have not been set exactly to zero. Therefore we
adopted the heuristic of setting to zero the smallest
components of the regression vector which contribute
only 1% to the || 3]|1. We also applied this thresholding
to the non-sparse methods in order to assess their
stability.

Let B(s) be the coefficient vector estimated when
the data for subject s is left out for testing. We define
the model support I := {i|3(s); # 0} as the index set
of the location of the non-zero coefficients, the model
sparsity S(s) = -l 45 the relative number of non-
zero coefficients and the corrected pairwise relative
overlap as

[IsNIy|—FE

Os,s = ———7v >
T max((L] [
where E is the expected overlap between the support
of two random vectors with sparsity S(s) and S(s’)
respectively, given by the formula
S(5)5(s")
» .

We use the average corrected pairwise overlap O :=

@ Zi\;s/:} Os,s as a measure of stability.
he accuracy is the average percentage of correctly
classified examples over all the LOSO folds, namely

E =

S m
1 1
Accuracy = N Z_; E Z; O(fs(ws) = vi)

where fy(z;) = sign(B(s)?x;) and my is the number
of examples for subject s.
III. EXPERIMENTS
A. Dataset
We used fMRI data from 16 male healthy US col-
lege students (age 20 — 25) [1], [2], [11]. Participants

did not have any history of neurological or psychiatric
illness and had normal vision.

The fMRI data were acquired on a 3T Allegra
Head-only MRI system, using a T2* sequence with 43
axial slices (slice thickness, 3mm; gap between slices,
Omm; TR=3sec; TE=30ms; FA=80°; FOV=192 x
192mm; matrix, 64 x 64; voxel dimensions, 3 X 3 X 3
mm). Stimuli were presented in a blocked fashion.
There were two different active conditions: view-
ing unpleasant (dermatological diseases) and pleasant
images (pretty women in swimsuits), and a control
condition (fixation). Each run comprised six blocks
of the active condition (each consisting of 7 images
volumes) alternating with fixation control blocks (of
7 images volumes). Blocks of each of the two stimuli
classes were presented in random order.

The data were pre-processed using SPM2!. All the
scans were realigned to remove residual motion effects
and transformed into standard space [19]. The data
were de-trended and smoothed in space using an 8mm
Gaussian filter. Finally, a mask was applied to select
voxels which contain brain tissue according to the
SPM template, excluding the eyeballs. The dataset
consists of 1344 scans of size 219727 voxels, with
42 scans per subject per active condition.

B. Results

We applied the protocol described in Sect.II-C to all
the considered methods. Table I reports the average
and standard deviation of the accuracy, sparsity and
stability measures computed for all the methods on
the external LOSO-CV. Using the simple two-sample
t-test for selecting a subset of features leads to poorer
classification accuracy, especially compared to sparse
models with the same level of sparsity. From the table
it is evident that all other methods achieve almost
the same accuracy, albeit with different sparsity and
stability performances. We note that the non-sparse
methods (Least Squares, Total Variation and Laplacian
without ¢, term) are also the less stable ones, once cor-
recting for the expected overlap. After thresholding,
their sparsity is around 44%, meaning that most of the
magnitude of the coefficients is concentrated in less
than half of the voxels. We also observe that sparser
models do not necessarily have a higher stability, in
fact it is difficult to see any direct correlation between
sparsity and stability. The Sparse Total Variation is,
among the sparse models, the one that achieves the
highest stability with smaller standard deviation and
therefore could lead to more interpretable solutions.

IV. CONCLUSION

Sparsity has often been advocated as a proxy for
interpretability, however we show that sparsity in itself
could produce highly unstable models. We investi-
gated the effect of using structured sparsity methods
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Table T

COMPARISON OF THE DIFFERENT METHODS.

Method Accuracy Sparsity Stability
Least Squares 83.0 + 5.9% 44+ 1% 41+ 1%
T-Test (10%) + LS | 78.6 +5.8% | 4.43 +0.02% 6243
Lasso 85.8 + 6.6% 6.4+£1.2% | 64+15%
Elastic Net 85.9 1+ 6.8% 44.4 £ 0.2% 39+ 9%
TV 85.0 + 6.4% 42+ 2% | 34 £19%
Sparse TV 87.4+6.2% 9.4+ 0.4% 71+ 3%
Laplacian (o« = 0) | 83.2+5.7% 44.24+0.1% 40+ 1%
SLAP 85.5 + 6.2% 7T+10% | 52+22%

on stability on a dataset of fMRI scans of very high
dimensionality. We found that the methods perform
similarly with respect to classification performance,
but the resulting models differ in term of sparsity and
stability. The proposed Sparse Total Variation seems to
produce the most stable sparse model, an indication
that structured sparsity could alleviate some of the
instability inherent in the non-structured methods such
as Lasso or Elastic Net.

However, it is necessary to study the impact of
model selection (i.e. choosing the parameters A and
«) on stability and interpretability for these meth-
ods. This interesting question will be a subject of
further investigations for structured sparsity models.
Furthermore, we aim at improving the optimization
techniques, allowing us to eschew from thresholding,
which might further negatively affect stability.

Other interesting research directions regard the use
of even more structured priors, like functional con-
nectivity between regions and stability assessments at
different scales.
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