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Abstract—So far, most fMRI studies that analyzed voxel activity 
patterns of more than two conditions transformed the 
multiclass problem into a series of binary problems. 
Furthermore, visualizations of the topology of underlying 
representations are usually not presented. Here, we explore the 
feasibility of different types of supervised self-organizing maps 
(SSOM) to decode and visualize voxel patterns of fMRI datasets 
consisting of multiple conditions. Our results suggest that - 
compared to commonly applied classification approaches - 
SSOMs are well suited when activity patterns consist of a small 
number of features (e.g. as in searchlight- or region of interest-
based approaches). In addition, we demonstrate the utility of 
using SOM grids for intuitive and exploratory visualization of 
topological relations among classes of fMRI activity patterns. 

Keywords—fMRI; decoding; multiclass classification; self-
organizing maps 

I.  INTRODUCTION 
Traditional voxel-wise analysis of fMRI data is 

increasingly accompanied or replaced by so-called Multi-
Voxel Pattern Analysis (MVPA) [1], [2]. Several machine-
learning algorithms with different complexity have been 
applied to classify experimental conditions from measured 
fMRI signals. Amongst others, these range from correlation 
based methods [3], Gaussian Naïve Bayes (GNB) classifiers 
[4], and LDA to linear and non-linear SVMs [5], [6]. Most 
studies, however, used linear classification approaches due to 
faster computations and easier interpretability of results (i.e. 
straight-forward computations of discrimination maps).  

Studies in cognitive neuroscience employed in most cases 
experimental designs with binary classifications or translated 
the original multiclass problem into a series of binary 
comparisons using one-versus-one (ovo) or one-versus-all 
(ova) schemes. There are, however, several machine-learning 
algorithms that can deal with multiclass problems in a more 
natural way. One example is the k-nearest-neighbor (kNN) 
approach where new items are classified according to their 
distance to labeled training examples or GNB and template-
based techniques [3]. In this study, we focus on Self-
Organizing Maps (SOMs) [7] which can be used in a 
supervised way to handle multiclass problems. Additionally, 
SOMs offer interesting possibilities for intuitive visualization 
of the informative patterns of neuronal representations [8]. In 
fact, SOMs were developed to visualize high-dimensional 
data by converting the topology of high-dimensional items 
into simple geometrical relationships on a two-dimensional 
grid [7]. By preserving only the most important topological 
relationships, this algorithm abstracts from the high-

dimensional input and allows for a better insight into 
underlying data topology.  

Here, we use a supervised version of SOMs (supervised 
SOMs or SSOMs) for classification of multiclass fMRI 
activation patterns and for visualization of the topological 
relation among the classes. We evaluate the utility of SSOMs 
on simulated fMRI datasets of varying signal- and contrast-
to-noise properties (SNR and CNR, respectively) and 
compare performances to classification algorithms typically 
used in fMRI data analysis.    
 

II. METHODS 

A. Self-Organizing Maps (SOMs) 
An SOM consists of a rectangular two-dimensional grid 

with U units. Each unit i is described by a N-dimensional 
weight vector mi = [mi1,…, miN] where N is the number of input 
features. The amount of map units, U, was set to 72 for the 3-
class and 90 for the 5-class dataset. 

Before learning, the SOM units were initialized with 
random weights within the range of training samples. Next, 
training samples xk = [xk1,…, xkN] (k = 1,…, K) were iteratively 
presented and the best-matching unit (BMU) mBMU was 
selected according to  

 
  xk-mBMU =mini xk-mi ,                (1) 
 
where ∙  denotes the distance measure. Here, we applied 

either Euclidean distance or a weighted Euclidean distance 
measure 

 

  dw p,q = wj pj-qj
2

N
j=1 .           (2) 

 
In the following, weights of map units were modified with the 
following update rule:  
 
  mt+1= mt+αthBMU rt xk-mt ,                (3) 
 
where t denotes the learning iteration, αt the learning rate and 
hBMU(rt) the neighborhood kernel of winning unit mBMU with 
radius rt. Both learning rate and radius of the neighborhood 
are decreasing functions over time. This results in an early 
stage that sets the general layout of the map by allowing large 
adjustments and a subsequent fine-tuning stage with small 
changes. The MatLab based SOM-toolbox [9] was used for 
SSOM training and grid visualization. 



B. Supervised SOMs (SSOMs)  
Kohonen [7] outlined how unsupervised SOMs could be 

modified to predict unseen instances. It is based on using a 
modified input vector zk = [xk ck] that results from 
concatenating input trials xk and a C-dimensional class-vector 
ck = [ck1,…, ckC] where cki = 1 if trial k belongs to class i and ckj 
= 0 (j ≠ i) otherwise. Similarly, weight vectors of unit mi are 
appended to vector vi = [vi1,…, viC] to form m*i = [mi  vi]  with 
N+C elements. After SSOM training, map units are ascribed 
to one class by inspecting the last C elements of the map 
weight vectors: the index with the largest value determines 
the label of map unit mi. 

Typically, vectors ck are not of unit length but of length τ 
with τ < 1. It should be noted that a larger τ leads to better 
class separation of the supervised SOM. At the same time 
large τ will increase the risk that SSOMs will reflect the 
‘artificial’ concatenated input zk rather than the original 
inputs xk (here, τ was set empirically to 0.25).  

For prediction of testing trials, the elements of the weight 
vectors containing class information are detached and unseen 
instances xtest (i.e. without class vector ck) will be presented. 
In contrast to the usual approach in which a trial is classified 
according to the BMU label, we investigated the k best-
matching units (k-BMUs) to accumulate evidence for 
classification. As SOMs reflect the topology underlying the 
input data, using the k-BMUs can be seen as taking the 
neighborhood of the BMU into account. In particular, we 
computed the classification index CIc= vick

i=1  to obtain 
evidence that trial xtest belongs to class c (vic denotes the class 
specific element of ith best-matching unit). The supervised 
SOM predicts an unseen trial according to the class obtaining 
largest CI.  

C. Data Simulation 
Two fMRI datasets, containing 3 and 5 classes (for 

simplicity results for the 5 class datasets are omitted), of 3 
runs each were created with procedures described in [10]. For 
each class we simulated 30 trials using realistic SNRs (i.e. 
fMRI signal amplitude/standard deviation of noise) of 0.25 
and 0.5 and CNRs (signal difference with other 
conditions/noise standard deviation) of 0.15, 0.25, and 0.35. 
The underlying anatomy and region definitions were based on 
a real dataset. For voxel signals, boxcar time-courses were 
convolved with hemodynamic responses that varied across 
voxels. Subsequently, we added temporally auto-correlated 
noise to obtain the final simulated signal. We simulated three 
regions in the auditory cortex with different response 
properties. Voxels of the first region (426 voxels) responded 
more to one of the C classes. In the second region (421 
voxels), voxels showed a decreased response to one class. 
The third region (528 voxels) was responsive but did not 
differentiate between conditions. These informative regions 
were embedded within a dataset including a total of 16,505 
voxels. 

D. Data Processing and Analysis 
Classification performance was assessed using 15-fold 

cross-validations. For model training we defined datasets 
consisting of 4 of the 6 half-runs. The remaining two half 
runs were used to determine the generalizability of the trained 
model.  

As a first feature reduction step, we reduced the number 
of voxels with a General Linear Model (GLM). This was 
computed based on the training set and the strongest 
responding 2000 voxels were selected. For each voxel the 
single-trial response (normalized to percent signal change) 
was fitted to a hemodynamic response model. The obtained β 
values indicating response amplitude were used as features. 
We applied an inter-quartile-range normalization across trials 
to be less sensitive to outliers compared to z-scores. The 
normalization parameters (median and 1st and 3rd quartile) 
were estimated using the training set.  

To define feature sets with different numbers of voxels we 
used an ensemble feature selection method (e.g. [11]). For 
each of 10 bootstrap samples, features surviving univariate 
selection were ranked according to model weights of linear 
SVM (C = 1; ova-scheme). The final ranking was obtained by 
averaging the ranks across bootstrap samples. We created 12 
differently sized feature sets by removing iteratively the 
lowest ranked 25%, which resulted in sets of 2000, 1500, 
1125, 844, 633, 475, 356, 267, 200, 150, 113, and 84 voxels. 

For classification we used two types of supervised SOMs. 
The first type (SSOMnw) employs the Euclidean distance to 
find BMUs whereas in the second (SSOMw) the weighted 
distance measure (2) was applied (weights were obtained 
from multivariate feature). Class predictions were based on k-
BMUs with k = {1, 5, 10}. For comparison, we applied a 
kNN classifier with equal values for k, a linear SVM (C = 1), 
and a non-linear SVM (RBF-kernel; C = 1, σ = 1) using the 
ova-scheme as implemented in the Spider toolbox [12].  

III. RESULTS 

A. Visualizing Supervised SOMs 
Fig. 1 shows an exemplary trained map for an SNR of 

0.25, CNR of 0.25, and 200 voxels. The maps are presented 
in two ways. In the upper panel of Fig. 1 units of the SSOMnw 
are shown as hexagons reflecting the predefined six neighbors 
of each unit. The three colors denote the node’s class 
membership and the inner bars show the 3-element class-
defining vectors vi indicating the strength of class 
membership. The supervised learning of the SOM established 
three contiguous areas representing the three classes. As 
expected, nodes closer to the border do not possess a strong 
preference for one class whereas nodes more distant to 
borders show a distinct class preference. A different type of 
visualizing the topology of the SSOMnw grid is presented in 
the lower panel of Fig. 1. Here, the SSOMnw is represented as 
a projection on the first 2 principal components (PC1, PC2) 
of node vectors mi (colors indicate the node label according 
to the maximum index of vi). The most striking characteristics 
are the triangular shape and the clustering of nodes for each 
of the three classes resulting from large between-class and 
small within-class node distances. This peculiarity, i.e. the 
sparse density of nodes in the center of the triangle and dense 
distribution of nodes at the tips indicates that voxel activation 
patterns (i.e. input vectors) cluster at three positions in the 
high-dimensional input space indicating the three classes. 
This topology is expected because input vectors contained 
class information to evoke the observed class-distinguishing 
SOMs.  

In order to see whether the learnt model generalizes, we 
computed the kBMUs  (here: k = 10) for testing trials. The 



amount of unseen trials occupying each node is shown in Fig. 
2 (upper panel). Bars within the nodes indicate how many 
testing trials were similar to the node-specific weight pattern 
and to which class these trials belonged. It can be seen that 
although CNR and SNR values are challenging, test trials 
usually fall into nodes that have the same class label as new 
trials. The projection on PC1 and PC2 (see Fig. 2, lower 
panel) indicate that test trials tend to cluster at the triangle’s 
tips. The node color represents to which class most test trials 
belong whereas the size scales with the class-specificity of 
these trials. In general, it is evident that the trained SSOM 
was able to generalize to unseen data, which is supported by 
the high accuracy of 0.63 for this split (chance level = 0.33).  

B. Classification Performance 
To investigate how well the supervised SOMs generalized 

to the evaluation set we first computed overall accuracy by 
dividing the number of correctly predicted labels by the total 
number of test trials. In the upper panel of Fig. 3, an example 
with realistic CNR and SNR values is presented (CNR = 
0.25, SNR = 0.25; [10]). Both SSOMnw (blue) and SOMw 
(red) performed well above theoretical chance level of 0.33 
for all values of k and feature selections. SSOMs with k = 1 
(i.e. the BMU for each testing trial determines its prediction; 
dotted line) seem to perform worse compared to larger k (here 
k = 5 and 10) for both SOMnw and SOMw and across feature 
selections. Note that the beneficial effect of increasing k is 
strongest for small k (k < 5) and decreases for larger k. 

Fig. 3 (lower panel) shows how classification 
performance of supervised SOMs (k = 10) compares to linear 
and non-linear SVMs and a kNN classifier (k = 10). 

Considering classification performance SSOMs seem to have 
an advantage especially at small sets of features compared to 
other classification algorithms, especially the linear SVM. 
For medium selection levels accuracies are very similar for all 
classification approaches. When using feature sets of more 
than 900 voxels SVMs seem to perform better compared to 
SSOMs and kNNs. In line with the superior performance for 
SSOMs (which are non-linear) for small feature sets, the non-
linear SVM was superior to the linear SVM for feature sets 
consisting of less than 650 voxels and similar for larger ones.   

Across different CNR and SNR values we found that for 
small- and medium-sized sets of features the SSOMnw had 
higher classification performance compared to SSOMw. 

C. Multiclass Stability  
An important issue when performing multiclass 

classification is how well the classification algorithm predicts 
each of the single classes. In fact, in multiclass classification 
classifiers may assign labels to test trials belonging to some 
dominant classes. This increases the true-positive rate (TPR) 
of the dominant classes at the cost of the correct classification 
of inferior ones. To check for multiclass stability we 
computed a stability measure for each split and voxel 
selection. This measure was defined as the range of TPRs 
across classes. In Fig. 4 the stability of the classifiers is 
depicted for the CNR/SNR combination above. For 
supervised SOMs, it can be observed that stability decreases 
with the number of features, especially for feature sets 
comprising more than half of the initially selected 2000 
features. At these large sets of features SSOMnw and SSOMw 
deviate strongest showing better stability for the weighted 

 
Figure1.  Visualization of Trained SSOMnw. Both upper and lower 

panel depict the trained SSOM in one representative split for a 
simulation with CNR = 0.25, SNR = 0.25 (see text for details). 

 
Figure 2.  Visualization of Node Occupation of Test Trials. The size of 

colored nodes in the lower panel scales with testing trial occupation 
(see text for details). 



supervised SOM. Compared to SVMs (that tend to become 
more stable for an increasing number of features), supervised 
SOMs possess similar performance for small sets of features 
up to ~20% (i.e. 400 voxels). 

IV. DISCUSSION 
We examined the feasibility of using supervised SOMs 

for decoding of fMRI data. In particular we employed 
simulated data with different CNR/SNR properties, and 
performed initial univariate and subsequent multivariate 
feature selection to create feature matrices of different sizes. 
For supervised SOMs we demonstrated possibilities to 
visualize the trained SSOM and their performance on 
evaluation sets and compared multiclass classification 
performance and stability to those of commonly applied 
decoding approaches.   

In general, we found that SSOMs are capable of 
representing the underlying topology of the high-dimensional 
training data and that established models predict unseen trials 
accurately. With respect to the type of SSOM, we found that 
classification performance increases when k-BMUs are taken 
into account compared to the standard approach with k = 1.  
In addition, results indicated that using weighted Euclidean 
distance (2) for obtaining BMUs might lead to decreased 
performance for small and medium sized feature sets but is 
preferable when the set of voxels is large. This effect is most 
likely due to decreased stability of SSOMnw compared to 
weighted ones for large voxel sets, as the same importance 
will be attributed to informative and non-informative voxels.   

One important result was that for feature sets consisting of 
a relatively small number of voxels, the classification 
performance of SSOMs was superior to the ones of SVMs 

(especially linear SVMs). The finding that SSOMs are 
performing well for small feature sets corresponds to 
observations of superior performance of non-linear 
algorithms for small sets of features in fMRI (e.g. [5]) and is 
confirmed by preliminary results with real fMRI data. Thus, 
SSOMs (and other non-linear classification approaches) 
might be especially suited for approaches using small sets of 
features like the searchlight method [13] or the analysis in 
regions-of-interest. 
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Figure 4.  Performance Stability. SSOMs are compared to linear and 

non-linear SVMs and a kNN classifier. 

 
Figure 3.  Classification Performance. The upper panel shows 

accuracies for k = {1, 5, 10} for both SSOMnw and SSOMw. In the 
lower panel the performance of SSOMs with k = 10 is compared to 

SVMs with a linear  and rbf-kernel and a kNN classifier. 
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