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Abstract—EEG imaging, the estimation of the cortical source
distribution from scalp electrode measurements, poses an
extremely ill-posed inverse problem. Recent work by Delorme
et al. (2012) supports the hypothesis that distributed source
solutions are sparse. We show that direct search for sparse
solutions as implemented by the Variational Garrote (Kappen,
2011) provides excellent estimates compared with other widely
used schemes, is computationally attractive, and by its separa-
tion of *where’ and ’what’ degrees of freedom paves the road
for the introduction of genuine prior information.
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I. INTRODUCTION

We are interested in real-time imaging of human brain
function by electroencephalography (EEG). The EEG imag-
ing problem is of significant theoretical interest and real-
time EEG imaging has many potential applications includ-
ing quality control, in-line experimental design, brain state
decoding, and neuro-feedback. In mobile applications these
possibilities are attractive as elements in systems for per-
sonal state monitoring and well-being, and indeed in clinical
settings where proper care requires imaging under quasi-
natural conditions [1]. The first real-time mobile systems
are based on reconstruction methods using basic Tikhonov
regularization [1]. However, the computational challenges
induced by the highly ill-posed nature of the EEG imaging
problem escalate in mobile real-time systems and new
algorithms may be necessary [2].

In recent work by Delorme et al. [3] it is argued that
independent components of EEG signals are dipolar in
nature. In particular it was shown that a direct dipolar fit can
explain much of the spatially distributed signal measured in
scalp electrodes. This is in line with a large literature, see
e.g. [4] and references herein, suggesting sparse localized
sources and motivates reconstruction algorithms that empha-
size sparsity, thus contrasting the distributed spatial source
patterns promoted in classical alternatives [5].

Unfortunately, the quest for sparse solutions to the EEG
imaging problem is combinatorial and an exact solution
will not be feasible in realistic real-time systems. Many
promising approximation schemes have been proposed for
the general problem and many have been applied to the EEG
imaging problem. We here investigate a recent alternative for

sparse recovery proposed by Kappen [6]. The soft active set
construction is of particular interest to real-time EEG as it
enables separation of the location and magnitude estimation
aspects of the reconstruction task, and furthermore leads to a
relative low-complexity set of non-linear equations that are
iterated towards the solution.

II. THE EEG INVERSE PROBLEM

In the quasi static approximation the relation between
dipolar sources placed at the cortical surface w; and the
measured potentials at multiple scalp locations y,, is instan-
taneous and linear y,, = Z?=1 w; X, +&,. We have denoted
the forward model by X;, and allowed for measurement
noise §,, which is further assumed to be independent of
the source signal. In a typical laboratory setting the number
of measured scalp signals p can be 32 — 256, while the
source distribution can be represented by n = 1000—10, 000
locations. Thus we face a severely underdetermined problem
and regularization is necessary to ensure a well-defined
solution, see e.g., [7] for an early review. As we have noted
key processes appear to be rather dipolar, thus searching for
sparse localized solutions seems well-motivated.

III. THE VARIATIONAL GARROTE

The so-called Variational Garrote (VG) introduces sparse-
ness into the regression problem by adding the binary
"location’ variable s; € {0, 1} for absent/present parameters
[6]. Thus, the modified linear problem reads

Yn = ZwiSin +&u- (1)
i=1
The location variable is a latent binary variable with a
prior p(s|y) = [1i—, p(s:|y) where p(s;|7) = _exp(ysi)
=t 1+ exp (7)

Parameter v will in general be assumed negative v < 0,
reflecting a bias towards sparsity.

The optimal solution to (1) can be obtained with a
variational approximation proposed in [6]. First the poste-
rior probability of the model given the data is established
based on a Gaussian noise assumption, £ ~ N (0,6‘1),
p(s,w, 8D, ) o p(w, B)p(s|y)p(Dls, . 5). with D be-
ing the full data set, while the prior over sources and
noise variance is assumed to be uniform p(w, 8) x 1. The



discrete variable s is marginalized out, giving rise to the
marginal posterior, p(w, 5|D, ). The resulting expression
to maximize is now

logp(w, B|D,7) o log Y p(s|y)p(Dls,w, B).  (2)

S

Invoking Jensen’s inequality and a variational posterior over
source locations, ¢(s), we bound the log-likelihood in (2)
from below by

B o q(s) _
2 )8 e Dl ) =

_F(qvwaﬁ)' (3)

The variational free energy F'(q, w, 3) is minimized, corre-
sponding to maximizing the log-likelihood (2). We assume
q(s) = [1i—, ¢i(s;) and factors ¢;(s;) = m;s;+(1—m;)(1—
s;), where m; is the probability that s; = 1 [6].

As noted, the EEG problem is severely underdetermined,
therefore we can simplify the model using a dual formulation
with update rules for p Lagrange multipliers A, 7, [6]

A/J,l/ :6;1,1/ + p_l Z miXiniu/«l - mz)X”>7 (4‘)

i=1

p p
Yu :ZA;LI/ZQV7 5_1 :p_lz/guy/u
v=1 /l':1

1 p
> NXip,

A :ﬁg y Wi =
T Boxa(1 = my) =

m;t =1+ exp (—%w?m - v) s Vi = M.

The computational complexity is dominated by a term o< np?
(4) which is much lower than the n® complexity of a direct
implementation.

IV. EVALUATION

We investigate the Variational Garrote in a series of
simulation experiments, and in a benchmark EEG data set.
First we investigate a simple setup based on a random
forward model, while the remaining simulations and the
benchmark data are based on a high-dimensional EEG
Boundary Element Method (BEM) forward model [8]. For
the first set of simulations we form p = 50 measurements
and n = 100 unknown sources and apply the noise precision
B! = 1. Here we let a single source element in the ’true’
generating model be set to unity, while the rest are set to
0. VG is run on this data set with v = —10 (found in pilot
experiment) and m initialized with three different strategies.
The swift convergence of the estimated probabilities of the
location indicators is illustrated in Fig. 1.

Next, VG and three currently used approximate solvers;
least absolute shrinkage and selection operator (LASSO)
[9], Forward selection [10], and Sparse Bayesian Modeling
(SBM) [11], are tested in a more realistic EEG setting using
synthetic sources. The latter consists of 10 sources set to the
value 1, and the rest 0. However, now using a normalized
forward model as X created using OpenMEEG [8] mapping
n = 8196 sources to p = 128 electrodes.

The four methods all have a single hyper-parameter to
tune, in the VG we follow [6] and tune the sparsity parameter
v. The data set is first split into a training and test set
with pest = 10 and pyragn = 118. Within the training
set we further perform K-fold cross-validation to tune the
four methods’ hyper-parameters. We use K = 2,...,15,
i.e., the training set is subdivided to consist of a training
set (K —1)/K) and a validation set (1/K). For each K,
performances are reported in terms of the normalized mean
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Figure 1: Simulated data (p = 50,n = 100, single active source,

SNR= —1.4dB) applied to VG. Activation of the true source (full), sum of
non-sources (dotted). When using mjp;; = O the planted source is recovered
in 88.3% of the 1000 repetitions, for mju; ~ U(0,1) 88.7% and using
Winit = b 89.6%. The found sources with m; > 0.5 are considered
recovered.
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Figure 2: Normalized mean squared test error after performing 50 two-level
K -fold cross-validations, K = 2, ..., 15. The algorithms are optimized wrt
one parameter; for VG the sparsity level «y, for Forward selection the size
of the active set, for LASSO the regularization parameter A and for SBM
the precision of the noise 3. The solution of VG is in the form of v, while
the remaining use the weight distributions directly. Ten sources out of 8196
are defined to be active in the ’true’ weight distribution.



(a) VG

(b) Forward selection

(c) LASSO

(d) SBM (e) True

Figure 3: Sources estimated through ten-fold cross-validation in the context of a 3D cortex structure are compared with the ’true’ distribution. The solution
for VG corresponds to v including a threshold on the activation so that, P(s;|D) = m; > 0.5 (maximum marginal posterior). The solutions presented
for the three other algorithms are the weight distributions with a treshold of 10~ 1. Heavy or light arrows indicate sources with magnitudes larger or less
than 0.5, respectively. Black arrows indicate true sources and red false sources. View is from the back of the left hemisphere. No sources are found in
the right hemisphere for VG, only low-strength sources for LASSO, one low strength for SBM while Forward selection returns many distributed sources.

Note individual color maps are used.

squared error (nMSE). The above procedure is repeated
50 times. Fig. 2 compares the performances of the four
methods. To set a scale we also include the nMSE for the
"true’ source distribution. We find that VG outperforms the
alternatives for all K. It is noted (not shown) that the conver-
gence speed of VG in the applied "EEG setting’ is similar to
that of the simple setup applied in Fig. 1. Interestingly, the
performances of the methods with their respective optimized
hyper-parameters are stable with respect to fold size K.
Further, inspection of the estimates reveals that, e.g., LASSO
- also referred to as minimum current estimate in the present
context [12] - is less sparse than VG, and in fact has many
small ’false’ sources. Fig. 3 visualizes the spatial structure
of the found sources in the context of a 3D ’cortex’.

For the simulation we also check how well VG with
optimization of sparsity using the electrode cross-validation
procedure is able to identify the actual source locations. For
this experiment we plant 10 sources and estimate source
distributions for a range of sparsity parameters (). In Fig.
4 we show that the cross-validation error as function of the
sparsity control parameter indeed is minimized in the same
range as the source retrieval index F; = %}m
[13] is maximized. For comparison we show the similar plot
for SBM (where the cross-validated hyper-parameter is the
noise precision). Here the test error-optimal solution has a
somewhat lower source retrieval index than obtained by VG.

For a final test of the performance of VG in the context of
'real’ EEG we turn to the SPM face recognition benchmark
data [14].We focus on reconstructing the sources and their
activation in a time window 100ms < ¢t < 200ms, at
sampling rate fs = 200Hz. We make a simple extension of
the model to allow for a time constant s; with time varying
activation strengths w;, effectively decoupling the *where’
(s) and *what’ (w) degrees of freedom which leads to only

minor modifications to the inference scheme [15]. In Fig. 5
we show the resulting activation time courses and in the cor-
tex inset arrows indicate the locations of the corresponding
sources. Both time courses (N170 components) and locations
are consistent with the general findings of [14] and [16].

V. DISCUSSION AND CONCLUSION

EEG imaging is a hard, underdetermined inverse problem.
We hypothesize that solutions of interest are sparse and
note that sparsity constraints can regularize the problem.
We have shown that direct search for sparse solutions
as implemented by Kappen’s Variational Garrote [6] can
outperform solutions based on convex relaxations (LASSO,
minimum current estimate), forward feature selection, sparse
Bayesian learning, both in terms of cross-validation error
on test data, and in terms of quality of the solutions. In a
quasi-realistic setting with an EEG forward model we found
that the VG solution provides an excellent reconstruction of
the planted sources. Finally, we noted that the VG model
allows separation of where and what degrees of freedom, and
used this to analyze a benchmark face recognition data set
assuming that the locations were constant, while activations
change in time. The resulting time courses and locations for
a single trial were found to be consistent with the solutions
proposed earlier based on averaging over multiple epochs.
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