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Abstract—To increase the power of neuroimaging analyses, it
is common practice to reduce the whole-brain search space to a
subset of hypothesis-driven regions-of-interest (ROIs). Rather
than strictly constrain analyses, we propose to incorporate
prior knowledge using probabilistic ROIs (pROIs) using a
hierarchical Bayesian framework. Each voxel prior probability
of being “of-interest” or ‘“of-non-interest” is used to perform a
weighted fit of a mixture model. We demonstrate the utility
of this approach through simulations with various pROIs,
and the applicability using a prior based on the NeuroSynth
database search term ‘“‘emotion” for thresholding the fMRI
results of an emotion processing task. The modular structure
of pROI correction facilitates the inclusion of other innovations
in Bayesian mixture modeling, and offers a foundation for
balancing between exploratory analyses without neglecting
prior knowledge.
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I. INTRODUCTION

Many of our neuroimaging studies begin with a region-
specific hypothesis, and yet we conduct whole-brain voxel-
wise analyses to explore the entire brain for potential signal.
While whole-brain analyses tolerably decrease signal-to-
noise (SNR), when we move to the space of voxelwise
connections, or connexels [1], the quadratic decrease in
SNR for full exploration becomes prohibitive (Fig. 1). Effect
sizes which were sufficient in voxelwise analyses cannot
be used to distinguish signal from noise in the connexel
space. Low SNR in connectivity analyses has traditionally
been compensated for by using different kinds of region-
of-interest (ROI) selection (“seed-based”) or data reduction
approaches. The search space is thus restricted to only the
connections from an a priori ROI drawn on the connectivity
matrix. However, this approach completely discards the
information outside the ROI, thus excluding even strong
signal that does not fall within it. Additionally, analyses
using ROI masks are highly sensitive to their size and shape
criteria, and do not convey information about the uncertainty
of their borders. To balance these interests, we propose a
novel approach for performing inference using a two-level
hierarchical mixture model. Instead of using a binary ROI
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Figure 1. Schematic illustration of whole-brain voxel and connexel
analyses. Left: Symbolic representation of flattened voxels (non-active
(black) and active (red)). Right: Connectivity matrix where each point
corresponds to one connexel. Below: The relation between SNR in the
voxelwise (SN Rv) and connexelwise (SN Rc) cases, where n stands for
the number of voxels.

mask we propose a prior probability map (“probabilistic
ROI” or pROI) with values ranging from O to 1. This map
is used to set mixing parameters for probabilistic mixture
model distinguishing between voxels-of-interest and those
of non-interest (Fig. 2A). In a second level of this hier-
archical model, voxels-/connexels-of-interest are modeled
as two Gaussian distributions: noise and signal (Fig. 2B).
The result of this two-level hierarchical model is inference
that incorporates non-binary prior knowledge in the form of
pROIs.

II. METHODS

We propose to formally incorporate prior knowledge into
the inference process by using a Bayesian framework. The
prior informs the search area, which in turn is subdivided



into noise and signal. Our hierarchical model consists of two
levels. On the first level we model two classes corresponding
to voxels-/connexels-of-interest or -of-non-interest.

p(z[i) = p(ma|i)p(xz|my, i) + p(ma|i)p(x|ma,i) (1)

Where p(m i) are the priors on the search areas (or mixing
components of the first level). They are different for each
location (2), fixed, and taken set to values based on particular
inference assumptions (previous studies, characteristics of
different modalities, etc...). Since there are only two com-
ponents on the first level:

p(mali) + p(mali) =1 )

On the second level, the voxels-/connexels-of-interest dis-
tribution (p(x|mq,%)) is described as a mixture of negative
gamma (deactivation), Gaussian (noise), and positive gamma
(activation) distributions. The location of the two gamma
distribution is tied to the estimated mean of the noise
component. This level is identical to the model presented
in [2].

Parameters of those three distributions (and mixing
coefficients) are fitted using a weighted variant of the
Expectations-Maximization algorithm [3]: the entire dataset
is used but influence of each voxel/connexel on the final
mixture is modulated by the p(m|i) weight in the E-step:
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Estimates performed in the M-step follow standard form [4].
Additionally the likelihood of data calculated in each step
to establish stopping criteria is also weighted:

1= log(p(ailma,i))p(mali) )
€S
where
S = {i:p(mili) > 0} 5)

The distribution corresponding to the voxels-/connexels-
of-non-interest on the second level is modeled using a simple
Gaussian:

p(alma, i) = N (z]u, o) ©)

Parameters (u, o) are being fit using a weight based on
p(mzli) (analogous to Eq. 3).

The actual inference procedure takes two steps (see
Fig. 2). First for each voxel/connexel we decide if is of-
interest or non-interest, by comparing the two posterior
distributions (without normalization)

p(ma|i)(mnN (zlpn, on) + 75N (2lps, 05)) (1)

and
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For voxels/connexels coming from the of-interest distri-
bution, a similar procedure is used to choose between
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Figure 2.  Decision tree within the hierarchical framework. First the
fitted distributions are used to classify each voxel/connexel between two
categories: “of-interest” or ‘of-non-interest”. In the second step, voxels-
/connexels-of-interest are classified as “signal” or “noise”.

“signal” and “noise” components of the second level mix-
ture. Voxels/connexels with higher posterior probability of
coming from “signal” component than “noise” are labeled
as “active” (or “significant”). All others (including those
rejected on the first level) are labeled as “not active” (or
“not significant”).

This method is very sensitive to the selection of p(mq|7)
and p(ms|i). We define prior map specificity as

N

Ziji1 p(mali)
where N is the number of connexels/voxels. The higher the
specificity of the prior map, the higher the potential SNR,
resulting in inference sensitive to smaller effect sizes. On the
other side a narrow and (spatially) sharp prior runs the risk
of missing the signal if placed in the wrong region. We will
investigate these relationships in the following simulations
described below.
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III. EXPERIMENTS

To evaluate the method we have performed a series of
simulations using different prior maps. On a two dimensional
100 x 100 array two 10 x 10 sources of signal were placed
(see Fig. 3): one weak (effect size 3) and one strong (effect
size 9). Normally distributed (¢ = 1) noise was added
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Figure 3. Location and distribution of the simulated signal.

to simulate real conditions. Only upper diagonals of the
matrices were used to simulate connectivity analysis.

Six different priors were used: binary prior overlapping
with the weak signal (but not the strong signal) equivalent
to standard ROI analysis (seed based connectivity), non-
informative prior with value 1 at all locations corresponding
to full brain analysis and four smooth priors with values
ranging from 0.005 (thus always allowing voxels/connexels
to be labeled significant if their value is high enough) to 1
(Fig. 4).

The simulation results demonstrate the advantage of using
non-binary priors. The “classical ROI” prior fails to find
the second signal source, but even the most specific of
the non-binary priors (with value 0.005 over the strong
signal) does a reasonable job in finding both signals. The
advantage diminishes when more weight is put on noisier
points, causing the threshold on the second level of inference
to rise, and leading to more false negative errors in the region
with weak signal (Fig. 4).

It also interesting to look at the weighted SNR (the sum
of priors of signal voxels/connexels over sum of all priors
values) of each prior map. It is a good estimator of the
balance between being specific and correct at the same
time. Even though the “classical ROI” priors have a highly
weighted SNR, it could be improved if there were prior
knowledge of the second source of signal. The inclusion
of data points coming from noise decreases the weighted
SNR.

We apply the pROI method to thresholding an fMRI
dataset acquired during performance of an emotional task.
Subjects were exposed to negative and neutral visual im-
agery with varying uncertainty of the nature of the next
stimulus. The prior was generated using the NeuroSynth
database (based on the term “emotion” [5]). In comparison
to whole-brain analysis, the thresholded map obtained using
the pROI delineated activation in the amygdala in voxels that
were significant, taking into account their high probability

Figure 5. Experiment with emotion task based fMRI. Statistical map was
thresholded using full brain non-informative binary prior (transparent blue)
and prior based on the “emotion” term in the NeuroSynth database (light
green). The NeuroSynth based prior presented cleaner maps. Some voxel
were significant only when using one of the priors due to combination of
prior probability at given point and value of the statistic (see arrows).

of involvement (Fig. 5).

IV. DISCUSSION

Restricting the search space to improve SNR has been
used in neuroimaging in many forms: brain masks, surface-
based analysis, seed-based connectivity, etc... However,
most of these approaches do not incorporate the uncertainty
about the location and extent of the restricted areas. The
proposed method allows one to vary the degree of “ROI-
ness” of each data-point, encoding the prior knowledge from
tissue classification or meta-analyses.

This method, like all statistical tools, could be used as
well as abused. Incorporating prior knowledge can increase
power, but at the same time if the prior is wrong it can lead
to the opposite effect. Additionally, as with binary ROIs,
the source of the prior map should be decided a priori,
and independent from the data. Using priors estimated from
the same dataset as the final inference could lead to false
inflation of significance, also known as double dipping [6].
Additionally to avoid circularity, likelihood maps, instead of
posterior probability maps, should be included in the future
metanalyses when using this method.

Our method provides a modular framework that could be
easily extended. For the sake of clarity, we have used a very
simple mixture model at the second level, but this model
can be augmented using spatial regularization [7] or kernel
density estimation of the signal component [8].

Another potential extension involves control over FDR or
FNR. At the moment the method presents a classification
approach — if there is more evidence that particular vox-
els/connexel come from the signal distribution than the noise
distribution, the voxel/connexel is labeled as significant. This
does not control for the potential number of false positive
or false negative errors. However, since we are explicitly
modeling both signal and noise distributions, we can set the
second level threshold to a value corresponding to a desired
FDR or FNR level. Since the second level model is fitted
using weights, this would be closer to weighted FDR control
[9], than the standard [10].
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Figure 4. Simulation results. Two sources of were used signal: one weak and one strong (see Fig. 3) and set of prior maps (top row): one representing

classical (binary) ROI approach (with the ROI encompassing the weak signal), one representing whole-brain analysis, and four non-binary priors. The
“classical ROI” prior misses the strong signal, while the “whole-brain” prior barely finds the weak signal. Only an ‘in between’ pROI which focuses on the
right location, but gives small (but non-zero) chance of finding signal outside of this spot, manages to strike a balance delineating both sources of signal.

V. CONCLUSION

We propose a new Bayesian inference method that com-
bines the best aspects of ROI and whole-brain analyses —
increasing sensitivity in areas where signal is hypothesized,
while also allowing other signal to be detected. Our model
can be easily enhanced by incorporating more sophisticated
mixture models and different sources of priors, ranging from
those informed by the functional literature to individually
derived anatomical features (e.g., tissue segmentation maps,
connectivity maps, etc...).
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