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Abstract—Recently we proposed a feature selection method
based on stability theory (SCoRS - Survival Count on Random
Subspaces) and showed that the proposed approach was able
to improve classification accuracy using different datasets. In
the present work we propose: (i) an extension of SCoRS using
reproducibility instead of model accuracy as the parameter
optimization criterion and (ii) a procedure to estimate the rate
of false positive selection associated with the set of features
obtained. Our results using the proposed framework showed
that, as expected, the optimal parameter was more stable
across the cross-validation folds, the spatial map displaying the
features selected was less noisy and there was no decrease in
classification accuracy. In addition, our results suggest that the
estimated false positive rate for the features selected by SCoRS
is under 0.05 for both optimization approaches, nevertheless
lower when optimizing reproducibility in comparison with the
standard optimization approach.
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I. INTRODUCTION

Feature selection has been used in neuroimaging based
pattern recognition approaches with the primary aim of
potentially increasing the model performance by elimina-
ting irrelevant features from the model. However, another
important role of feature selection methods is to facilitate
interpretation by identifying sets of meaningful features with
high predictive power. Therefore it is important to select
relevant features which are also stable.

Most methods used for selecting features require the
optimization of one or more parameter(s). As generalization
ability is an important property of learning algorithms,
classification and regression methods usually maximize pre-
dictive performance in their optimization processes for tu-
ning parameters. Given that the number of available exam-
ples in neuroimaging applications is usually small, cross-
validation (CV) framework is commonly used for evaluating
the model performance and nested cross-validation is usually
employed for parameter optimization. Consequently another
issue commonly associated with feature selection methods
embedded in a nested cross-validation framework is how to
summarize the different models resulting from each cross-
validation fold (CV-fold).

There are a couple of issues associated with parameters
optimization based only on predictive performance for fea-

ture selection methods in neuroimaging. In some applica-
tions there is a high variability among training examples. In
these cases, sets of features selected in each CV-fold tend
to have low rates of overlap, even when one single pair of
examples is left out in each fold (leave-one-pair-out CV).
This issue becomes more evident in case of sparse models.

In the current work we propose an optimization frame-
work based on maximizing the reproducibility among
CV-folds. We illustrate this approach for optimizing the
threshold level in SCoRS, a feature selection method pre-
viously proposed by our group [1]. We implemented the
same procedure with two optimization strategies: the stan-
dard approach (maximizing classification accuracy) and
the proposed approach (maximizing reproducibility across
CV-folds). Our results showed that when optimizing the
threshold using reproducibility, the optimal threshold be-
came very stable among CV-folds (varying from 0.5 to 0.6).
In addition, the model accuracy did not decrease (actually it
slightly increased regardless of the fact that the optimization
was not based on accuracy). We also addressed the issue of
having a different model for each CV-fold by proposing a
summarization approach based on the stability of the features
selected across folds.

II. MATERIAL AND METHODS

A. Selecting features with SCoRS

SCoRS (Surviving Count on Random Subspaces) [1] is
a feature selection method based on Stability Selection
theory [2]. It consists of successive iterations where a
sparse regression method is applied to sub-samplings of both
examples and features obtained randomly from the data.
The regression method used was the Lasso [3], although
other multivariate regression methods that produce sparse
solutions could be applied.

We explain the fundamentals of SCoRS in the algorithm 1,
where p is the total number of features, ntrain is the number
of training examples, βi is the coefficient of the feature i and
R is the total number of repetitions. The vector c is a counter
for the number of times each feature was randomly chosen
in a subset from the entire set of features and the vector s is
a counter for the number of times each feature was selected
by regression in all subsets it took part.



Figure 1. SCoRS algorithm
X ← DataMatrix(ntrain, p);
Y ← LabelsV ector(ntrain);
r ← 0;
si = 0 and ci = 0, ∀i, i = 1 : p;
repeat

Randomly select a subset of features rp out of p;
ci(rp)← ci(rp) + 1;
Randomly select a subset of examples rn out of
ntrain;
RX ← X(rn, rp);
Apply regression to RX;
si ← si + 1∀i|βi 6= 0
r ← r + 1;

until r = R
Select feature i if (si./ci) > th, where 0 < th < 1 is a
threshold value;

After several iterations a subset of the features will
“survive” (i.e., they will have a count different from zero
in s). However, some of those features will have low
counts, meaning that they were not relevant in the most
combinations of features in which they took part. For this
reason, after all iterations a threshold is applied to the
selection frequency, i.e., the ratio between the number of
times each feature “survived” (kept in vector s) divided by
the number of times it was randomly chosen in the sub-
samplings (kept in vector c). The optimal threshold value is
selected through a nested cross-validation, as described in
the next section.

B. Threshold optimization

The threshold tuning is an important step for selecting re-
levant features in SCoRS. A nested leave-one-pair-out cross-
validation (LOPO-CV) was used for parameter optimization.
In each iteration (CV-fold), a pair of subjects was left out
in the outer loop for test while the inner loop was used for
parameter optimization according to a specific criterion. The
parameter range consisted of 9 threshold levels varying from
0.1 to 0.9 in steps of 0.1.

In the present work we compare two different optimiza-
tion criteria. In the first approach we used the commonly
used criterion based on the model performance (i.e. the
threshold level that led to the highest classification accuracy
across the inner loops was used in the outer loop). We
used the SVM (Support Vector Machine, [4] to evaluated
the predictive performance of the selected features, although
other classification or regression methods could be used in
order to get a performance measure.

In the second optimization approach, we used a criterion
based on the overlap between the features sets selected
across the inner loops. The threshold level that led to the
highest overlap was used in the outer loop. Details on how

the overlap was measured are given in the next section.

C. Reproducibility measurement

We computed the reproducibility across cross-validation
folds based on an adaptation of the overlap measure pro-
posed by [6]. As we implemented a LOPO-CV with F folds,
we averaged all pairwise overlaps Oij between each pair of
folds i and j, according to equation 1. Si (Sj) is the subset of
features selected in the fold i (j), F is the number of folds,
N̄i is the number of non-zero features in the subset Si and E
is a correction factor for the fact that for a given model the
expected overlap of non-zero features will decrease with the
increase of the sparsity. The heuristics given by E was used
to calculate this correction, where P is the total number of
features.

Oij =
Si ∩ Sj − E

N̄i
∀(i, j) < F and E =

N̄i
2

P
(1)

D. Estimate of False Positive Rate

An important issue related to the interpretation of the
selected features is how to control the number of features
falsely selected. In [2] a theoretical approach to provide
a bound on the expected number of false selections was
proposed. However, SCoRS involves random sub-sampling
of both features and examples (instead of only sub-sampling
examples, as proposed in Stability Selection theory). There-
fore we are proposing an empirical approach to estimate
the rate of false positive selection (FP) according to the
following procedure:

I) Obtain the set of features S composed of the union
of the features selected in at least half of the CV-folds;
II) Obtain P , the complementar set of S; III) Permute the
examples for all features p ∈ P ; IV) Using the data matrix
updated with features permuted across the examples, run
SCoRS again (using the same nested-CV framework); V)
Compute how many features in P are selected (this number
corresponds to the estimation of how many features were
falsely selected).

The reasoning behind this evaluation is to assess what
proportion of the features whose correlation with the label
has been destroyed through permutation are still selected by
chance. Ideally, none of the permuted features should be
selected, as the permutation should destroy the correlation
between data and labels. However, if the dataset is small,
some correlation might still be kept as the number of possi-
ble permutations is limited. It is important to emphasize that
all examples belonging to the same subject (four examples
in this dataset, as explained in section II-E) are kept together,
i.e. not permuted among themselves.

E. Neuroimaging Data

We applied the proposed approach to a real functional
MRI dataset acquired during visualization of happy faces,



which is part of a depression study. Thirty patients (di-
agnosed with Recurrent depressive disorder, Depressive
episodes, or Bipolar affective disorder) were matched to 30
comparison subjects according to gender, age, smoking, and
handedness. The experimental design consisted of viewing
emotional faces in a blocked design. Every block was
repeated 4 times in a random order. Face blocks were
alternated with blocks showing a white fixation cross. More
details regarding the context of the original study where the
data were acquired can be found in [7].

Data were pre-processed using SPM5 (Wellcome De-
partment of Cognitive Neurology, UK). Slice-timing cor-
rection was applied, images were realigned, spatially nor-
malized and smoothed using an 8 mm FWHM Gaussian
isotropic kernel. Additional pre-processing was performed
using custom-built Matlab routines: a mask was applied to
each image in order to extract only voxels that contain brain
tissue in all subjects; then, for each subject, all the voxels
inside the mask were linearly detrended. Before selecting
the examples (i.e. the BOLD signal images corresponding
to the times in which the stimuli were presented), the scans
were shifted to accommodate the delay due to hemodynamic
response.

Within each block, individual scans were averaged to
increase the signal-to-noise ratio, i.e. a temporal compres-
sion as proposed by [8] was applied. After pre-processing
the resulting data-matrix was composed of 219727 features
(voxels) and 240 examples (2 groups, 30 subjects in each
group, 4 blocks or examples per subject).

III. RESULTS

Figure 2 (a) presents the average model accuracy obtained
for each threshold level in each inner fold according to the
nested cross-validation framework described in section II-B.
Black stars mark the threshold level for which the maximum
accuracy was obtained in each CV-fold. When more than one
threshold level resulted in the same maximum accuracy, the
median value was used. Figure 2 (b) presents the average
reproducibility for each threshold in each inner fold. Please
note that figures 2 (a) and (b) have different colour scales,
as they present different measures. .

Table I presents a comparison of results obtained from
both optimization frameworks. The first three rows contain
results related to the model performance. Sensitivity cor-
responds to the proportion of patients correctly classified,
specificity is the proportion of healthy subjects correctly
classified and Accuracy is the arithmetic mean of sensitivity
and specificity. Table I also includes the average number of
features (NF) selected in each fold, the union (i.e. features
selected in at least one fold) and the intersection (i.e. features
selected in all folds). The last row of the table shows the
absolute (and the percentage) number of falsely selected
features according to the procedure described in section D.

Figure 2. Threshold optimization in a nested cross-validation framework
(a) Optimizing accuracy (b) Optimizing reproducibility

Figure 3 displays the set of features S, composed of the
union of all features selected in at least half of the CV-
folds (as described in section II-D) for both optimization
approaches: based on accuracy (a) and based on reproducibi-
lity (b). The colours scale represents the relevance calculated
by SCoRS, given by the survival rate (the number of times
each feature was selected divided by the number of times the
feature was chosen in random subsets of features). Survival
rates for all features in S were averaged across CV-folds.
The selected features with corresponding relevance colours
were overlaid on an anatomical template.

IV. DISCUSSION AND CONCLUSION

In the present work we proposed a new criterion for
threshold optimization in SCoRS based on reproducibi-
lity rather than on classification accuracy. The comparison
between the different criteria for parameter optimization
showed that optimizing reproducibility did not decrease the



Table I
COMPARING RESULTS OF SCORS OPTIMIZING ACCURACY (APPROACH

1) AND OPTIMIZING REPRODUCIBILITY (APPROACH 2)

Measures Approach 1 Approach 2
Sensitivity 77% 77%

Specificity 60% 67%

Accuracy 68% 72%

NF (average) 8513.5 8792.1

NF (union) 33542 23167

NF (intersection) 763 2129

FP 9955 (4.67%) 3995 (1.89%)

model performance in comparison with optimizing accuracy;
instead, it slightly increased the accuracy.

As it was expected, optimizing reproducibility increased
the overlap between the selected features across CV-folds
(intersection set) and reduced the spreading of selected fea-
tures across CV-folds (union set). Nevertheless, the average
number of features selected across the CV-folds was very
similar for both approaches.

It is remarkable to observe that the threshold leading to
the maximum reproducibility is very stable among the CV-
folds (varying from 0.5 to 0.6). This finding is consistent
with the theory of Stability Selection [2].

Regarding the maps showing the localization and rele-
vance of the selected features, it is important to observe
that even though no spatial constraints were applied (fea-
tures were randomly chosen from the whole brain in each

Figure 3. Relevance maps resulting from SCoRS optimized using accuracy
(a) and using reproducibility (b).

iteration), the selected features consist of clusters spatially
connected. As neighbor voxels in the brain are correlated due
to physiological properties and pre-processing procedures
we expect them to share predictive information. The spatial
maps obtained using the different parameter optimization
approaches were very similar. However the optimization
based on reproducibility resulted in slightly less noisy maps
then the optimization based on accuracy.

In addition we proposed a procedure to estimate the
rate of false positive selection. Our results showed that the
proportion of permuted features included in the model (FP)
was smaller when optimizing reproducibility (1.89%) than
when optimizing accuracy (4.67%). This is an important
indication that optimizing reproducibility leads to higher
stability.

Another contribution of this work was to propose an
approach to summarize the models from different CV-folds.
It is possible to notice from figure 3 that the application
of SCoRS with this summarization framework produced
maps containing clusters with highly relevant features. The
proposed approach can produce maps displaying relevant
features with an associated rate of false positive selection,
a property very desirable in neuroimaging based pattern
recognition applications.
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