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Abstract

The definitive diagnosis of the type of epilepsy, if it exists, in medication-resistant seizure disorder

is based on the efficient combination of clinical information, long-term video-

electroencephalography (EEG) and neuroimaging. Diagnoses are reached by a consensus panel

that combines these diverse modalities using clinical wisdom and experience. Here we compare

two methods of multimodal computer-aided diagnosis, vector concatenation (VC) and conditional

dependence (CD), using clinical archive data from 645 patients with medication-resistant seizure

disorder, confirmed by video-EEG. CD models the clinical decision process, whereas VC allows

for statistical modeling of cross-modality interactions. Due to the nature of clinical data, not all

information was available in all patients. To overcome this, we multiply-imputed the missing data.

Using a C4.5 decision tree, single modality classifiers achieved 53.1%, 51.5% and 51.1% average

accuracy for MRI, clinical information and FDG-PET, respectively, for the discrimination

between non-epileptic seizures, temporal lobe epilepsy, other focal epilepsies and generalized-

onset epilepsy (vs. chance, p<0.01). Using VC, the average accuracy was significantly lower

(39.2%). In contrast, the CD classifier that classified with MRI then clinical information achieved
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an average accuracy of 58.7% (vs. VC, p<0.01). The decrease in accuracy of VC compared to the

MRI classifier illustrates how the addition of more informative features does not improve

performance monotonically. The superiority of conditional dependence over vector concatenation

suggests that the structure imposed by conditional dependence improved our ability to model the

underlying diagnostic trends in the multimodality data.

I. Introduction

The diagnosis of seizure disorder is challenging, and relies on the effective integration of

multiple streams of information, or modalities. Clinicians must combine clinical

information, obtained through the clinical interview, with various technological modalities

including, but not limited to, scalp electroencephalography (EEG), structural and diffusion

magnetic resonance imaging (MRI), and fluoro-deoxyglucose positron emission tomography

(PET). Each modality provides incomplete but complementary information upon which a

diagnosis can be built, and each modality has its own limitations. Clinical information

depends typically upon accurate reporting from patients and/or caregivers who are untrained

observers, and some work has shown that their reports are no more accurate than random

guessing [1]. Neuroimaging relies on the development of observable structural and/or

metabolic abnormalities that are associated, but not necessarily by cause or effect, with

epileptogenic regions. Based on analysis of these factors, clinicians are able to provide

effective treatment for two-thirds of patients with seizure disorder.

When a patient has failed two or more antiepileptic drugs (AEDs), or the etiology of the

seizures is unclear, they are admitted for long-term video-EEG monitoring. During these

admissions, 20 to 30% of patients with medication-resistant seizure disorder are found to

have non-epileptic seizures [4]. For those patients with epilepsy, the goal of long-term

monitoring is to determine if the seizures have focal or generalized onset and, if the seizures

have focal onset, determine where the focus is and if it is surgically resectable [3]. Each of

these determinations leads to changes in the treatment plan to target the cause of the seizures

more effectively.

Our objective in designing computer-aided diagnostic tools (CADTs) is to improve

diagnostic accuracy and certainty by providing information complementary to clinicians'

judgment. This has the potential to decrease the cost of and time to diagnosis by providing

clinicians' information that they would not otherwise have access to. Due to the inherently

multimodal nature of the diagnosis of epilepsy, we focus on how to develop effective

multimodal CADTs using the information available to clinicians.

In this manuscript, we assess the efficacy of two methods of multimodal learning: vector

concatenation (VC) and conditional dependence (CD), with simplified data from clinical

information (CI), MRI and PET. Vector concatenation represents a purely information

theory perspective that relies on algorithms to discover the relationships between modalities.

For other applications, VC has resulted in decreased performance relative to single modality

models, likely due to overfitting and the “curse of dimensionality.” CD attempts to

overcome these limitations by considering each modality sequentially [7]. CD also models
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clinical practice, where clinicians make a preliminary diagnosis based on the clinical

interview, then look to technological data to modify that initial impression.

II. Methods

All 645 selected patients with medication-intractable seizures were admitted to the

University of California, Los Angeles adult (age 13-88) video-EEG epilepsy monitoring unit

(UCLA EMU) between the years of 2006 and 2013. Patients were split according to their

definitively diagnosed etiology: temporal lobe epilepsy (TLE, n=235), other focal-onset

epilepsy (OFE, n=109), generalized-onset epilepsy (Gen, n=50), unspecified epilepsy (UES,

n=81) and non-epileptic seizures (NES, n=170). Patients diagnosed with unspecified

epilepsy had confirmed epilepsy, but the seizure onset zone was not determined. Definitive

diagnosis was based on consensus panel review of long term scalp video-EEG, MRI, FDG-

PET, clinical history, physical and neurologic exam, and/or neuropsychiatric testing. Not all

patients underwent all studies. Patients with prior neurosurgery, those with inconclusive

video-EEG results, and events suspicious for mixed NES and epilepsy seizure disorder were

excluded from analysis (n=219). This work was approved by the UCLA Institutional Review

Board and was consistent with the Helsinki declaration. Written informed consent was

obtained from all patients (or guardians of patients).

Our analysis focused on three modalities: CI, MRI and PET. All data were acquired as part

of the patients' clinical care according to the resources available at the time of care. Simple

clinical information was extracted, including age, gender, duration of seizure disorder prior

to neuroimaging, seizure frequency and a history of clinically suspected stroke, febrile

seizures, focal or generalized neurotrauma, and neuroinfection. For patients with multiple

neuroimages, only the most recent, pre-operative scan of each modality was included.

Neuroimaging results were based on review of clinical records written primarily, but not

exclusively, by Dr. Noriko Salamon, who is an expert in the interpretation of neuroimaging

for the diagnosis and pre-surgical assessment of epilepsy. The MRI findings were simplified

into binary indicator variables for ex-tratemporal FLAIR or T2 hyperintensities, evidence of

mesial temporal sclerosis, mass/space occupying lesion, encephalomalacia, cavernoma/

hemangioma/angioma, cortical dysplasia, ischemic changes, gliosis, grey or white matter

heterotopia, diffuse atrophy, focal extratemporal atrophy, meningioma, encephalocele, non-

specific tumor, edema, vascular abnormality, cortical thickening, tuberosclerosis,

unspecified lesion, cerebellar tonsil ectopia, abnormal gyration/sulcus structure,

neurocystocercosis, hydrocephalus, and other MRI finding. The PET findings were

simplified into indicators for hypo- or hyper-metabolism in the temporal lobe, frontal lobe,

occipital lobe, parietal lobe, insula, diffuse cerebral cortex, cerebellum or whole brain

diffuse hypometabolism, as well as foci of abnormal metabolism (i.e. high metabolism in

white matter). Both neuroimaging modalities also included an aggregate indicator of

abnormal findings.

Our data were extracted entirely from real-world clinical archives; not all data values were

available for all patients. For the purposes of data imputation, we split the missing data into

two groups. Duration of seizure disorder (0.5% missing) and seizure frequency (7%

missing) were considered to be missing completely at random (MCAR), because these
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variables clearly are defined for every patient, and there was no trend in percent missing in

any diagnostic subgroup. In contrast, if the clinical notes did not mention a historical factor

(i.e., neurotrauma), we assumed that the patient had no history of this factor because the

clinician is biased to report a historical factor if it exists. Overall 624 (97%) and 486 (75%)

patients had MRI and PET records, respectively. The presence or absence of neuroimaging

was not a significant predictor of diagnosis, when other clinical factors were taken into

account (data not shown). Therefore, we assumed that this data was MCAR. We multiply

imputed the data 20 independent times using the mi package in R [6]. Based on their

theoretical and observed distribution, duration and seizure frequency were log transformed

to maintain linearity. For the neuroimaging, there was insufficient information to impute

each individual abnormality, therefore only the aggregate abnormality indicator for each

modality was imputed. Separate analysis was conducted on each imputed dataset and results

were aggregated with respect to the within and between imputation variance [8].

All classifications were based on C4.5 decision trees in Weka [5] with leave-one-out cross-

validation (LOOCV), and performance was compared to chance distributions determined by

permutation tests. Briefly, at each node, the C4.5 finds the feature and threshold that

maximizes the normalized information gain. In LOOCV, one patient is excluded from all

training. Once the decision tree is built, its performance is assessed on this “unseen” patient.

For each method, we evaluated the overall accuracy, sensitivity for each diagnostic class

(TLE, OFE, Gen, UES, NES). UES patients were considered correctly classified if they

were predicted to have any type of epilepsy, but not NES. All other patients were considered

misclassified if they were predicted to have UES. This penalty was reflected in the cost

matrix of the C4.5 classifier. To compare multiple classifiers head-to-head we calculated the

paired performance change, where the difference in accuracy is paired within patient, then

averaged across patient because the performance on each patient cannot be assumed to be

independent across classifiers. The null distribution for all performance measures was

calculated by conducting the same analysis (imputation, training, LOOCV and aggregating

results across imputed datasets as in [8]) on data with permuted diagnostic labels, without

replacement. At least 100 permutations were done on each imputed dataset. The rank order

of performance measures from the permutations were used as as empirical markers for the

1% quantile bins of each chance, or null, distribution used to determine significance,

because the permuted labels had no relation to the underlying diagnostic class.

We compared VC and CD. VC ignores the modality structure and treats all features as

components of one large model. CD, otherwise known as “stacking” [7], classifies each

patient into discrete, multivariate classes based on each modality individually in a specified

order. Intuitively, for each test case the classifier gives a preliminary diagnosis based on the

first modality. Then, a second layer classifier is learned from all training samples that also

were classified as that same preliminary diagnosis, either correctly or incorrectly. To frame

this theoretically, Bayes theorem states that:
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where Dx and Data indicate the diagnosis and data, respectively. In CD, we factor P(Dx|

DataM1,M2) by each modality to get:

where M1 and M2 indicate two modalities, in order. Therefore, P(DataM2|Dx) is

conditionally dependent on DataM2. Although we have described two-modality CD, this

reasoning can be extended to apply to m modalities for any positive integer m. The final

predicted diagnosis is the diagnosis that maximizes this likelihood, given the data and the

classification model used to estimate the probabilities.

III. Results

The LOOCV accuracy and per-class sensitivity, taking into account the multiple imputations

[8], of the single and multi-modality classifiers is illustrated in Figure 1. The accuracy of the

single modality classifiers was 53.1%, 51.5%, and 51.1% fo MRI, CI, and PET,

respectively. The accuracy of VC was 39.2% and 37.7% using MRI+PET+CI and just MRI

+CI, respectively. The accuracy of CD was 58.7%, 56.6%, 52.9%, and 51.8% when

modalities were considered in the order MRI→CI, CI→MRI, MRI→PET→CI, and

CI→MRI→PET, respectively. All accuracies were significantly better than chance (p<0.01)

except the MRI+CI, MRI→PET→CI, and MRI→CI (p>0.1). All pairwise comparisons

revealed that all classifiers were superior to vector concatenation (p<0.01), but no other

pairwise comparisons were significant (p>0.08).

Table I illustrates the distribution of the considered diagnostic features, except for the long

list of neuroimaging indicators, by diagnostic class. All trees were more than 10 nodes deep

and were too large for display.

IV. Discussion

In real-world applications, combining information from multiple modalities does not always

improve accuracy; this combination must consider the statistical and practical limitations

inherent in modeling high dimensional data. Conditional dependence (CD) was superior to

vector concatenation (VC) in overcoming these limitations, but did not result in a significant

improvement over the single best modality classifier: the MRI.

The efficacy of CD relies on efficiently splitting the patients into more homogenous

subgroups. The curse of dimensionality states that as the number of dimensions increases the

number of samples needed to achieve the same sampling density increases exponentially.

This curse can be overcome if the data truly exist in a lower dimensional subspace. This can

occur when there are subgroups of patients within each diagnostic class that are more similar

to each other, and therefore are distributed over a relatively limited region of feature space.

These subgroups can be discovered using hypothesis-driven methods like CD, or through

data-driven “committee-of-experts” methods that we will examine in the future. We

hypothesize that, when applied in the most efficient order (neuroimaging first), CD

identifies subgroups of patients with similar etiology. The relatively simple clinical variables
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then can identify if the clinical presentation of this etiology matches with the expected

presentation of patients with similar etiologies. In particular, this order is interesting because

it is the opposite of how clinicians diagnose patients. This illustrates how the ideal structure

of automated computer analysis may differ from how clinicians' diagnose, due to the relative

strengths of each analysis method. This reflects our belief that CADTs cannot, and should

not, replace clinicians' expertise.

Even though neuroimaging-first produced higher accuracies than CI-first, this was not

significantly higher than the accuracy on permuted diagnostic labels. Variation of chance

between 36% (nTLE/ntotal) and 49% (nTLE +nUES/ntotal) was expected due to the latent

structure of the data and classifiers naively diagnosing all patients as the most common class

(TLE), which also was considered correct for patients with UES. However, chance

accuracies of 58% for the neuroimaging-first CD classifiers seem inflated, for a number of

reasons that can and should be explored. For instance, latent structure of the data could have

been used to identify coherent subclasses that the randomly permuted diagnostic labels did

not break up. This exploration is outside the scope of this short manuscript.

While most of our diagnostic accuracies were significantly above chance, they were too low

to be readily applicable to clinical medicine. We expect that CADT performance would

improve by including more detailed clinical information, including ictal semiology and co-

morbidity profile; as well as integrating in automated MRI- and/or PET-based CADTs that

utilize features not appreciated by radiologists (i.e. [9]–[12]). However, the addition of these

other diagnostic features could magnify the problem of the curse of dimensionality. We,

therefore, chose to focus first on simplified, high-salience features to assess multimodal

classification methods.

To develop this CADT, we relied solely on archived clinical data from a tertiary epilepsy

center, which has its benefits and limitations. The primary benefit is that the information we

used reflects the information that would be available in clinic. This ensures that the CADT

performance on this data is more similar to how the CADT would perform when applied in a

similar setting, at the cost of accurately describing the underlying pathology [13]. As

discussed above, the clinical information may be misreported, and radiologists cannot

determine the epileptogenic region in all patients. Therefore, even though our CADTs may

be clinically applicable, these observed trends may or may not reflect the true pathologic

process of disease.

Archived clinical data often are limited because some data are missing. In this case, we

multiply-imputed the missing durations, seizure frequency and neuroimaging results based

on multilinear trends in all of the other included variables. This allowed the imputed missing

data points to contribute to the MRI- and PET-based classifiers. While we expect the

variance and, therefore the uncertainty, of each diagnosis to increase with the amount of

missing data, in the case of our CADT, multiple imputation has the additional benefit of

allowing us to apply one unified model to all patients, irrespective of what data has been

collected.
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V. Conclusion

Conditional dependence resulted in a more clinically-applicable CADT compared to vector

concatenation. The imposed structure of conditional dependence improved performance.

The opposite order of modalities in our analysis suggests that computers view the data

differently from clinicians and could provide a non-redundant, complementary perspective

on the data that could improve diagnostic accuracy and certainty, when combined with

clinicians' expertise.
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Fig. 1.
Overall accuracy (A) and per-class sensitivity (B) of each classifier. Error bars reflect

binomial theoretical standard error bars, with multiple imputation. Red shading reflects the

95% quantile bounds from permutation tests. Vector concatenation and conditional

dependence are indicated by + and -, respectively. For conditional dependence, the order of

modalities is read from left to right. Abbreviations: Clinical information (CI).
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